Members Can Post Anonymously On This Site
NASA’s Bennu Asteroid Sample Contains Carbon, Water
-
Similar Topics
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read
Sols 4348-4349: Smoke on the Water
NASA’s Mars rover Curiosity created this composite image from its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm. An onboard process, focus merging, makes a composite of images of the same target — acquired at different focus positions — to bring all (or, as many as possible) features into focus in a single image. Curiosity performed this merge on Oct. 27, 2024, sol 4346 (Martian day 4,346) of the Mars Science Laboratory Mission, at 15:45:47 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Monday, Oct. 28, 2024
Before the science team starts planning, we first look at the latest Navcam image downlinked from Curiosity to see where the rover is located. It can be all too easy to get lost in the scenery of the Navcam and find new places in the distance we want to drive towards, but there’s so much beauty in the smaller things. Today I’ve chosen to show a photo from Curiosity’s hand lens camera, MAHLI, that takes photos so close that we can see the individual grains of the rock.
The planning day usually starts by thinking about these smaller features: What rocks are the closest to the rover? What can we shoot with our laser? What instruments can we use to document these features? Today we planned two sols, and the focus of the close-up contact science became a coating of material that in some image stretches looks like a deep-purple color.
We planned lots of activities to characterize this coating including use of the dust removal tool (DRT) and the APXS instrument on a target called “Reds Meadow.” This target will also be photographed by the MAHLI instrument. The team planned a ChemCam LIBS target on “Midge Lake” as well as a passive ChemCam target on “Primrose Lake” to document this coating with a full suite of instruments. Mastcam will then document the ChemCam LIBS target Midge Lake, and take a mosaic of the vertical faces of a few rocks near to the rover called “Peep Sight Peak” to observe the sedimentary structures here. Mastcam will also take a mosaic of “Pinnacle Ridge,” an area seen previously by the rover, from a different angle. ChemCam is rounding off the first sol with two long-distance RMI mosaics to document the stratigraphy of two structures we are currently driving between: Texoli butte and the Gediz Vallis channel.
In the second sol of the plan, after driving about 20 meters (about 66 feet), Curiosity will be undertaking some environmental monitoring activities before an AEGIS activity that automatically selects a LIBS target in our new workspace prior to our planning on Wednesday morning.
Written by Emma Harris, Graduate Student at Natural History Museum, London
Share
Details
Last Updated Oct 30, 2024 Related Terms
Blogs Explore More
2 min read A Spooky Soliday: Haunting Whispers from the Martian Landscape
Article
9 hours ago
3 min read Sols 4345-4347: Contact Science is Back on the Table
Article
2 days ago
4 min read Sols 4343-4344: Late Slide, Late Changes
Article
5 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
By NASA
NASA/Don Pettit NASA astronaut Don Pettit fills a sphere of water with food coloring in this image from Oct. 20, 2024. Pettit calls experiments like these “science of opportunity” – moments of scientific exploration that spontaneously come to mind because of the unique experience of being on the International Space Station. During his previous missions, Pettit has contributed to advancements for human space exploration aboard the International Space Station resulting in several published scientific papers and breakthroughs.
See other inventive experiments Pettit has conducted.
Image credit: NASA/Don Pettit
View the full article
-
By European Space Agency
The two CubeSat passengers aboard ESA’s Hera mission for planetary defence have exchanged their first signals with Earth, confirming their nominal status. The pair were switched on to check out all their systems, marking the first operation of ESA CubeSats in deep space.
View the full article
-
By European Space Agency
New research, partially funded by ESA, reveals that the cool ‘ocean skin’ allows oceans to absorb more atmospheric carbon dioxide than previously thought. These findings could enhance global carbon assessments, shaping more effective emission-reduction policies.
View the full article
-
By NASA
Mars Sample Return MSR Home Mission Concept Overview Perseverance Rover Sample Retrieval Lander Mars Ascent Vehicle Sample Recovery Helicopters Earth Return Orbiter Science Overview Bringing Mars Samples to Earth Mars Rock Samples MSR Science Community Member Sign up News and Features Multimedia Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 4 min read
New Team to Assess NASA’s Mars Sample Return Architecture Proposals
NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the agency’s Mars Sample Return Program, which aims to bring back scientifically selected samples from Mars, and is a key step in NASA’s quest to better understand our solar system and help answer whether we are alone in the universe.
Earlier this year, the agency commissioned design studies from the NASA community and eight selected industry teams on how to return Martian samples to Earth in the 2030s while lowering the cost, risk, and mission complexity. The new strategy review team will assess 11 studies conducted by industry, a team across NASA centers, the agency’s Jet Propulsion Laboratory in Southern California, and the Johns Hopkins Applied Physics Laboratory. The team will recommend to NASA a primary architecture for the campaign, including associated cost and schedule estimates.
“Mars Sample Return will require a diversity of opinions and ideas to do something we’ve never done before: launch a rocket off another planet and safely return samples to Earth from more than 33 million miles away,” said NASA Administrator Bill Nelson. “It is critical that Mars Sample Return is done in a cost-effective and efficient way, and we look forward to learning the recommendations from the strategy review team to achieve our goals for the benefit of humanity.”
Returning samples from Mars has been a major long-term goal of international planetary exploration for more than three decades, and the Mars Sample Return Program is jointly planned with ESA (European Space Agency). NASA’s Perseverance rover is collecting compelling science samples that will help scientists understand the geological history of Mars, the evolution of its climate, and potential hazards for future human explorers. Retrieval of the samples also will help NASA’s search for signs of ancient life.
The team’s report is anticipated by the end of 2024 and will examine options for a complete mission design, which may be a composite of multiple studied design elements. The team will not recommend specific acquisition strategies or partners. The strategy review team has been chartered under a task to the Cornell Technical Services contract. The team may request input from a NASA analysis team that consists of government employees and expert consultants. The analysis team also will provide programmatic input such as a cost and schedule assessment of the architecture recommended by the strategy review team.
The Mars Sample Return Strategy Review Team is led by Jim Bridenstine, former NASA administrator, and includes the following members:
Greg Robinson, former program director, James Webb Space Telescope Lisa Pratt, former planetary protection officer, NASA Steve Battel, president, Battel Engineering; Professor of Practice, University of Michigan, Ann Arbor Phil Christensen, regents professor, School of Earth and Space Exploration, Arizona State University, Tempe Eric Evans, director emeritus and fellow, MIT Lincoln Lab Jack Mustard, professor of Earth, Environmental, and Planetary Science, Brown University Maria Zuber, E. A. Griswold professor of Geophysics and presidential advisor for science and technology policy, MIT The NASA Analysis Team is led by David Mitchell, chief program management officer at NASA Headquarters, and includes the following members:
John Aitchison, program business manager (acting), Mars Sample Return Brian Corb, program control/schedule analyst, NASA Headquarters Steve Creech, assistant deputy associate administrator for Technical, Moon to Mars Program Office, NASA Headquarters Mark Jacobs, senior systems engineer, NASA Headquarters Rob Manning, chief engineer emeritus, NASA JPL Mike Menzel, senior engineer, NASA Goddard Fernando Pellerano, senior advisor for Systems Engineering, NASA Goddard Ruth Siboni, chief of staff, Moon to Mars Program Office, NASA Headquarters Bryan Smith, director of Facilities, Test and Manufacturing, NASA Glenn Ellen Stofan, under secretary for Science and Research, Smithsonian For more information on NASA’s Mars Sample Return, visit:
https://science.nasa.gov/mission/mars-sample-return
Dewayne Washington
Headquarters, Washington
202-358-1100
dewayne.a.washington@nasa.gov
Share
Details
Last Updated Oct 16, 2024 Related Terms
Mars Mars Sample Return (MSR) Missions Explore More
3 min read NASA’s Hubble Sees a Stellar Volcano
Article
7 hours ago
6 min read NASA, NOAA: Sun Reaches Maximum Phase in 11-Year Solar Cycle
Article
1 day ago
2 min read ESA/NASA’s SOHO Spies Bright Comet Making Debut in Evening Sky
The Solar and Heliospheric Observatory (SOHO) has captured images of the second-brightest comet to ever pass…
Article
5 days ago
Keep Exploring Discover Related Topics
Mars Sample Return
Mars Sample Return would be NASA’s most ambitious, multi-mission campaign that would bring carefully selected Martian samples to Earth for…
Mars 2020: Perseverance Rover
NASA’s Mars Perseverance rover seeks signs of ancient life and collects samples of rock and regolith for possible Earth return.
Mars Science Laboratory: Curiosity Rover
Part of NASA’s Mars Science Laboratory mission, at the time of launch, Curiosity was the largest and most capable rover…
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.