Jump to content

NASA’s Roman Mission Gears Up for a Torrent of Future Data


NASA

Recommended Posts

  • Publishers

NASA’s Nancy Grace Roman Space Telescope team is exploring ways to support community efforts that will prepare for the deluge of data the mission will return. Recently selected infrastructure teams will serve a vital role in the preliminary work by creating simulations, scouting the skies with other telescopes, calibrating Roman’s components, and much more.

Their work will complement additional efforts by other teams and individuals around the world, who will join forces to maximize Roman’s scientific potential. The goal is to ensure that, when the mission launches by May 2027, scientists will already have the tools they need to uncover billions of cosmic objects and help untangle mysteries like dark energy.

“We’re harnessing the science community at large to lay a foundation, so when we get to launch we’ll be able to do powerful science right out of the gate,” said Julie McEnery, Roman’s senior project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “There’s a lot of exciting work to do, and many different ways for scientists to get involved.”

Thousands of tiny red dots speckle a black background like spilled salt. Additional yellow blobs that are slightly larger and appear more like galaxies, are overlaid on top and a few areas appear to bloom outward and slightly warp. Then even more galaxies, this time yellow and white, are overlaid over that, and the other areas "bloom" with even more exaggerated effects, the edges of the circular areas appearing to be smeared into arcs and streaks while the inside of the areas are magnified.
This animation shows a simulation of the type of science that astronomers will be able to do with future deep field observations from NASA’s Nancy Grace Roman Space Telescope. The gravity of intervening galaxy clusters and dark matter can lens the light from farther objects, warping their appearance as shown in the animation. By studying the distorted light, astronomers can study elusive dark matter, which can only be measured indirectly through its gravitational effects on visible matter. As a bonus, this lensing also makes it easier to see the most distant galaxies whose light they magnify. Simulations like this one help astronomers understand what Roman’s future observations could tell us about the universe, and provide useful data to validate data analysis techniques.
Credit: Caltech-IPAC/R. Hurt

Simulations lie at the heart of the preparatory efforts. They enable scientists to test algorithms, estimate Roman’s scientific return, and fine-tune observing strategies so that we’ll learn as much as possible about the universe.

Teams will be able to sprinkle different cosmic phenomena through a simulated dataset and then run machine learning algorithms to see how well they can automatically find the phenomena. Developing fast and efficient ways to identify underlying patterns will be vital given Roman’s enormous data collection rate. The mission is expected to amass 20,000 terabytes (20 petabytes) of observations containing trillions of individual measurements of stars and galaxies over the course of its five-year primary mission.

“The preparatory work is complex, partly because everything Roman will do is quite interconnected,” McEnery said. “Each observation is going to be used by multiple teams for very different science cases, so we’re creating an environment that makes it as easy as possible for scientists to collaborate.”

Some scientists will conduct precursor observations using other telescopes, including NASA’s Hubble Space Telescope, the Keck Observatory in Hawaii, and Japan’s PRIME (Prime-focus Infrared Microlensing Experiment) located in the South African Astronomical Observatory in Sutherland. These observations will help astronomers optimize Roman’s observing plan by identifying the best individual targets and regions of space for Roman and better understand the data the mission is expected to deliver.

Some teams will explore how they might combine data from different observatories and use multiple telescopes in tandem. For example, using PRIME and Roman together would help astronomers learn more about objects found via warped space-time. And Roman scientists will be able to lean on archived Hubble data to look back in time and see where cosmic objects were and how they were behaving, building a more complete history of the objects astronomers will use Roman to study. Roman will also identify interesting targets that observatories such as NASA’s James Webb Space Telescope can zoom in on for more detailed studies.

A series of images showing wispy stellar streams surrounding eight individual galaxies. Light and dark are reversed so that the background is gray-white and the galaxies appear as black blobs. Extending out from each like tentacles are streams of stars.
This series of images shows how astronomers find stellar streams by reversing the light and dark, similar to negative images, but stretched to highlight the faint streams. Color images of each of the nearby galaxies featured are superposed to scale to highlight the easily visible disk. Galaxies are surrounded by enormous halos of hot gas sprinkled with sporadic stars, seen as the shadowy regions that encase each galaxy here. NASA’s upcoming Nancy Grace Roman Space Telescope is expected to improve on these observations by resolving individual stars to understand each stream’s stellar populations and see stellar streams of various sizes in even more galaxies.
Credit: Carlin et al. (2016), based on images from Martínez-Delgado et al. (2008, 2010)

It will take many teams working in parallel to plan for each Roman science case. “Scientists can take something Roman will explore, like wispy streams of stars that extend far beyond the apparent edges of many galaxies, and consider all of the things needed to study them really well,” said Dominic Benford, Roman’s program scientist at NASA Headquarters in Washington, D.C. “That could include algorithms for dim objects, developing ways to measure star positions very precisely, understanding how detector effects could influence the observations and knowing how to correct for them, coming up with the most effective strategy to image stellar streams, and much more.”

One group is developing processing and analysis software for Roman’s Coronagraph Instrument. This instrument will demonstrate several cutting-edge technologies that could help astronomers directly image planets beyond our solar system. This team will also simulate different objects and planetary systems the Coronagraph could unveil, from dusty disks surrounding stars to old, cold worlds similar to Jupiter.

The mission’s science centers are gearing up to manage Roman’s data pipeline and archive and establishing systems to plan and execute observations. As part of a separate, upcoming effort, they will convene a survey definition team that will take in all of the preparatory information scientists are generating now and all the interests from the broader astronomical community to determine Roman’s optimal observation plans in detail.

“The team is looking forward to coordinating and funneling all the preliminary work,” McEnery said. “It’s a challenging but also exciting opportunity to set the stage for Roman and ensure each of its future observations will contribute to a wealth of scientific discoveries.”

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are Ball Aerospace and Technologies Corporation in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media contact:

Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA has awarded Bastion Technologies Inc., of Houston, the Center Occupational Safety, Health, Medical, System Safety and Mission Assurance Contract (COSMC) at the agency’s Ames Research Center in California’s Silicon Valley.
      The COSMC contract is a hybrid cost-plus-fixed-fee and firm-fixed-price contract, with an indefinite-delivery/indefinite-quantity component and maximum potential value of $53 million. The contract phase-in begins Thursday, Jan. 2, 2025, followed by a one-year base period that begins Feb. 14, 2025, and options to extend performance through Aug. 13, 2030.
      Under this contract, the company will provide support for occupational safety, industrial hygiene, health physics, safety and health training, emergency response, safety culture, medical, wellness, fitness, and employee assistance. The contractor also will provide subject matter expertise in several areas including system safety, software safety and assurance, quality assurance, pressure system safety, procurement quality assurance, and range safety. Work will primarily be performed at NASA Ames and NASA’s Armstrong Flight Research Center in Edwards, California, as needed.
      For information about NASA and agency programs, visit:
      https://www.nasa.gov
      -end-
      Tiernan Doyle
      NASA Headquarters, Washington
      202-358-1600
      tiernan.p.doyle@nasa.gov
      Rachel Hoover
      Ames Research Center, Silicon Valley, Calif.
      650-604-4789
      rachel.hoover@nasa.gov
      View the full article
    • By NASA
      Early conceptual renderings of cargo variants of human lunar landing systems from NASA’s providers SpaceX, left, and Blue Origin, right. The large cargo landers will have the capability to land approximately 26,000 to 33,000 pounds (12-15 metric tons) of large, heavy payload on the lunar surface. Credit: SpaceX/Blue Origin NASA, along with its industry and international partners, is preparing for sustained exploration of the lunar surface with the Artemis campaign to advance science and discovery for the benefit of all. As part of that effort, NASA intends to award Blue Origin and SpaceX additional work under their existing contracts to develop landers that will deliver large pieces of equipment and infrastructure to the lunar surface.
      NASA expects to assign demonstration missions to current human landing system providers, SpaceX and Blue Origin, to mature designs of their large cargo landers following successful design certification reviews. The assignment of these missions builds on the 2023 request by NASA for the two companies to develop cargo versions of their crewed human landing systems, now in development for Artemis III, Artemis IV, and Artemis V.
      “NASA is planning for both crewed missions and future services missions to the Moon beyond Artemis V,” said Stephen D. Creech, assistant deputy associate administrator for technical, Moon to Mars Program Office. “The Artemis campaign is a collaborative effort with international and industry partners. Having two lunar lander providers with different approaches for crew and cargo landing capability provides mission flexibility while ensuring a regular cadence of Moon landings for continued discovery and scientific opportunity.”
      NASA plans for at least two delivery missions with large cargo. The agency intends for SpaceX’s Starship cargo lander to deliver a pressurized rover, currently in development by JAXA (Japan Aerospace Exploration Agency), to the lunar surface no earlier than fiscal year 2032 in support of Artemis VII and later missions. The agency expects Blue Origin to deliver a lunar surface habitat no earlier than fiscal year 2033.
      “Based on current design and development progress for both crew and cargo landers and the Artemis mission schedules for the crew lander versions, NASA assigned a pressurized rover mission for SpaceX and a lunar habitat delivery for Blue Origin,” said Lisa Watson-Morgan, program manager, Human Landing System, at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These large cargo lander demonstration missions aim to optimize our NASA and industry technical expertise, resources, and funding as we prepare for the future of deep space exploration.”
      SpaceX will continue cargo lander development and prepare for the Starship cargo mission under Option B of the NextSTEP Appendix H contract. Blue Origin will conduct its cargo lander work and demonstration mission under NextSTEP Appendix P. NASA expects to issue an initial request for proposals to both companies in early 2025.
      With the Artemis campaign, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with commercial human landing systems, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
      For more on NASA’s Human Landing System Program, visit:
      https://www.nasa.gov/hls
      -end-
      James Gannon
      Headquarters, Washington
      202-358-1600
      james.h.gannon@nasa.gov
      Corinne Beckinger
      Marshall Space Flight Center, Huntsville, Ala.
      256-544-0034
      corinne.m.beckinger@nasa.gov
      Share
      Details
      Last Updated Nov 19, 2024 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Human Landing System Program Artemis Exploration Systems Development Mission Directorate Marshall Space Flight Center View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Designers at NASA’s Scientific Visualization Studio work alongside researchers and scientists to create high-quality, engaging animations and visualizations of data. This animation shows global carbon dioxide emissions forming and circling the planet.Credit: NASA's Scientific Visualization Studio Captivating images and videos can bring data to life. NASA’s Scientific Visualization Studio (SVS) produces visualizations, animations, and images to help scientists tell stories of their research and make science more approachable and engaging.
      Using the Discover supercomputer at the Center for Climate Simulation at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, visualizers use datasets generated by supercomputer models to create highly detailed, accurate, and stunning visualizations with Hollywood filmmaking tools like 3D modeling and animation.
      Using supercomputing models, SVS visualizers created this data-driven animation of carbon dioxide emissions moving around the planet. The visualization is driven by massive climate data sets and highly detailed emissions maps created by NASA researchers and external partners. The resulting visualization shows the impact of power plants, fires, and cities, and how their emissions are spread across the planet by weather patterns and airflow.
      “Both policymakers and scientists try to account for where carbon comes from and how that impacts the planet,” said NASA Goddard climate scientist Lesley Ott, whose research was used to generate the final visualization. “You see here how everything is interconnected by the different weather patterns.”
      By combining visual storytelling with supercomputing power, the SVS team continues their work to captivate and connect with audiences while educating them on NASA’s scientific research and efforts.
      The NASA Center for Climate Simulation is part of the NASA High-End Computing Program, which also includes the NASA Advanced Supercomputing Facility at Ames Research Center in California’s Silicon Valley.
      NASA is showcasing 29 of the agency’s computational achievements at SC24, the international supercomputing conference, Nov. 18-22, 2024, in Atlanta. For more technical information, visit: ​ 
      https://www.nas.nasa.gov/sc24
      For news media: 
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom. 
      About the Author
      Tara Friesen

      Share
      Details
      Last Updated Nov 18, 2024 Related Terms
      Ames Research Center Earth Science Division General Goddard Space Flight Center Explore More
      4 min read NASA Program Aids Pediatric Patients Facing Medical Treatments
      Article 1 hour ago 7 min read Six Ways Supercomputing Advances Our Understanding of the Universe
      Article 3 days ago 4 min read
      Article 3 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy (front center left) discusses NASA 2040 on Wednesday, Nov. 13, 2024, the agency’s strategic initiative for aligning workforce, infrastructure, and technologies to meet the needs of the future with various groups of employees at the agency’s Kennedy Space Center in Florida.
      The initiative launched in June 2023 to implement meaningful changes to ensure the agency remains the global leader in aerospace and science in the year 2040 while also making the greatest impacts for the nation and the world.
      NASA will focus on addressing the agency’s aging infrastructure, shaping an agency workforce strategy, improving decision velocity at many levels, and exploring ways to achieve greater budget flexibility.
      Photo credit: NASA/Glenn Benson
      View the full article
    • By NASA
      As the agency continues to explore for the benefit of all, NASA is in the process of searching for a new headquarters facility in Washington or the immediate surrounding area.
      The current NASA Headquarters lease expires in August 2028, and the agency already has evaluated multiple options including leasing or purchasing within the District of Columbia. Through a request for information published Thursday, NASA took a small step in a longer process to determine the best outcome for the agency and U.S. taxpayers.
      “With a new facility on the horizon, NASA has a unique opportunity to better meet the needs of a new generation of explorers, discoverers, and public servants – the Artemis Generation,” said Bob Gibbs, associate administrator, Mission Support Directorate. “The next NASA Headquarters will reflect our journey in a facility that inspires and engages the public, aligns with new ways of working, fosters innovation and connection, and maximizes taxpayer funding.”
      NASA is asking for responses from members of the development community, local and state jurisdictions, academia, other federal agencies, commercial aerospace partners, and other interested parties to help inform its decision.
      Needs for a new headquarters includes approximately 375,000 to 525,000 square feet of office space to house NASA’s workforce. The desired location is within walking distance to a Washington Metropolitan Area Transit Authority station. In addition, the new location also needs parking options, as well as convenient access to food establishments.
      Other ideal characteristics for a new setting include the capability to renovate the space to create a dynamic, flexible, and adaptive work environment inclusive of open work areas, enclosed offices, open collaboration areas, teaming rooms, conference rooms, sensitive compartmented information facilities, and secured storage spaces, to include potential stakeholder meeting, Science, Technology, Engineering, and Mathematics (STEM) educational outreach, and storage spaces.
      Responses to the request for information are due no later than 12 p.m. EST on Jan. 15, 2025. This call for ideas is for informational purposes only and is intended to assist NASA with its planning and strategic decisions regarding a future facility. It is not a request for a lease proposal or a solicitation for a contract or other agreement, and it does not obligate NASA in any way.
      Under the leadership of the administrator, NASA Headquarters provides overall guidance and direction to the agency, through 10-field centers and a variety of installations nationwide.
      To learn more about NASA and its missions, visit:
      https://www.nasa.gov
      Share
      Details
      Last Updated Nov 14, 2024 LocationNASA Headquarters Related Terms
      NASA Headquarters NASA Centers & Facilities View the full article
  • Check out these Videos

×
×
  • Create New...