Jump to content

NASA’s Roman Mission Gears Up for a Torrent of Future Data


Recommended Posts

  • Publishers
Posted

NASA’s Nancy Grace Roman Space Telescope team is exploring ways to support community efforts that will prepare for the deluge of data the mission will return. Recently selected infrastructure teams will serve a vital role in the preliminary work by creating simulations, scouting the skies with other telescopes, calibrating Roman’s components, and much more.

Their work will complement additional efforts by other teams and individuals around the world, who will join forces to maximize Roman’s scientific potential. The goal is to ensure that, when the mission launches by May 2027, scientists will already have the tools they need to uncover billions of cosmic objects and help untangle mysteries like dark energy.

“We’re harnessing the science community at large to lay a foundation, so when we get to launch we’ll be able to do powerful science right out of the gate,” said Julie McEnery, Roman’s senior project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “There’s a lot of exciting work to do, and many different ways for scientists to get involved.”

Thousands of tiny red dots speckle a black background like spilled salt. Additional yellow blobs that are slightly larger and appear more like galaxies, are overlaid on top and a few areas appear to bloom outward and slightly warp. Then even more galaxies, this time yellow and white, are overlaid over that, and the other areas "bloom" with even more exaggerated effects, the edges of the circular areas appearing to be smeared into arcs and streaks while the inside of the areas are magnified.
This animation shows a simulation of the type of science that astronomers will be able to do with future deep field observations from NASA’s Nancy Grace Roman Space Telescope. The gravity of intervening galaxy clusters and dark matter can lens the light from farther objects, warping their appearance as shown in the animation. By studying the distorted light, astronomers can study elusive dark matter, which can only be measured indirectly through its gravitational effects on visible matter. As a bonus, this lensing also makes it easier to see the most distant galaxies whose light they magnify. Simulations like this one help astronomers understand what Roman’s future observations could tell us about the universe, and provide useful data to validate data analysis techniques.
Credit: Caltech-IPAC/R. Hurt

Simulations lie at the heart of the preparatory efforts. They enable scientists to test algorithms, estimate Roman’s scientific return, and fine-tune observing strategies so that we’ll learn as much as possible about the universe.

Teams will be able to sprinkle different cosmic phenomena through a simulated dataset and then run machine learning algorithms to see how well they can automatically find the phenomena. Developing fast and efficient ways to identify underlying patterns will be vital given Roman’s enormous data collection rate. The mission is expected to amass 20,000 terabytes (20 petabytes) of observations containing trillions of individual measurements of stars and galaxies over the course of its five-year primary mission.

“The preparatory work is complex, partly because everything Roman will do is quite interconnected,” McEnery said. “Each observation is going to be used by multiple teams for very different science cases, so we’re creating an environment that makes it as easy as possible for scientists to collaborate.”

Some scientists will conduct precursor observations using other telescopes, including NASA’s Hubble Space Telescope, the Keck Observatory in Hawaii, and Japan’s PRIME (Prime-focus Infrared Microlensing Experiment) located in the South African Astronomical Observatory in Sutherland. These observations will help astronomers optimize Roman’s observing plan by identifying the best individual targets and regions of space for Roman and better understand the data the mission is expected to deliver.

Some teams will explore how they might combine data from different observatories and use multiple telescopes in tandem. For example, using PRIME and Roman together would help astronomers learn more about objects found via warped space-time. And Roman scientists will be able to lean on archived Hubble data to look back in time and see where cosmic objects were and how they were behaving, building a more complete history of the objects astronomers will use Roman to study. Roman will also identify interesting targets that observatories such as NASA’s James Webb Space Telescope can zoom in on for more detailed studies.

A series of images showing wispy stellar streams surrounding eight individual galaxies. Light and dark are reversed so that the background is gray-white and the galaxies appear as black blobs. Extending out from each like tentacles are streams of stars.
This series of images shows how astronomers find stellar streams by reversing the light and dark, similar to negative images, but stretched to highlight the faint streams. Color images of each of the nearby galaxies featured are superposed to scale to highlight the easily visible disk. Galaxies are surrounded by enormous halos of hot gas sprinkled with sporadic stars, seen as the shadowy regions that encase each galaxy here. NASA’s upcoming Nancy Grace Roman Space Telescope is expected to improve on these observations by resolving individual stars to understand each stream’s stellar populations and see stellar streams of various sizes in even more galaxies.
Credit: Carlin et al. (2016), based on images from Martínez-Delgado et al. (2008, 2010)

It will take many teams working in parallel to plan for each Roman science case. “Scientists can take something Roman will explore, like wispy streams of stars that extend far beyond the apparent edges of many galaxies, and consider all of the things needed to study them really well,” said Dominic Benford, Roman’s program scientist at NASA Headquarters in Washington, D.C. “That could include algorithms for dim objects, developing ways to measure star positions very precisely, understanding how detector effects could influence the observations and knowing how to correct for them, coming up with the most effective strategy to image stellar streams, and much more.”

One group is developing processing and analysis software for Roman’s Coronagraph Instrument. This instrument will demonstrate several cutting-edge technologies that could help astronomers directly image planets beyond our solar system. This team will also simulate different objects and planetary systems the Coronagraph could unveil, from dusty disks surrounding stars to old, cold worlds similar to Jupiter.

The mission’s science centers are gearing up to manage Roman’s data pipeline and archive and establishing systems to plan and execute observations. As part of a separate, upcoming effort, they will convene a survey definition team that will take in all of the preparatory information scientists are generating now and all the interests from the broader astronomical community to determine Roman’s optimal observation plans in detail.

“The team is looking forward to coordinating and funneling all the preliminary work,” McEnery said. “It’s a challenging but also exciting opportunity to set the stage for Roman and ensure each of its future observations will contribute to a wealth of scientific discoveries.”

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are Ball Aerospace and Technologies Corporation in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media contact:

Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      NASA Open Data Turns Science Into Art
      Guests enjoy Beyond the Light, a digital art experience featuring open NASA data, at ARTECHOUSE in Washington, D.C. on September 19, 2023. NASA/Wade Sisler An art display powered by NASA science data topped the Salesforce Tower in San Francisco, CA throughout December 2024. Nightly visitors enjoyed “Synchronicity,” a 20-minute-long video art piece by Greg Niemeyer, which used a year’s worth of open data from NASA satellites and other sources to bring the rhythms of the Bay Area to life.
      Data for “Synchronicity” included atmospheric data from NASA and NOAA’s GOES (Geostationary Operational Environmental Satellites), vegetation health data from NASA’s Landsat program, and the Sun’s extreme ultraviolet wavelengths as captured by the NASA and ESA (European Space Agency) satellite SOHO (Solar and Heliospheric Observatory). Chelle Gentemann, the program scientist for the Office of the Chief Science Data Officer within NASA’s Science Mission Directorate, advised Niemeyer on incorporating data into the piece.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Greg Niemeyer’s “Synchronicity” was displayed on Salesforce Tower in San Francisco, CA, in December 2024. A recording of the piece on the tower’s display and the original animation are shown here. The video art piece was created using open NASA data, as well as buoy data from the National Oceanographic and Atmospheric Administration (NOAA). Greg Niemeyer/Emma Strebel “Artists have a lot to contribute to science,” Gentemann said. “Not only can they play a part in the actual scientific process, looking at things in a different way that will lead to new questions, but they’re also critical for getting more people involved in science.”
      NASA’s history of engaging with artists goes back to the 1962 launch of the NASA Art Program, which partnered with artists in bringing the agency’s achievements to a broader audience and telling the story of NASA in a different and unexpected way. Artists such as Andy Warhol, Norman Rockwell, and Annie Leibovitz created works inspired by NASA missions. The Art Program was relaunched in September 2024 with a pair of murals evoking the awe of space exploration for the Artemis Generation.
      The inaugural murals for the relaunched NASA Art Program appear side-by-side at 350 Hudson Street, Monday, Sept. 23, 2024, in New York City. The murals, titled “To the Moon, and Back,” were created by New York-based artist team Geraluz and WERC and use geometrical patterns to invite deeper reflection on the exploration, creativity, and connection with the cosmos. NASA/Joel Kowsky The use of NASA data in art pieces emerged a few decades after the NASA Art Program first launched. Several in-house agency programs, such as NASA’s Scientific Visualization Studio, create stunning animated works from science data. In the realm of audio, NASA’s Chandra X-ray Observatory runs the Universe of Sound project to convert astronomy data into “sonifications” for the public’s listening pleasure.
      Collaborations with external artists help bring NASA data to an even broader audience. NASA’s commitment to open science – making it as easy as possible for the public to access science data – greatly reduces the obstacles for creatives looking to fuse their art with cutting-edge science.
      Michelle Thaller, assistant director for science communication at Goddard, presents the “Pillars of Creation” in the Eagle nebula to the ARTECHOUSE team during a brainstorming session at Goddard. The left image is a view from the Hubble Space Telescope, and the right view is from the Webb telescope. NASA/Wade Sisler Another recent blend of NASA data and art came when digital art gallery ARTECHOUSE created “Beyond the Light,” a 26-minute immersive video experience featuring publicly available images from the James Webb Space Telescope and Hubble Space Telescope. The experience has been running at various ARTECHOUSE locations since September 2023. The massive potential for art to incorporate science data promises to fuel even more of these collaborations between NASA and artists in the future.
      “One of the integral values of open science is providing opportunities for more people to participate in science,” Gentemann said. “I think that by getting the public interested in how this art is done, they also are starting to play with scientific data, maybe for the first time. In that way, art has the power to create new scientists.”
      Learn more about open science at NASA at https://science.nasa.gov/open-science.
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer 
      Share








      Details
      Last Updated Feb 26, 2025 Related Terms
      Open Science Explore More
      4 min read NASA Open Science Reveals Sounds of Space


      Article


      2 months ago
      4 min read NASA AI, Open Science Advance Disaster Research and Recovery


      Article


      3 months ago
      4 min read Pioneer of Change: America Reyes Wang Makes NASA Space Biology More Open


      Article


      5 months ago
      Keep Exploring Discover More Topics From NASA
      Artificial Intelligence for Science


      NASA is creating artificial intelligence tools to help researchers use NASA’s science data more effectively.


      Open Science at NASA


      NASA’s commitment to open science fuels groundbreaking research while maximizing transparency, innovation, and collaboration.


      Mars Perseverance Rover


      The Mars Perseverance rover is the first leg the Mars Sample Return Campaign’s interplanetary relay team. Its job is to…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…

      View the full article
    • By NASA
      The four crew members of NASA’s SpaceX Crew-9 mission, including NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore, along with Roscosmos cosmonaut Aleksandr Gorbunov, pose for a photo aboard the International Space StationNASA Media are invited to hear from NASA’s SpaceX Crew-9 astronauts during a news conference beginning at 11:55 a.m. EST, Tuesday, March 4, from the International Space Station.
      NASA astronauts Nick Hague, Suni Williams, and Butch Wilmore will discuss their return to Earth on NASA+. Learn how to watch NASA content through a variety of platforms, including social media.
      Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than 5 p.m. Monday, March 3, at 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial into the news conference no later than 15 minutes prior to the start of the call. A copy of NASA’s media accreditation policy is online. Questions also may be submitted on social media using #AskNASA.
      Crew-9 contributed to hundreds of scientific experiments, including swabbing the station’s exterior for microbes, printing 3D medical devices, and studying how moisture, orbital altitude, and ultraviolet light affect plant growth.
      The crew will depart the space station after the arrival of Crew-10 and a short handover period. Ahead of Crew-9’s return, mission teams will review weather conditions at the splashdown sites off the coast of Florida prior to departure from station.
      The mission is part of NASA’s Commercial Crew Program, which provides reliable access to space, maximizing the use of the station for research and development and supporting future missions beyond low Earth orbit by partnering with private companies to transport astronauts to and from the space station. 
      Follow updates on the Crew-9 mission at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Jimi Russell
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / james.j.russell@nasa.gov
      Courtney Beasley
      Johnson Space Center, Houston
      281-483-5111
      courtney.m.beasley@nasa.gov
      Share
      Details
      Last Updated Feb 26, 2025 LocationNASA Headquarters Related Terms
      Humans in Space Astronauts Barry E. Wilmore International Space Station (ISS) Sunita L. Williams
      View the full article
    • By NASA
      Intuitive Machines-2: Delivering Science and Tech to the Moon (NASA Mission Trailer)
    • By NASA
      Download Press Kit (PDF) Return to CLPS Homepage
      View the full article
    • By NASA
      6 Min Read NASA’s PUNCH Mission to Revolutionize Our View of Solar Wind 
      Earth is immersed in material streaming from the Sun. This stream, called the solar wind, is washing over our planet, causing breathtaking auroras, impacting satellites and astronauts in space, and even affecting ground-based infrastructure. 
      NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) mission will be the first to image the Sun’s corona, or outer atmosphere, and solar wind together to better understand the Sun, solar wind, and Earth as a single connected system.  
      Launching no earlier than Feb. 28, 2025, aboard a SpaceX Falcon 9 rocket from Vandenberg Space Force Base in California, PUNCH will provide scientists with new information about how potentially disruptive solar events form and evolve. This could lead to more accurate predictions about the arrival of space weather events at Earth and impact on humanity’s robotic explorers in space. 
      “What we hope PUNCH will bring to humanity is the ability to really see, for the first time, where we live inside the solar wind itself,” said Craig DeForest, principal investigator for PUNCH at Southwest Research Institute’s Solar System Science and Exploration Division in Boulder, Colorado. 
      This video can be freely shared and downloaded at https://svs.gsfc.nasa.gov/14773.
      Video credit: NASA’s Goddard Space Flight Center Seeing Solar Wind in 3D 
      The PUNCH mission’s four suitcase-sized satellites have overlapping fields of view that combine to cover a larger swath of sky than any previous mission focused on the corona and solar wind. The satellites will spread out in low Earth orbit to construct a global view of the solar corona and its transition to the solar wind. They will also track solar storms like coronal mass ejections (CMEs). Their Sun-synchronous orbit will enable them to see the Sun 24/7, with their view only occasionally blocked by Earth.  
      Typical camera images are two dimensional, compressing the 3D subject into a flat plane and losing information. But PUNCH takes advantage of a property of light called polarization to reconstruct its images in 3D. As the Sun’s light bounces off material in the corona and solar wind, it becomes polarized — meaning the light waves oscillate in a particular way that can be filtered, much like how polarized sunglasses filter out glare off of water or metal. Each PUNCH spacecraft is equipped with a polarimeter that uses three distinct polarizing filters to capture information about the direction that material is moving that would be lost in typical images.  
      “This new perspective will allow scientists to discern the exact trajectory and speed of coronal mass ejections as they move through the inner solar system,” said DeForest. “This improves on current instruments in two ways: with three-dimensional imaging that lets us locate and track CMEs which are coming directly toward us; and with a broad field of view, which lets us track those CMEs all the way from the Sun to Earth.” 
      All four spacecraft are synchronized to serve as a single “virtual instrument” that spans the whole PUNCH constellation. 
      Crews conduct additional solar array deployment testing for NASA’s PUNCH (Polarimeter to Unify the Corona and Heliosphere) satellites at Astrotech Space Operations located on Vandenberg Space Force Base in California on Wednesday, Jan. 22, 2025. USSF 30th Space Wing/Alex Valdez The PUNCH satellites include one Narrow Field Imager and three Wide Field Imagers. The Narrow Field Imager (NFI) is a coronagraph, which blocks out the bright light from the Sun to better see details in the Sun’s corona, recreating what viewers on Earth see during a total solar eclipse when the Moon blocks the face of the Sun — a narrower view that sees the solar wind closer to the Sun. The Wide Field Imagers (WFI) are heliospheric imagers that view the very faint, outermost portion of the solar corona and the solar wind itself — giving a wide view of the solar wind as it spreads out into the solar system.   
      “I’m most excited to see the ‘inbetweeny’ activity in the solar wind,” said Nicholeen Viall, PUNCH mission scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This means not just the biggest structures, like CMEs, or the smallest interactions, but all the different types of solar wind structures that fill that in between area.” 
      When these solar wind structures from the Sun reach Earth’s magnetic field, they can drive dynamics that affect Earth’s radiation belts. To launch spacecraft through these belts, including ones that will carry astronauts to the Moon and beyond, scientists need to understand the solar wind structure and changes in this region. 
      Building Off Other Missions 
      “The PUNCH mission is built on the shoulders of giants,” said Madhulika Guhathakurta, PUNCH program scientist at NASA Headquarters in Washington. “For decades, heliophysics missions have provided us with glimpses of the Sun’s corona and the solar wind, each offering critical yet partial views of our dynamic star’s influence on the solar system.” 
      When scientists combine data from PUNCH and NASA’s Parker Solar Probe, which flies through the Sun’s corona, they will see both the big picture and the up-close details. Working together, Parker Solar Probe and PUNCH span a field of view from a little more than half a mile (1 kilometer) to over 160 million miles (about 260 million kilometers). 
      Additionally, the PUNCH team will combine their data with diverse observations from other missions, like NASA’s CODEX (Coronal Diagnostic Experiment) technology demonstration, which views the corona even closer to the surface of the Sun from its vantage point on the International Space Station. PUNCH’s data also complements observations from NASA’s EZIE (Electrojet Zeeman Imaging Explorer) — targeted for launch in March 2025 — which investigates the magnetic field perturbations associated with Earth’s high-altitude auroras that PUNCH will also spot in its wide-field view.  
      A conceptual animation showing the heliosphere, the vast bubble that is generated by the Sun’s magnetic field and envelops all the planets.
      NASA’s Goddard Space Flight Center Conceptual Image Lab As the solar wind that PUNCH will observe travels away from the Sun and Earth, it will then be studied by the IMAP (Interstellar Mapping and Acceleration Probe) mission, which is targeting a launch in 2025. 
      “The PUNCH mission will bridge these perspectives, providing an unprecedented continuous view that connects the birthplace of the solar wind in the corona to its evolution across interplanetary space,” said Guhathakurta. 
      The PUNCH mission is scheduled to conduct science for at least two years, following a 90-day commissioning period after launch. The mission is launching as a rideshare with the agency’s next astrophysics observatory, SPHEREx (Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer).  
      “PUNCH is the latest heliophysics addition to the NASA fleet that delivers groundbreaking science every second of every day,” said Joe Westlake, heliophysics division director at NASA Headquarters in Washington. “Launching this mission as a rideshare bolsters its value to the nation by optimizing every pound of launch capacity to maximize the scientific return for the cost of a single launch.” 
      The PUNCH mission is led by Southwest Research Institute’s offices in San Antonio, Texas, and Boulder, Colorado. The mission is managed by the Explorers Program Office at NASA Goddard for NASA’s Science Mission Directorate in Washington. 
      By Abbey Interrante 
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Header Image:
      An artist’s concept showing the four PUNCH satellites orbiting Earth.
      Credits: NASA’s Goddard Space Flight Center Conceptual Image Lab
      Share








      Details
      Last Updated Feb 21, 2025 Related Terms
      Heliophysics Coronal Mass Ejections Goddard Space Flight Center Heliophysics Division Polarimeter to Unify the Corona and Heliosphere (PUNCH) Science Mission Directorate Solar Wind Space Weather The Sun Explore More
      2 min read Hubble Spies a Spiral That May Be Hiding an Imposter


      Article


      3 hours ago
      3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska


      Article


      3 days ago
      2 min read NASA Science: Being Responsive to Executive Orders


      Article


      3 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
  • Check out these Videos

×
×
  • Create New...