Jump to content

NASA’s Roman Mission Gears Up for a Torrent of Future Data


NASA

Recommended Posts

  • Publishers

NASA’s Nancy Grace Roman Space Telescope team is exploring ways to support community efforts that will prepare for the deluge of data the mission will return. Recently selected infrastructure teams will serve a vital role in the preliminary work by creating simulations, scouting the skies with other telescopes, calibrating Roman’s components, and much more.

Their work will complement additional efforts by other teams and individuals around the world, who will join forces to maximize Roman’s scientific potential. The goal is to ensure that, when the mission launches by May 2027, scientists will already have the tools they need to uncover billions of cosmic objects and help untangle mysteries like dark energy.

“We’re harnessing the science community at large to lay a foundation, so when we get to launch we’ll be able to do powerful science right out of the gate,” said Julie McEnery, Roman’s senior project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “There’s a lot of exciting work to do, and many different ways for scientists to get involved.”

Thousands of tiny red dots speckle a black background like spilled salt. Additional yellow blobs that are slightly larger and appear more like galaxies, are overlaid on top and a few areas appear to bloom outward and slightly warp. Then even more galaxies, this time yellow and white, are overlaid over that, and the other areas "bloom" with even more exaggerated effects, the edges of the circular areas appearing to be smeared into arcs and streaks while the inside of the areas are magnified.
This animation shows a simulation of the type of science that astronomers will be able to do with future deep field observations from NASA’s Nancy Grace Roman Space Telescope. The gravity of intervening galaxy clusters and dark matter can lens the light from farther objects, warping their appearance as shown in the animation. By studying the distorted light, astronomers can study elusive dark matter, which can only be measured indirectly through its gravitational effects on visible matter. As a bonus, this lensing also makes it easier to see the most distant galaxies whose light they magnify. Simulations like this one help astronomers understand what Roman’s future observations could tell us about the universe, and provide useful data to validate data analysis techniques.
Credit: Caltech-IPAC/R. Hurt

Simulations lie at the heart of the preparatory efforts. They enable scientists to test algorithms, estimate Roman’s scientific return, and fine-tune observing strategies so that we’ll learn as much as possible about the universe.

Teams will be able to sprinkle different cosmic phenomena through a simulated dataset and then run machine learning algorithms to see how well they can automatically find the phenomena. Developing fast and efficient ways to identify underlying patterns will be vital given Roman’s enormous data collection rate. The mission is expected to amass 20,000 terabytes (20 petabytes) of observations containing trillions of individual measurements of stars and galaxies over the course of its five-year primary mission.

“The preparatory work is complex, partly because everything Roman will do is quite interconnected,” McEnery said. “Each observation is going to be used by multiple teams for very different science cases, so we’re creating an environment that makes it as easy as possible for scientists to collaborate.”

Some scientists will conduct precursor observations using other telescopes, including NASA’s Hubble Space Telescope, the Keck Observatory in Hawaii, and Japan’s PRIME (Prime-focus Infrared Microlensing Experiment) located in the South African Astronomical Observatory in Sutherland. These observations will help astronomers optimize Roman’s observing plan by identifying the best individual targets and regions of space for Roman and better understand the data the mission is expected to deliver.

Some teams will explore how they might combine data from different observatories and use multiple telescopes in tandem. For example, using PRIME and Roman together would help astronomers learn more about objects found via warped space-time. And Roman scientists will be able to lean on archived Hubble data to look back in time and see where cosmic objects were and how they were behaving, building a more complete history of the objects astronomers will use Roman to study. Roman will also identify interesting targets that observatories such as NASA’s James Webb Space Telescope can zoom in on for more detailed studies.

A series of images showing wispy stellar streams surrounding eight individual galaxies. Light and dark are reversed so that the background is gray-white and the galaxies appear as black blobs. Extending out from each like tentacles are streams of stars.
This series of images shows how astronomers find stellar streams by reversing the light and dark, similar to negative images, but stretched to highlight the faint streams. Color images of each of the nearby galaxies featured are superposed to scale to highlight the easily visible disk. Galaxies are surrounded by enormous halos of hot gas sprinkled with sporadic stars, seen as the shadowy regions that encase each galaxy here. NASA’s upcoming Nancy Grace Roman Space Telescope is expected to improve on these observations by resolving individual stars to understand each stream’s stellar populations and see stellar streams of various sizes in even more galaxies.
Credit: Carlin et al. (2016), based on images from Martínez-Delgado et al. (2008, 2010)

It will take many teams working in parallel to plan for each Roman science case. “Scientists can take something Roman will explore, like wispy streams of stars that extend far beyond the apparent edges of many galaxies, and consider all of the things needed to study them really well,” said Dominic Benford, Roman’s program scientist at NASA Headquarters in Washington, D.C. “That could include algorithms for dim objects, developing ways to measure star positions very precisely, understanding how detector effects could influence the observations and knowing how to correct for them, coming up with the most effective strategy to image stellar streams, and much more.”

One group is developing processing and analysis software for Roman’s Coronagraph Instrument. This instrument will demonstrate several cutting-edge technologies that could help astronomers directly image planets beyond our solar system. This team will also simulate different objects and planetary systems the Coronagraph could unveil, from dusty disks surrounding stars to old, cold worlds similar to Jupiter.

The mission’s science centers are gearing up to manage Roman’s data pipeline and archive and establishing systems to plan and execute observations. As part of a separate, upcoming effort, they will convene a survey definition team that will take in all of the preparatory information scientists are generating now and all the interests from the broader astronomical community to determine Roman’s optimal observation plans in detail.

“The team is looking forward to coordinating and funneling all the preliminary work,” McEnery said. “It’s a challenging but also exciting opportunity to set the stage for Roman and ensure each of its future observations will contribute to a wealth of scientific discoveries.”

The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are Ball Aerospace and Technologies Corporation in Boulder, Colorado; L3Harris Technologies in Melbourne, Florida; and Teledyne Scientific & Imaging in Thousand Oaks, California.

By Ashley Balzer
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Media contact:

Claire Andreoli
NASA’s Goddard Space Flight Center, Greenbelt, Md.
301-286-1940

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA Data Helps Protect US Embassy Staff from Polluted Air
      This visualization of aerosols shows dust (purple), smoke (red), and sea salt particles (blue) swirling across Earth’s atmosphere on Aug. 23, 2018, from NASA’s GEOS-FP (Goddard Earth Observing System forward processing) computer model. Credits:
      NASA’s Earth Observatory United States embassies and consulates, along with American citizens traveling and living abroad, now have a powerful tool to protect against polluted air, thanks to a collaboration between NASA and the U.S. State Department.
      Since 2020, ZephAir has provided real-time air quality data for about 75 U.S. diplomatic posts. Now, the public tool includes three-day air quality forecasts for PM2.5, a type of fine particulate matter, for all the approximately 270 U.S. embassies and consulates worldwide. These tiny particles, much smaller than a grain of sand, can penetrate deep into the lungs and enter the bloodstream, causing respiratory and cardiovascular problems.
      “This collaboration with NASA showcases how space-based technology can directly impact lives on the ground,” said Stephanie Christel, climate adaptation and air quality monitoring program lead with the State Department’s Greening Diplomacy Initiative. “This is not something the State Department could have done on its own.” For instance, placing air quality monitors at all U.S. diplomatic posts is prohibitively expensive, she explained.
      “NASA’s involvement brings not only advanced technology,” she added, “but also a trusted name that adds credibility and reliability to the forecasts, which is invaluable for our staff stationed abroad.”
      The forecasts, created using NASA satellite data, computer models, and machine learning, are crucial for U.S. embassies and consulates, where approximately 60,000 U.S. citizens and local staff work. Many of these sites are in regions with few local air quality monitors or early warning systems for air pollution.
      “ZephAir’s new forecasting capability is a prime example of NASA’s commitment to using our data for societal benefit,” said Laura Judd, an associate program manager for Health and Air Quality at NASA. “Partnering with the State Department allows us to extend the reach of our air quality data, providing embassies and local communities worldwide with vital information to protect public health.”
      Enhancing Health, Safety with NASA Air Quality Data
      To manage air pollution exposure, the tool can assist diplomatic staff with decisions on everything from building ventilation to outdoor activities at embassy schools.
      For many embassies, especially in regions with severe air pollution, having reliable air quality forecasts is crucial for safeguarding staff and their families, influencing both daily decisions and long-term planning. “Air quality is a top priority for my family as we think about [our next assignment], so having more information is a huge help,” said Alex Lewis, a political officer at the U.S. embassy in Managua, Nicaragua.
      A screenshot of the ZephAir web dashboard featuring air quality forecasts for Managua, Nicaragua. U.S. Department of State Previously, ZephAir only delivered data on current PM2.5 levels using air quality monitors on the ground from about 75 U.S. diplomatic locations and about 50 additional sources. Now, the enhanced tool provides PM2.5 forecasts for all sites, using the Goddard Earth Observing System forward processing (GEOS-FP), a weather and climate computer model. It incorporates data on tiny particles or droplets suspended in Earth’s atmosphere called aerosols from MODIS (Moderate-resolution Imaging Spectroradiometer) on NASA’s Terra and Aqua satellites.
      Aerosols are tiny airborne particles that come from both natural sources, like dust, volcanic ash, and sea spray, and from human activities, such as burning fossil fuels. PM2.5 refers to particles or droplets that are 2.5 micrometers or smaller in diameter — about 30 times smaller than the width of a human hair.
      “We use the GEOS-FP model to generate global aerosol forecasts,” said Pawan Gupta, of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the lead scientist on the project. “Then we calibrate the forecasts for embassy locations, using historical data and machine learning techniques.”
      As of August 2024, the forecasting feature is available on the ZephAir web and mobile platforms.
      The new forecasts are about more than just protecting U.S. citizens and local embassy staff; they are also contributing to global action on air quality. The State Department engages with local governments and communities to raise awareness about air quality issues. “These forecasts are a critical part of our strategy to mitigate the impacts of air pollution not only for our personnel but also for the broader community in many regions around the world,” Christel said.
      Officials with the Greening Diplomacy Initiative partnered with NASA through the Health and Air Quality Applied Sciences Team  to develop the new forecasts and will continue the collaboration through support from the Satellite Needs Working Group.
      Looking ahead, the team aims to expand ZephAir’s capabilities to include ground-level ozone data, another major pollutant that can affect the health of embassy staff and local communities.
      By Emily DeMarco
      NASA’s Earth Science Division, Headquarters
      Share








      Details
      Last Updated Sep 20, 2024 Editor Rob Garner Contact Rob Garner rob.garner@nasa.gov Location Goddard Space Flight Center Related Terms
      Aqua Benefits Back on Earth Earth Earth’s Atmosphere Goddard Space Flight Center Terra View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      SpaceX Crew-9 members (from left) Mission Specialist Aleksandr Gorbunov from Roscosmos and Commander Nick Hague from NASA pose for an official crew portrait at NASA’s Johnson Space Center in Houston, Texas.NASA/Josh Valcarel NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov are preparing to launch on the agency’s SpaceX Crew-9 mission to the International Space Station.
      The flight is the ninth crew rotation mission with SpaceX to the station under NASA’s Commercial Crew Program. The duo will lift off aboard the SpaceX Dragon spacecraft, which previously flew NASA’s SpaceX Crew-4, Axiom Mission 2 and Axiom Mission 3, from Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
      Once aboard the space station, Hague and Gorbunov will become members of the Expedition 72 crew and perform research, technology demonstrations, and maintenance activities. The pair will join NASA astronauts Don Petitt, Butch Wilmore, Suni Williams, as well as Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner.
      Wilmore and Williams, who launched aboard the Starliner spacecraft in June, will fly home with Hague and Gorbunov in February 2025.
      Launch preparations are underway, and teams are working to integrate the spacecraft and the SpaceX Falcon 9 rocket, including checkouts of a second flight rocket booster  for the mission. The integrated spacecraft and rocket will then be rolled to the pad and raised to the vertical position for a dry dress rehearsal with the crew and an integrated static fire test prior to launch.
      The Crew
      Nick Hague will serve as crew commander for Crew-9, making this his third launch and second mission to the space station. During his first launch in October 2018, Hague and his crewmate, Roscosmos’ Alexey Ovchinin, experienced a rocket booster failure, resulting in an in-flight, post-launch abort, ballistic re-entry, and safe landing in their Soyuz MS-10 spacecraft. Five months later, Hague launched aboard Soyuz MS-12 and served as a flight engineer aboard the space station during Expeditions 59 and 60. Hague has spent 203 days in space and conducted three spacewalks to upgrade space station power systems and install a docking adapter for commercial spacecraft.
      Born in Belleville, Kansas, Hague earned a bachelor’s degree in Astronautical Engineering from the United States Air Force Academy and a master’s degree in Aeronautical and Astronautical Engineering from the Massachusetts Institute of Technology in Cambridge, Massachusetts. Hague was selected as an astronaut by NASA in 2013. An active-duty colonel in the U.S. Space Force, Hague completed a developmental rotation at the Defense Department and served as the Space Force’s director of test and evaluation from 2020 to 2022. In August 2022, Hague resumed duties at NASA, working on the Boeing Starliner Program until this flight assignment.
      Follow @astrohague on X and Instagram.
      Roscosmos cosmonaut Aleksandr Gorbunov will embark on his first trip to the space station as a mission specialist for Crew-9. Born in Zheleznogorsk, Kursk region, Russia, he studied engineering with qualifications in spacecraft and upper stages from the Moscow Aviation Institute. Gorbunov graduated from the military department with a specialty in operating and repairing aircraft, helicopters, and aircraft engines. Before his selection as a cosmonaut in 2018, he worked as an engineer for Rocket Space Corp. Energia and supported cargo spacecraft launches from the Baikonur Cosmodrome. Gorbunov will serve as a flight engineer during Expedition 71/72 aboard the space station.
      Mission Overview
      After liftoff, Dragon will accelerate to approximately 17,500 mph to dock with the space station.
      Once in orbit, flight control teams from NASA’s Mission Control Center at the agency’s Johnson Space Center in Houston and the SpaceX mission control in Hawthorne, California, will monitor a series of automatic maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually if necessary.
      After docking, Expedition 71 will welcome Hague and Gorbunov inside the station and conduct several days of handover activities with the departing astronauts of NASA’s SpaceX Crew-8 mission. After a handover period, NASA astronauts Matthew Dominick, Michael Barratt, Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin of Crew-8 will undock from the space station and splash down off the coast of Florida.
      Crew-9 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. Experiments include the impact of flame behavior on Earth, studying cells and platelets during long-duration spaceflight, and a B vitamin that could reduce Spaceflight-Associated Neuro-ocular Syndrome. They’ll also work on experiments that benefit life on Earth, like studying the physics of supernova explosions and monitoring the effects of different moister treatments on plants grown aboard the station. These are just a few of over 200 scientific experiments and technology demonstrations taking place during their mission.
      While aboard the orbiting laboratory, Crew-9 will welcome two Dragon spacecraft, including NASA’s SpaceX’s 31st commercial resupply services mission and NASA’s SpaceX Crew-10, and two Roscosmos-led cargo deliveries on Progress 90 and 91.
      In February, Hague, Gorbunov, Wilmore, and Williams will climb aboard Dragon and autonomously undock, depart the space station, and re-enter Earth’s atmosphere. After splashdown off Florida’s coast, a SpaceX recovery vessel will pick up the spacecraft and crew, who then will be helicoptered back to shore.
      Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 23 years testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station provides benefits for people on Earth and paves the way for future long-duration trips to the Moon and beyond through NASA’s Artemis missions.
      Get breaking news, images, and features from the space station on Instagram, Facebook, and X.
      Learn more about the space station, its research, and crew, at https://www.nasa.gov/station.
      Share
      Details
      Last Updated Sep 19, 2024 Related Terms
      Commercial Crew International Space Station (ISS) Explore More
      4 min read NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station
      Article 1 day ago 3 min read Station Science Top News: September 13, 2024
      Article 3 days ago 4 min read NASA’s SpaceX Crew-9 to Conduct Space Station Research
      Article 7 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      NASA Deputy Administrator Pam Melroy (left) and Center Director at NASA’s Ames Research Center Eugene Tu (right) hear from Ames employees Sept. 16, 2024.NASA/Brandon Torres Navarrete NASA Deputy Administrator Pam Melroy spent time at NASA’s Ames Research Center in California’s Silicon Valley, on Sept. 16, 2024, engaging with center leaders and employees to discuss strategies that could drive meaningful changes to ensure NASA remains the preeminent institution for research, technology, and engineering, and to lead science, aeronautics, and space exploration for humanity. Melroy’s visit also provided an opportunity to meet with early- and mid-career employees, who shared their perspectives and feedback.

      View the full article
    • By Space Force
      U.S. Space Force senior leaders discussed the Personnel Management Act during a panel at the Air and Space Force’s Air, Space and Cyber Conference at National Harbor, Maryland, Sept. 18.

      View the full article
    • By European Space Agency
      Hera asteroid mission launch kit
      Everything you'd ever want to know about ESA's first planetary defence mission
      View the full article
  • Check out these Videos

×
×
  • Create New...