Jump to content

Five Tips for Photographing the Annular Solar Eclipse on Oct. 14


NASA

Recommended Posts

  • Publishers

3 min read

Five Tips for Photographing the Annular Solar Eclipse on Oct. 14

A woman, seen from the torso up, stands on a beach. She is wearing white solar viewing glasses and has a camera strap around her neck.
Sarah Baker views the partial solar eclipse as the sun rises, Thursday, June 10, 2021, at Lewes Beach in Delaware.
NASA/Aubrey Gemignani

An annular solar eclipse is crossing the Americas on Oct. 14, 2023. This astronomical event is a perfect opportunity to capture unforgettable images of the Moon “taking a bite” out of the Sun or creating a “ring of fire” effect in the sky. Whether you’re an amateur photographer or a selfie master, try out these tips for photographing the eclipse. 

#1 – Safety First

To take images as the Sun is being eclipsed, you’ll need to use a special solar filter to protect your camera, just as you’ll need a pair of eclipse glasses to protect your own eyes. 

Having a few other pieces of equipment can also come in handy during the eclipse. Using a tripod can help you stabilize the camera and avoid taking blurry images during the low lighting. Additionally, using a delayed shutter release timer will allow you to snap shots without jiggling the camera.

#2 – Any Camera Is a Good Camera

Taking a stunning photo has more to do with the photographer than the camera. Whether you have a high-end DSLR, or a camera phone, you can take great photos during the eclipse; after all, the best piece of equipment you can have is a good eye and a vision for the image you want to create. If you don’t have a telephoto zoom lens, focus on taking landscape shots, which capture the changing environment.

Trees line the landscape. On the right, a camera sits on a tripod. Two hands hold either side of the camera.
A safe solar filter must be used in front of a camera lens whenever photographing an annular solar eclipse or a partial solar eclipse. Putting the camera on a tripod will help stabilize the view and produce clearer photos.
Danny B. Thomas

#3 – Look Up, Down, All Around

While the Sun is the most commanding element of an eclipse, remember to look around you. As the Moon slips in front of the Sun, the landscape will be bathed in long shadows, creating eerie lighting across the landscape. Light filtering through the overlapping leaves of trees create natural pinholes, which will also create mini eclipse replicas on the ground. Everywhere you can point your camera can yield exceptional imagery, so be sure to compose some wide-angle photos that can capture your eclipse experience.

NASA photographer Bill Ingalls recommends focusing on the human experience of watching the eclipse. “The real pictures are going to be of the people around you pointing, gawking, and watching it,” Ingalls noted. “Those are going to be some great moments to capture to show the emotion of the whole thing.”

#4 – Practice

Be sure you know the capabilities of your camera before eclipse day. Most cameras, and even many camera phones, have adjustable exposures, which can help you darken or lighten your image during the tricky eclipse lighting. Make sure you know how to manually focus the camera for crisp shots.

For DSLR cameras, the best way to determine the correct exposure is to test settings on the uneclipsed Sun beforehand. Using a fixed aperture of f/8 to f/16, try shutter speeds between 1/1000 to 1/4 second to find the optimal setting, which you can then use to take images during the partial or annular stages of the eclipse.

#5 – Share!

Share your eclipse experience with friends and family afterwards. Tag @NASA to connect your photos on social media to those taken around the country and share them with NASA. 

While you’re out perfecting your perfect eclipse shot, don’t forget to stop and look at the eclipse with your own eyes. Just remember to wear your solar viewing glasses (or “eclipse glasses”) throughout the entire eclipse!

Share

Details

Last Updated
Oct 10, 2023

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      In Punakha, Bhutan, Dr. Aparna Phalke (left) from SERVIR works with a translator to converse with a local chili farmer (center) about his experiences cultivating these fields for over 30 years– including agricultural management practices, market prices, and farming challenges Sarah Cox/SERVIR NASA and the Kingdom of Bhutan have been actively learning from each other and growing together since 2019. The seeds planted over those years have ripened into improved environmental conservation, community-based natural resource management, and new remote sensing tools.
      Known for its governing philosophy of “gross national happiness,” and has a constitutional mandate to maintain at least 60% forest cover. The government’s goals include achieving nationwide food security by 2030. 
      Bhutan first approached the U.S. State Department to partner on science, technology, engineering, and mathematics (STEM) opportunities for the country, and NASA was invited to help lead these opportunities. In 2019, Bhutan’s King Jigme Khesar Namgyel Wangchuck visited NASA’s Ames Research Center in Silicon Valley, California, and was introduced to several NASA programs.
      NASA’s Earth scientists and research staff from several complementary programs have helped support Bhutan’s goals by providing data resources and training to make satellite data more useful to communities and decision makers. Bhutan now uses NASA satellite data in its national land management decisions and plans to foster more geospatial jobs to help address environmental issues.
      Supporting Bhutan’s Environmental Decision Makers
      Bhutan’s National Land Commission offers tax breaks to farmers to support food security and economic resilience. However, finding and reaching eligible farmers on the ground can be expensive and time consuming, which means small farmers in remote areas can be missed. 
      A team from SERVIR – a joint NASA-U.S. Agency for International Development initiative – worked with Bhutanese experts to create decision-making tools like the Farm Action Toolkit  (FAcT). The tool uses imagery from the NASA-U.S. Geological Survey Landsat satellites to identify and measure the country’s farmland. SERVIR researchers met with agricultural organizations – including Bhutan’s Ministry of Agriculture and Livestock, National Statistics Bureau, and National Center for Organic Agriculture – to adjust the tool for the country’s unique geography and farming practices. The Land Commission now uses FAcT to identify small farms and bring support to more of the country. 
      NASA also develops local capacity to use Earth data through efforts like the Applied Remote Sensing Training Program (ARSET). In early 2024, ARSET staff worked with SERVIR and Druk Holdings and Investments (DHI) to host a workshop with 46 Bhutanese government personnel. Using tailored local case studies, the teams worked to find ways to better manage natural resources, assist land use planning, and monitor disasters. 
      “We look forward to continuing this collaboration, as there are still many areas where NASA’s expertise can significantly impact Bhutan’s development goals,” said Manish Rai, an analyst with DHI who helped coordinate the workshop. “This collaboration is a two-way street. While Bhutan has benefited greatly from NASA’s support, we believe there are also unique insights and experiences that Bhutan can share with NASA, particularly in areas like environmental conservation and community-based natural resource management.” 
      Dr. Aparna Phalke gives a presentation on NASA technology and the SERVIR program to a group of 100 students at the Royal University of Bhutan College of Natural Resources. Sarah Cox/SERVIR Encouraging Bhutan’s Future Environmental Leaders
      By working with students and educators from primary schools to the university level, Bhutan and NASA have been investing in the country’s future environmental leadership. Supporting educators and “training trainers” have been pillars of this collaboration.
      NASA and Bhutan have worked together to boost the skills of early-career Earth scientists. For example, NASA’s DEVELOP program for undergraduates worked directly with local institutions to create several applied science internships for Bhutanese students studying in the U.S. 
      Tenzin Wangmo, a high school biology teacher in Bhutan, participated in DEVELOP projects focusing on agriculture and water resources. According to Wangmo, the lessons learned from those projects have been helpful in connecting with her students about STEM opportunities and environmental issues. “Most people only think of NASA as going to space, rather than Earth science,” she said. “It was encouraging to my students that there are lots of opportunities for you if you try.”
      NASA is also supporting Bhutan’s future environmental leadership through the GLOBE (Global Learning and Observations to Benefit the Environment) Program. The GLOBE program is a U.S. interagency outreach program that works with teachers to support STEM literacy through hands-on environmental learning. Since 2020, GLOBE has worked through the U.S. State Department and organizations like the Ugyen Wangchuck Institute for Forest Research and Training to support educators at two dozen schools in Bhutan. The program reached more than 650 students with activities like estimating their school’s carbon footprint. 
      This focus on STEM education enables students and professionals to contribute to Bhutan’s specific development goals now and in the future. 
      Sonam Tshering, a student who completed two DEVELOP projects on Bhutanese agriculture while studying at the University of Texas at El Paso, was able to share the value of these efforts at the 2023 United Nations Climate Conference. “By applying satellite data from NASA, we aimed to create actionable insights for our local farmers and our policymakers back in Bhutan,” she said. 
      News Media Contact
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Ala.
      256.544.0034
      lane.e.figueroa@nasa.gov 
      Share
      Details
      Last Updated Nov 04, 2024 Related Terms
      SERVIR (Regional Visualization and Monitoring System) Earth Earth Science Earth Science Division Marshall Science Research & Projects Marshall Space Flight Center Explore More
      2 min read Sadie Coffin Named Association for Advancing Participatory Sciences/NASA Citizen Science Leaders Series Fellow
      In August, the Association for Advancing Participatory Sciences (AAPS) announced a fellowship opportunity in partnership…
      Article 4 hours ago 4 min read International SWOT Satellite Spots Planet-Rumbling Greenland Tsunami
      Article 4 days ago 23 min read The Marshall Star for October 30, 2024
      Article 5 days ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Final Venus Flyby for NASA’s Parker Solar Probe Queues Closest Sun Pass
      On Wednesday, Nov. 6, 2024, NASA’s Parker Solar Probe will complete its final Venus gravity assist maneuver, passing within 233 miles (376 km) of Venus’ surface. The flyby will adjust Parker’s trajectory into its final orbital configuration, bringing the spacecraft to within an unprecedented 3.86 million miles of the solar surface on Dec. 24, 2024. It will be the closest any human made object has been to the Sun.
      Parker’s Venus flybys have become boons for new Venus science thanks to a chance discovery from its Wide-Field Imager for Parker Solar Probe, or WISPR. The instrument peers out from Parker and away from the Sun to see fine details in the solar wind. But on July 11, 2020, during Parker’s third Venus flyby, scientists turned WISPR toward Venus in hopes of tracking changes in the planet’s thick cloud cover. The images revealed a surprise: A portion of WISPR’s data, which captures visible and near infrared light, seemed to see all the way through the clouds to the Venusian surface below. 
      “The WISPR cameras can see through the clouds to the surface of Venus, which glows in the near-infrared because it’s so hot,” said Noam Izenberg, a space scientist at the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland.
      Venus, sizzling at approximately 869 degrees Fahrenheit (about 465 C), was radiating through the clouds.
      The WISPR images from the 2020 flyby, as well as the next flyby in 2021, revealed Venus’ surface in a new light. But they also raised puzzling questions, and scientists have devised the Nov. 6 flyby to help answer them.
      Left: A series of WISPR images of the nightside of Venus from Parker Solar Probe’s fourth flyby showing near infrared emissions from the surface. In these images, lighter shades represent warmer temperatures and darker shades represent cooler. Right: A combined mosaic of radar images of Venus’ surface from NASA’s Magellan mission, where the brightness indicates radar properties from smooth (dark) to rough (light), and the colors indicate elevation from low (blue) to high (red). The Venus images correspond well with data from the Magellan spacecraft, showing dark and light patterns that line up with surface regions Magellan captured when it mapped Venus’ surface using radar from 1990 to 1994. Yet some parts of the WISPR images appear brighter than expected, hinting at extra information captured by WISPR’s data. Is WISPR picking up on chemical differences on the surface, where the ground is made of different material? Perhaps it’s seeing variations in age, where more recent lava flows added a fresh coat to the Venusian surface.
      “Because it flies over a number of similar and different landforms than the previous Venus flybys, the Nov. 6 flyby will give us more context to evaluate whether WISPR can help us distinguish physical or even chemical properties of Venus’ surface,” Izenberg said.
      After the Nov. 6 flyby, Parker will be on course to swoop within 3.8 million miles of the solar surface, the final objective of the historic mission first conceived over 65 years ago. No human-made object has ever passed this close to a star, so Parker’s data will be charting as-yet uncharted territory. In this hyper-close regime, Parker will cut through plumes of plasma still connected to the Sun. It is close enough to pass inside a solar eruption, like a surfer diving under a crashing ocean wave.
      “This is a major engineering accomplishment,” said Adam Szabo, project scientist for Parker Solar Probe at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      The closest approach to the Sun, or perihelion, will occur on Dec. 24, 2024, during which mission control will be out of contact with the spacecraft. Parker will send a beacon tone on Dec. 27, 2024, to confirm its success and the spacecraft’s health. Parker will remain in this orbit for the remainder of its mission, completing two more perihelia at the same distance.
      Parker Solar Probe is part of NASA’s Living with a Star program to explore aspects of the Sun-Earth system that directly affect life and society. The Living with a Star program is managed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for NASA’s Science Mission Directorate in Washington. The Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, manages the Parker Solar Probe mission for NASA and designed, built, and operates the spacecraft.
      By Miles Hatfield
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Nov 04, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Parker Solar Probe (PSP) Solar Wind The Sun Venus Keep Exploring Discover More Topics From NASA
      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Sun



      Parker Solar Probe Stories



      Sun: Exploration


      View the full article
    • By NASA
      Skywatching Home What’s Up: November 2024… Skywatching Skywatching Home Eclipses What’s Up Explore the Night Sky Night Sky Network More Tips and Guides FAQ   See the Moon Hide a Bright Star
      In the early morning hours of November 27, catch a rare lunar occultation of Spica visible from parts of the U.S. and Canada.
      Skywatching Highlights
      All month – Planet visibility report: Saturn shines in the south most of the night, Jupiter rises in the early evening alongside Taurus and Orion, while Mars trails a couple of hours behind, visible high in the early morning sky. November 4 – Slim crescent Moon pairs with Venus. Enjoy a beautiful sight just after sunset as the Moon and Venus meet up in the southwestern sky. November 10 – Saturn & the Moon. The ringed planet has a close pairing with the Moon tonight (perfect for binoculars) November 27 – Lunar occultation of Spica. Early risers in the eastern U.S. and Canada can catch the Moon passing in front of Spica this morning, briefly hiding the bright star from view. Transcript
      What’s Up for November?
      When to look for Saturn, Jupiter, and Mars this month, a NASA spacecraft swings by Venus on its way to the Sun, and the tricky business of seeing the Moon hide a bright star. And stick around until the end for photos of highlights from last month’s skies.
      Saturn is visible toward the south for most of the night. For observers in the Americas, it has a close meetup with the Moon on the 10th, when the pair will appear less than a degree apart just after dark, making for a great sight through binoculars. Check the sky again around midnight, and you’ll see the Moon has visibly shifted a couple of degrees west of Saturn, showing evidence of the Moon’s orbital motion in just a few hours.
      In late 2024, Jupiter could be found high overhead as dawn approached with the bright stars of Taurus and Orion. (Jupiter is the bright object at top, right of center.) NASA/Preston Dyches Jupiter is rising in the east early in the night, together with the bright stars of the constellations Taurus and Orion, and working its way across the sky by dawn. By the end of November, it’s rising just as the sky is getting dark. Mars follows behind Jupiter, rising about three hours after the giant planet.
      As in October, early risers will find the Red Planet high overhead in the morning sky before dawn. In the evening sky, Venus is low in the southwest following sunset throughout the month of November. It’s blazing bright and unmistakable if you find a relatively unobstructed view. It appears much higher in the sky for those in the Southern Hemisphere, who’ll also be able to easily observe Mercury after sunset this month. And on the 4th, a slim crescent Moon will appear just below Venus for a beautiful pairing as the glow of sunset fades.
      Now, staying with Venus, one of NASA’s intrepid solar system explorers is headed for a close encounter with this Earth-sized hothouse of a planet on November 6th. Parker Solar Probe studies our planet’s nearest star, the Sun. Its mission is to trace the flow of energy that heats the Sun’s outer atmosphere and accelerates the million-mile-per-hour stream of particles it emits. It makes its measurements from super close to the Sun, within the region where all the action happens. To do this, the spacecraft was designed to fly within just 4 million miles of the Sun’s surface, which is 10 times closer than the orbit of the closest planet, Mercury. No other spacecraft has ever gotten this close to the Sun before. In the six years since its launch, the spacecraft has made a bunch of approaches to the Sun, using flybys of the planet Venus to shape its orbit. The November 6th flyby is the final such maneuver, intended to send the spacecraft toward its three closest-ever solar approaches, starting on December 24th. During this last Venus flyby, the mission will capture images of the planet. Previous views returned by Parker showed that the spacecraft could actually see features of the Venusian surface through its dense cloud cover. So look out for Venus in the evening sky, as the brilliant planet helps a craft from Earth to touch the face of the Sun.
      In the couple of hours before sunrise on November 27th, skywatchers in the eastern half of the U.S. and Canada will have the chance to witness an occultation – an event where the Moon passes in front of, and temporarily hides, a bright star – in this case Spica. Observers in other parts of the world will see the Moon pass extremely close to Spica, but won’t see it cover up the star. This occultation is one of a series that began in June and will continue monthly through late next year. These happen as the Moon’s orbit slowly shifts northward and southward across the sky, and every so often, its path crosses in front of Spica monthly for a time. But each occultation is only visible from a small portion of Earth. For example, while this November event favors North American viewers, South American observers will get their chance next April. For U.S. skywatchers, this November occultation is the last good opportunity in this series to see the Moon occult Spica until 2032, when a new series of monthly occultations will begin for locations across the globe. Now, if you miss this event, don’t worry!
      The Moon also passes in front of three other bright stars from time to time. This means that no matter where you’re located, you’ll have the opportunity before too long to witness the impressive sight of a bright star briefly disappearing behind the Moon.
      Watch our video for views of what some of the highlights we told you about in last month’s video actually looked like.
      The phases of the Moon for November 2024. NASA/JPL-Caltech Above are the phases of the Moon for November.
      Stay up to date on all of NASA’s missions exploring the solar system and beyond at science.nasa.gov.
      I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
      Keep Exploring Discover More Topics From NASA
      Asteroids, Comets & Meteors



      Moons



      Planets



      Solar System Exploration


      View the full article
    • By European Space Agency
      ESA’s solar eclipse-making Proba-3 mission is about to leave Europe, to head to its launch site in India. The mission’s two spacecraft – which will manoeuvre precisely in Earth orbit so that one casts a shadow onto the other – have departed the facilities of Redwire Space in Kruibeke, Belgium. The pair will be flown to the Satish Dhawan Space Centre, near Chennai, for the launch campaign to begin. 
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Perseverance rover captured the silhouette of the Martian moon Phobos as it passed in front of the Sun on Sept. 30, 2024. The video shows the transit speeded up by four times, followed by the eclipse in real time. NASA/JPL-Caltech/ASU/MSSS/SSI The tiny, potato-shaped moon Phobos, one of two Martian moons, cast a silhouette as it passed in front of the Sun, creating an eye in Mars’ sky.
      From its perch on the western wall of Mars’ Jezero Crater, NASA’s Perseverance rover recently spied a “googly eye” peering down from space. The pupil in this celestial gaze is the Martian moon Phobos, and the iris is our Sun.
      Captured by the rover’s Mastcam-Z on Sept. 30, the 1,285th Martian day of Perseverance’s mission, the event took place when the potato-shaped moon passed directly between the Sun and a point on the surface of Mars, obscuring a large part of the Sun’s disc. At the same time that Phobos appeared as a large black disc rapidly moving across the face of the Sun, its shadow, or antumbra, moved across the planet’s surface.
      Astronomer Asaph Hall named the potato-shaped moon in 1877, after the god of fear and panic in Greek mythology; the word “phobia” comes from Phobos. (And the word for fear of potatoes, and perhaps potato-shaped moons, is potnonomicaphobia.) He named Mars’ other moon Deimos, after Phobos’ mythological twin brother.
      Roughly 157 times smaller in diameter than Earth’s Moon, Phobos is only about 17 miles (27 kilometers) at its widest point. Deimos is even smaller.
      Rapid Transit
      Because Phobos’ orbit is almost perfectly in line with the Martian equator and relatively close to the planet’s surface, transits of the moon occur on most days of the Martian year. Due to its quick orbit (about 7.6 hours to do a full loop around Mars), a transit of Phobos usually lasts only 30 seconds or so.
      This is not the first time that a NASA rover has witnessed Phobos blocking the Sun’s rays. Perseverance has captured several Phobos transits since landing at Mars’ Jezero Crater in February 2021. Curiosity captured a video in 2019. And Opportunity captured an image in 2004.
      By comparing the various images, scientists can refine their understanding of the moon’s orbit to learn how it’s changing. Phobos is getting closer to Mars and is predicted to collide with it in about 50 million years.
      More About Perseverance
      Arizona State University leads the operations of the Mastcam-Z instrument, working in collaboration with Malin Space Science Systems in San Diego, on the design, fabrication, testing, and operation of the cameras, and in collaboration with the Niels Bohr Institute of the University of Copenhagen on the design, fabrication, and testing of the calibration targets.
      A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, pave the way for human exploration of the Red Planet, and be the first mission to collect and cache Martian rock and regolith (broken rock and dust).
      Subsequent NASA missions, in cooperation with ESA (European Space Agency), would send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
      The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
      NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech in Pasadena, California, built and manages operations of the Perseverance rover.
      Space Science Institute produced this video.
      For more about Perseverance:
      https://mars.nasa.gov/mars2020
      News Media Contacts
      Karen Fox / Molly Wasser
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      DC Agle
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-9011
      agle@jpl.nasa.gov
      2024-150
      Share
      Details
      Last Updated Oct 30, 2024 Related Terms
      Perseverance (Rover) Astrobiology Jet Propulsion Laboratory Mars Mars 2020 Explore More
      2 min read NASA Brings Drone and Space Rover to Air Show
      Article 47 mins ago 3 min read La NASA lleva un dron y un rover espacial a un espectáculo aéreo
      Article 48 mins ago 4 min read NASA Technologies Named Among TIME Inventions of 2024
      Article 2 hours ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...