Jump to content

Five Tips for Photographing the Annular Solar Eclipse on Oct. 14


Recommended Posts

  • Publishers
Posted

3 min read

Five Tips for Photographing the Annular Solar Eclipse on Oct. 14

A woman, seen from the torso up, stands on a beach. She is wearing white solar viewing glasses and has a camera strap around her neck.
Sarah Baker views the partial solar eclipse as the sun rises, Thursday, June 10, 2021, at Lewes Beach in Delaware.
NASA/Aubrey Gemignani

An annular solar eclipse is crossing the Americas on Oct. 14, 2023. This astronomical event is a perfect opportunity to capture unforgettable images of the Moon “taking a bite” out of the Sun or creating a “ring of fire” effect in the sky. Whether you’re an amateur photographer or a selfie master, try out these tips for photographing the eclipse. 

#1 – Safety First

To take images as the Sun is being eclipsed, you’ll need to use a special solar filter to protect your camera, just as you’ll need a pair of eclipse glasses to protect your own eyes. 

Having a few other pieces of equipment can also come in handy during the eclipse. Using a tripod can help you stabilize the camera and avoid taking blurry images during the low lighting. Additionally, using a delayed shutter release timer will allow you to snap shots without jiggling the camera.

#2 – Any Camera Is a Good Camera

Taking a stunning photo has more to do with the photographer than the camera. Whether you have a high-end DSLR, or a camera phone, you can take great photos during the eclipse; after all, the best piece of equipment you can have is a good eye and a vision for the image you want to create. If you don’t have a telephoto zoom lens, focus on taking landscape shots, which capture the changing environment.

Trees line the landscape. On the right, a camera sits on a tripod. Two hands hold either side of the camera.
A safe solar filter must be used in front of a camera lens whenever photographing an annular solar eclipse or a partial solar eclipse. Putting the camera on a tripod will help stabilize the view and produce clearer photos.
Danny B. Thomas

#3 – Look Up, Down, All Around

While the Sun is the most commanding element of an eclipse, remember to look around you. As the Moon slips in front of the Sun, the landscape will be bathed in long shadows, creating eerie lighting across the landscape. Light filtering through the overlapping leaves of trees create natural pinholes, which will also create mini eclipse replicas on the ground. Everywhere you can point your camera can yield exceptional imagery, so be sure to compose some wide-angle photos that can capture your eclipse experience.

NASA photographer Bill Ingalls recommends focusing on the human experience of watching the eclipse. “The real pictures are going to be of the people around you pointing, gawking, and watching it,” Ingalls noted. “Those are going to be some great moments to capture to show the emotion of the whole thing.”

#4 – Practice

Be sure you know the capabilities of your camera before eclipse day. Most cameras, and even many camera phones, have adjustable exposures, which can help you darken or lighten your image during the tricky eclipse lighting. Make sure you know how to manually focus the camera for crisp shots.

For DSLR cameras, the best way to determine the correct exposure is to test settings on the uneclipsed Sun beforehand. Using a fixed aperture of f/8 to f/16, try shutter speeds between 1/1000 to 1/4 second to find the optimal setting, which you can then use to take images during the partial or annular stages of the eclipse.

#5 – Share!

Share your eclipse experience with friends and family afterwards. Tag @NASA to connect your photos on social media to those taken around the country and share them with NASA. 

While you’re out perfecting your perfect eclipse shot, don’t forget to stop and look at the eclipse with your own eyes. Just remember to wear your solar viewing glasses (or “eclipse glasses”) throughout the entire eclipse!

Share

Details

Last Updated
Oct 10, 2023

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Goddard MODIS Rapid Response Team During the morning of March 20, 2015, a total solar eclipse was visible from parts of Europe, and a partial solar eclipse from northern Africa and northern Asia. NASA’s Terra satellite passed over the Arctic Ocean on March 20 at 10:45 UTC (6:45 a.m. EDT) and captured the eclipse’s shadow over the clouds in the Arctic Ocean.
      Terra launched 25 years ago on Dec. 18, 1999. Approximately the size of a small school bus, the Terra satellite carries five instruments that take coincident measurements of the Earth system: Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Clouds and Earth’s Radiant Energy System (CERES), Multi-angle Imaging Spectroradiometer (MISR), Measurements of Pollution in the Troposphere (MOPITT), and Moderate Resolution Imaging Spectroradiometer (MODIS).
      On Nov. 28, 2024, one of Terra’s power-transmitting shunt units failed. A response team reviewed Terra’s status and discussed potential impacts and options.  Consequently, the team placed ASTER into Safe Mode.  As a result, ASTER data are not currently being collected. All other instruments continue uninterrupted.
      Image Credit: NASA Goddard MODIS Rapid Response Team
      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Have you ever wanted to find all your favorite NASA technology in one place? NASA stakeholders did, too! We listened to your feedback, brainstormed user-focused features, and created the most robust technology system to date.
      NASA’s Space Technology Mission Directorate is excited to announce the release of TechPort version 4.0 – your gateway into our technology community. NASA tuned into feedback from the public, industry, academia, and our internal audiences to make significant updates to the TechPort system. From improvements in usability, customizability, and analysis views, users will now be able to search and explore NASA’s vast portfolio of technologies more easily than ever before.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Video introducing 4 new features of TechPort 4.0.NASA “When it comes to the ever-growing advancements in space technology, we need a system that encompasses a modernized look and feel coupled with a more intuitive interface,” said Alesyn Lowry, director for Strategic Planning & Integration for STMD at NASA Headquarters in Washington. “TechPort 4.0 offers just that. As the largest and most significant update to TechPort in the past five years, users will now be able to enjoy the most accessible, user-friendly, and all-encompassing version yet.” 
      Check out the five features of TechPort 4.0 and how they can help you research NASA’s cutting-edge technology projects and partnerships: 
      1. New and Improved Homepage 
      Featuring a new look and feel, users are able to search NASA’s comprehensive system of vast technologies. Including over 18,000 current and historical NASA technologies, users will now have more access to knowledge about the agency’s technology development at the touch of their fingertips! The modernized look and feel lends itself to a more intuitive interface that upgrades technology search capabilities. 
      2. Advanced Search 
      One of the most exciting features of TechPort 4.0 is the new capability to search and filter on all fields associated with technologies. This advanced filtering feature will allow users to uncover the exact information they are seeking, creating a more accessible and swifter experience for users. 
      3. New Grid View 
      Expanding upon the previous view, TechPort 4.0 offers a new grid view that enables users to view even more project data all at once. This upgrade also allows a user to customize all of the fields visible in search results, tailor how the data is sorted, and filter on any visible field. This new view provides a familiar interface tailored to data analysis needs that require rapid review of multiple data facets simultaneously. 
      4. NASA Technology Taxonomy Recommendation (T-Rex) 
      NASA’s Technology Taxonomy provides a structure for technology classification spanning over 350 categories. The Taxonomy is featured in TechPort, and all technologies in the system align to at least one Taxonomy area, making it easy to view technologies of interest. Technologists from various fields, including academia and nonprofits, now have the opportunity to use the T-Rex tool to automatically classify their technology according to the NASA Taxonomy. Serving as a machine learning model, TechPort will offer more organization and an easier way for users to access relevant information. 
      5. Funding Opportunities 
      Now, users can get connected, too! If your TechPort research is inspiring you to think about solving an aerospace or technology challenge, TechPort 4.0 gives users easy access to relevant opportunities and information on how to apply. 
      Launch into TechPort 4.0 to embark on your journey into our technology community. With the wide range of improvements in accessibility and customizability, explore NASA technologies like never before! 
      Gabrielle Thaw
      Keep Exploring Discover More Topics From NASA
      Space Technology Mission Directorate
      TechPort – Find it, Build it, Share it.
      Technology Transfer & Spinoffs
      STMD Solicitations and Opportunities
      View the full article
    • By NASA
      NASA Science Live: Parker Solar Probe Nears Historic Close Encounter with the Sun
    • By NASA
      5 Min Read Scientists Share Early Results from NASA’s Solar Eclipse Experiments 
      On April 8, 2024, a total solar eclipse swept across a narrow portion of the North American continent from Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada. This photo was taken from Dallas, Texas. Credits:
      NASA/Keegan Barber On April 8, 2024, a total solar eclipse swept across North America, from the western shores of Mexico, through the United States, and into northeastern Canada. For the eclipse, NASA helped fund numerous research projects and called upon citizen scientists in support of NASA’s goal to understand how our home planet is affected by the Sun – including, for example, how our star interacts with Earth’s atmosphere and affects radio communications.  
      At a press briefing on Tuesday, Dec. 10, scientists attending the annual meeting of the American Geophysical Union in Washington, D.C., reported some early results from a few of these eclipse experiments. 
      “Scientists and tens of thousands of volunteer observers were stationed throughout the Moon’s shadow,” said Kelly Korreck, eclipse program manager at NASA Headquarters in Washington. “Their efforts were a crucial part of the Heliophysics Big Year – helping us to learn more about the Sun and how it affects Earth’s atmosphere when our star’s light temporarily disappears from view.”
      Changes in the Corona
      On April 8, the Citizen CATE 2024 (Continental-America Telescopic Eclipse) project stationed 35 observing teams from local communities from Texas to Maine to capture images of the Sun’s outer atmosphere, or corona, during totality. Their goal is to see how the corona changed as totality swept across the continent.
      On Dec. 10, Sarah Kovac, the CATE project manager at the Southwest Research Institute in Boulder, Colorado, reported that, while a few teams were stymied by clouds, most observed totality successfully — collecting over 47,000 images in all. 
      These images were taken in polarized light, or light oriented in different directions, to help scientists better understand the processes that shape the corona.
      This preliminary movie from the Citizen CATE 2024 project stitches together polarized images of the solar corona taken from different sites during the total solar eclipse on April 8, 2024. SwRI/Citizen CATE 2024/Dan Seaton/Derek Lamb Kovac shared the first cut of a movie created from these images. The project is still stitching together all the images into the final, hour-long movie, for release at a later time. 
      “The beauty of CATE 2024 is that we blend cutting-edge professional science with community participants from all walks of life,” Kovac said. “The dedication of every participant made this project possible.” 
      Meanwhile, 50,000 feet above the ground, two NASA WB-57 aircraft chased the eclipse shadow as it raced across the continent, observing above the clouds and extending their time in totality to approximately 6 minutes and 20 seconds. 
      On board were cameras and spectrometers (instruments that analyze different wavelengths of light) built by multiple research teams to study the corona. 
      This image of the total solar eclipse is a combination of 30 50-millisecond exposures taken with a camera mounted on one of NASA’s WB-57 aircraft on April 8, 2024. It was captured in a wavelength of light emitted by ionized iron atoms called Fe XIV. This emission highlights electrified gas, called plasma, at a specific temperature (around 3.2 million degrees Fahrenheit) that often reveals arch-like structures in the corona. B. Justen, O. Mayer, M. Justen, S. Habbal, and M. Druckmuller On Dec. 10, Shadia Habbal of the University of Hawaii, who led one of the teams, reported that their instruments collected valuable data, despite one challenge. Cameras they had mounted on the aircraft’s wings experienced unexpected vibrations, which caused some of the images to be slightly blurred.
      However, all the cameras captured detailed images of the corona, and the spectrometers, which were located in the nose of the aircraft, were not affected. The results were so successful, scientists are already planning to fly similar experiments on the aircraft again.
      “The WB-57 is a remarkable platform for eclipse observations that we will try to capitalize on for future eclipses,” Habbal said. 
      Affecting the Atmosphere
      On April 8, amateur or “ham” radio operators sent and received signals to one another before, during, and after the eclipse as part of the Ham Radio Science Citizen Investigation (HamSCI) Festivals of Eclipse Ionospheric Science. More than 6,350 amateur radio operators generated over 52 million data points to observe how the sudden loss of sunlight during totality affects their radio signals and the ionosphere, an electrified region of Earth’s upper atmosphere. 
      Students from Case Western Reserve University operate radios during the 2024 total solar eclipse. HamSCI/Case Western Reserve University Radio communications inside and outside the path of totality improved at some frequencies (from 1-7 MHz), showing there was a reduction in ionospheric absorption. At higher frequencies (10 MHz and above), communications worsened. 
      Results using another technique, which bounced high-frequency radio waves (3-30 MHz) off the ionosphere, suggests that the ionosphere ascended in altitude during the eclipse and then descended to its normal height afterward. 
      “The project brings ham radio operators into the science community,” said Nathaniel Frissell, a professor at the University of Scranton in Pennsylvania and lead of HamSCI. “Their dedication to their craft made this research possible.”  
      Also looking at the atmosphere, the Nationwide Eclipse Ballooning Project organized student groups across the U.S. to launch balloons into the shadow of the Moon as it crossed the country in April 2024 and during a solar eclipse in October 2023. Teams flew weather sensors and other instruments to study the atmospheric response to the cold, dark shadow. 
      The eclipse’s shadow was captured from a camera aboard Virginia Tech’s balloon as part of the Nationwide Eclipse Ballooning Project on April 8, 2024. Nationwide Eclipse Ballooning Project/Virginia Tech This research, conducted by over 800 students, confirmed that eclipses can generate ripples in Earth’s atmosphere called atmospheric gravity waves. Just as waves form in a lake when water is disturbed, these waves also form in the atmosphere when air is disturbed. This project, led by Angela Des Jardins of Montana State University in Bozeman, also confirmed the presence of these waves during previous solar eclipses. Scientists think the trigger for these waves is a “hiccup” in the tropopause, a layer in Earth’s atmosphere, similar to an atmospheric effect that is observed during sunset. 
      “Half of the teams had little to no experience ballooning before the project,” said Jie Gong, a team science expert and atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “But their hard work and research was vital in this finding.”
      By Abbey Interrante and Vanessa Thomas
      NASA’s Goddard Space Flight Center, Greenbelt, Md. 
      Share








      Details
      Last Updated Dec 10, 2024 Related Terms
      2024 Solar Eclipse Citizen Science Goddard Space Flight Center Heliophysics Solar Eclipses The Sun Uncategorized Explore More
      8 min read NASA’s Hubble Celebrates Decade of Tracking Outer Planets


      Article


      21 hours ago
      3 min read Annual Science Conference to Highlight NASA Research


      Article


      4 days ago
      2 min read Hubble Spots a Spiral in the Celestial River


      Article


      4 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By European Space Agency
      A pair of spacecraft were launched together today from India with the potential to change the nature of future space missions. ESA’s twin Proba-3 platforms will perform precise formation flying down to a single millimetre, as if they were one single giant spacecraft. To demonstrate their degree of control, the pair will produce artificial solar eclipses in orbit, giving prolonged views of the Sun’s ghostly surrounding atmosphere, the corona. 
      View the full article
  • Check out these Videos

×
×
  • Create New...