Members Can Post Anonymously On This Site
Astronaut Loral O’Hara shows off spacewalking tools
-
Similar Topics
-
By NASA
Tall plumes of white vapor rise from the rocky Venusian surface in this April 19, 1977, artist’s concept.NASA/Rick Guidice Tall plumes of white vapor rise from the rocky Venusian surface in this April 19, 1977, artist’s concept. A little over a year later, NASA’s Pioneer Venus 1 would launch as the first of a two-spacecraft orbiter-probe combination designed to study the atmosphere of Venus.
The first American spacecraft to orbit Venus, Pioneer Venus 1 used radar to map the surface of Venus. The probe found Venus to be generally smoother than Earth, though with a mountain higher than Mt. Everest and a chasm deeper than the Grand Canyon.
Thanks to exploration by Pioneer Venus 1 and other spacecraft like Magellan, Galileo, Cassini, and even the Parker Solar Probe, we now have a much better view of what the surface of Venus looks like.
Image credit: NASA/Rick Guidice
View the full article
-
By NASA
The Simulation and Graphics Branch produces several software tools to facilitate building and operating simulations. Many of these are available to download and are linked below.
Trick Simulation Environment The Trick Simulation Environment provides a common set of simulation capabilities that allow domain experts to concentrate on domain-specific models rather than simulation-specific functions like job ordering, input file processing, or data recording. Trick’s flexible feature set enables users to build applications for all phases of space vehicle development including early vehicle design and performance evaluation, flight software development and testing, flight vehicle dynamic loads analysis, and virtual and hardware-in-the-loop training.
General-Use Nodal Network Solver (GUNNS) The General-Use Nodal Network Solver (GUNNS) is a tool that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. It was developed to create medium-fidelity, real-time simulations for crew and flight controller training, and its ability to rapidly model complex integrated systems make it an ideal systems engineering tool: enabling detailed concept comparisons; facilitating requirement and design change impact assessments; and providing realistic environments for testing developmental flight software, high fidelity component and subsystem models, and prototype, developmental, and certification subsystem hardware. It includes core run-time models and code as well as graphical user interfaces for network design and run-time analysis.
TrickHLA The TrickHLA software supports the IEEE-1516 High Level Architecture (HLA) simulation interoperability standard for the Trick Simulation Environment. The TrickHLA software abstracts away the details of using HLA, allowing the user to concentrate on the simulation and not worry about having to be an HLA distributed simulation expert. The TrickHLA software is data driven and provides a simple Application Programming Interface (API) making it relatively easy to take an existing Trick simulation and make it a HLA distributed simulation.
TrickFMI A Functional Mockup Interface (FMI) Standard Implementation for Trick Base Models and Simulations. FMI standard was developed in partnership with governmental, academic and commercial entities in the European Union. This standard is used to support the exchange of component models for complex system simulations throughout Europe and the United States. Trick simulations are used all across NASA for simulations that support human spaceflight activities. However, until now, there were no means to use FMI based models in a Trick based simulation or a method for providing Trick based models that were FMI compliant. This software provides implementation software to do both.
TrickCFS TrickCFS is a software package that provides the C structs, C++ classes and pertinent code required to synchronize a core Flight Software (cFS) system with the Trick simulation executive. It also provides the capability to include cFS-based application (App) data structures for generating the Trick interface code required to peek and poke cFS App data.
Input Device Framework (IDF) IDF is a software library that provides an infrastructure for interfacing software with physical input devices. Examples of common devices include hand controllers, joysticks, foot pedals, computer mice, game controllers, etc. Conceptually, the framework can be extended to support any device that produces digital output. IDF additionally presents, and is itself an implementation of, a design methodology that encourages application developers to program against domain-specific interfaces rather than particular hardware devices. This abstraction frees the application from the details of communicating with the underlying devices, resulting in robust and flexible code that is device-agnostic. IDF ensures that devices meet application interface requirements, supports many-to-many relationships between application interfaces and devices, allows for flexible and dynamic interpretation of device inputs, and provides methods for transforming and combining inputs.
Displays and Controls Software (DCApp) Dcapp (pronounced “dee see app”) is a displays and controls software package designed for UNIX platforms, specifically MacOS and Linux.
It is built upon standard UNIX technologies like OpenGL for graphics, libxml2 for input file parsing, and FreeType2 for font handling. For window management and event handling, it uses Cocoa on MacOS machines and X11 for Linux-based machines. It has built-in communication libraries to communicate with external Trick-based simulations and EDGE/DOUG graphics.
Data Visualization Tool – Koviz Koviz is a simulation data visualization tool. It is designed especially for Trick monte carlo data analysis, comparing simulation runs, analyzing data spikes and creating report quality plot booklets. Koviz can be run interactively via the GUI or can be run in batch. Koviz supports Trick binary data and CSV. Koviz offers a real-time analysis report for Trick real-time data recordings. Koviz also offers a plugin-like functionality, external programs, to transform simulation data. Koviz can also be synced with video so one can view video alongside associated data.
JSC Engineering Orbital Dynamics (JEOD) The JSC Engineering Orbital Dynamics (JEOD) Software Package is a simulation tool designed to work with NASA Trick Simulation Environment that provides vehicle trajectory generation by the solution of a set of numerical dynamical models. These models are subdivided into four categories. There are Environment models representing the conditions surrounding the vehicle, Dynamics models for integrating the equations of motion, Interaction models representing vehicle interactions with the environment, and a set of mathematical and orbital dynamics Utility models.
JEOD is designed to simulate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar operations, interplanetary trajectories, and other deep space missions. JEOD can be used to simulate a stand-alone spacecraft trajectory and attitude state, or it can be interfaced with a larger simulation space, such as coupling with spacecraft effectors and guidance, navigation and control systems. More than one spacecraft can be simulated about one central body or separate spacecraft about separate central bodies.
Other Simulation and Graphics Products View the full article
-
By European Space Agency
Space is not the safest place to be. During spaceflight, both devices and humans risk exposure to high levels of radiation. Without sufficient protection, instruments would malfunction, and astronauts might face serious health risks. A team of researchers from Ghent University in Belgium are testing the potential of 3D-printed hydrogels – materials that can soak up large amounts of water – to serve as highly-effective radiation shields.
View the full article
-
By NASA
(Jan. 13, 2025) Astronaut Nick Hague swaps samples of materials to observe how they burn in weightlessness.Credit: NASA Students from the Thomas Edison EnergySmart Charter School in Somerset, New Jersey, will have the chance to connect with NASA astronaut Nick Hague as he answers prerecorded science, technology, engineering, and mathematics (STEM) related questions from aboard the International Space Station.
Watch the 20-minute space-to-Earth call at 11:10 a.m. EST on Tuesday, Feb. 11, on NASA+ and learn how to watch NASA content on various platforms, including social media.
Media interested in covering the event must RSVP by 5 p.m., Thursday, Feb. 6, to Jeanette Allison at: oyildiz@energysmartschool.org or 732-412-7643.
For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
See videos and lesson plans highlighting space station research at:
https://www.nasa.gov/stemonstation
-end-
Abbey Donaldson
Headquarters, Washington
202-358-1600
Abbey.a.donaldson@nasa.gov
Sandra Jones
Johnson Space Center, Houston
281-483-5111
sandra.p.jones@nasa.gov
Share
Details
Last Updated Feb 05, 2025 LocationNASA Headquarters Related Terms
International Space Station (ISS) Humans in Space In-flight Education Downlinks ISS Research STEM Engagement at NASA View the full article
-
By NASA
Perseus Cluster: X-ray: NASA/CXC/SAO/V. Olivares et al.; Optical/IR: DSS; H-alpha: CFHT/SITELLE; Centaurus Cluster: X-ray: NASA/CXC/SAO/V. Olivaresi et al.; Optical/IR: NASA/ESA/STScI; H-alpha: ESO/VLT/MUSE; Image Processing: NASA/CXC/SAO/N. Wolk Astronomers have taken a crucial step in showing that the most massive black holes in the universe can create their own meals. Data from NASA’s Chandra X-ray Observatory and the Very Large Telescope (VLT) provide new evidence that outbursts from black holes can help cool down gas to feed themselves.
This study was based on observations of seven clusters of galaxies. The centers of galaxy clusters contain the universe’s most massive galaxies, which harbor huge black holes with masses ranging from millions to tens of billions of times that of the Sun. Jets from these black holes are driven by the black holes feasting on gas.
These images show two of the galaxy clusters in the study, the Perseus Cluster and the Centaurus Cluster. Chandra data represented in blue reveals X-rays from filaments of hot gas, and data from the VLT, an optical telescope in Chile, shows cooler filaments in red.
The results support a model where outbursts from the black holes trigger hot gas to cool and form narrow filaments of warm gas. Turbulence in the gas also plays an important role in this triggering process.
According to this model, some of the warm gas in these filaments should then flow into the centers of the galaxies to feed the black holes, causing an outburst. The outburst causes more gas to cool and feed the black holes, leading to further outbursts.
This model predicts there will be a relationship between the brightness of filaments of hot and warm gas in the centers of galaxy clusters. More specifically, in regions where the hot gas is brighter, the warm gas should also be brighter. The team of astronomers has, for the first time, discovered such a relationship, giving critical support for the model.
This result also provides new understanding of these gas-filled filaments, which are important not just for feeding black holes but also for causing new stars to form. This advance was made possible by an innovative technique that isolates the hot filaments in the Chandra X-ray data from other structures, including large cavities in the hot gas created by the black hole’s jets.
The newly found relationship for these filaments shows remarkable similarity to the one found in the tails of jellyfish galaxies, which have had gas stripped away from them as they travel through surrounding gas, forming long tails. This similarity reveals an unexpected cosmic connection between the two objects and implies a similar process is occurring in these objects.
This work was led by Valeria Olivares from the University of Santiago de Chile, and was published Monday in Nature Astronomy. The study brought together international experts in optical and X-ray observations and simulations from the United States, Chile, Australia, Canada, and Italy. The work relied on the capabilities of the MUSE (Multi Unit Spectroscopic Explorer) instrument on the VLT, which generates 3D views of the universe.
NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
Read more from NASA’s Chandra X-ray Observatory.
Learn more about the Chandra X-ray Observatory and its mission here:
https://www.nasa.gov/chandra
https://chandra.si.edu
Visual Description
This release features composite images shown side-by-side of two different galaxy clusters, each with a central black hole surrounded by patches and filaments of gas. The galaxy clusters, known as Perseus and Centaurus, are two of seven galaxy clusters observed as part of an international study led by the University of Santiago de Chile.
In each image, a patch of purple with neon pink veins floats in the blackness of space, surrounded by flecks of light. At the center of each patch is a glowing, bright white dot. The bright white dots are black holes. The purple patches represent hot X-ray gas, and the neon pink veins represent filaments of warm gas. According to the model published in the study, jets from the black holes impact the hot X-ray gas. This gas cools into warm filaments, with some warm gas flowing back into the black hole. The return flow of warm gas causes jets to again cool the hot gas, triggering the cycle once again.
While the images of the two galaxy clusters are broadly similar, there are significant visual differences. In the image of the Perseus Cluster on the left, the surrounding flecks of light are larger and brighter, making the individual galaxies they represent easier to discern. Here, the purple gas has a blue tint, and the hot pink filaments appear solid, as if rendered with quivering strokes of a paintbrush. In the image of the Centaurus Cluster on the right, the purple gas appears softer, with a more diffuse quality. The filaments are rendered in more detail, with feathery edges, and gradation in color ranging from pale pink to neon red.
News Media Contact
Megan Watzke
Chandra X-ray Center
Cambridge, Mass.
617-496-7998
mwatzke@cfa.harvard.edu
Lane Figueroa
Marshall Space Flight Center, Huntsville, Alabama
256-544-0034
lane.e.figueroa@nasa.gov
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.