Members Can Post Anonymously On This Site
NASA astronaut and Expedition 70 Flight Engineer Loral O’Hara
-
Similar Topics
-
By USH
On December 25, 2024, NASA's Stereo Lasco C3 satellite captured an extraordinary phenomenon near the sun. In a split second, the satellite's imaging was disrupted by what appeared to be a swarm of spherical objects hurtling through space at incredible speeds.
Speculation surrounds the event, with some suggesting it could be a meteor debris field. However, the unusual appearance of the objects has raised questions. Could debris naturally form into such perfectly round shapes, each featuring a dark center that resembles donut-shaped UFOs?
This event might be a natural occurrence, however, with all the recent strange sightings of unknown drones, UFOs, and orbs combined with predictions from several specialists that something significant might happen soon in the realm of the UFO phenomena, one might wonder if these mysterious spheres are connected to something larger on the horizon?
View the full article
-
By NASA
The NESC Mechanical Systems TDT provides broad support across NASA’s mission directorates. We are a diverse group representing a variety of sub-disciplines including bearings, gears, metrology, lubrication and tribology, mechanism design, analysis and testing, fastening systems, valve engineering, actuator engineering, pyrotechnics, mechatronics, and motor controls. In addition to providing technical support, the
TDT owns and maintains NASA-STD-5017, “Design and Development Requirements for Space Mechanisms.”
Mentoring the Next Generation
The NESC Mechanical Systems TDT actively participates in the Structures, Loads & Dynamics, Materials, and Mechanical Systems (SLAMS) Early Career Forum that mentors early-career engineers. The TDT sent three members to this year’s forum at WSTF, where early-career engineers networked with peers and NESC mentors, gave presentations on tasks they worked on at their home centers, and attended splinter sessions where they collaborated with mentors.
New NASA Valve Standard to Reduce Risk and Improve Design and Reliability
Valve issues have been encountered across NASA’s programs and continue to compromise mission performance and increase risk, in many cases because the valve hardware was not qualified in the environment as specified in NASA-STD-5017. To help address these issues, the Mechanical Systems TDT is developing a NASA standard for valves. The TDT assembled a team of subject matter experts from across the Agency representing several disciplines including mechanisms, propulsion, environmental control and life support systems, spacesuits, active thermal control systems, and materials and processes. The team has started their effort by reviewing lessons learned and best practices for valve design and hope to have a draft standard ready by the end of 2025.
Bearing Life Testing for Reaction Wheel Assemblies
The Mechanical Systems TDT just concluded a multiyear bearing life test on 40 motors, each containing a pair of all steel bearings of two different conformities or a pair of hybrid bearings containing silicon nitride balls. The testing confirmed that hybrid bearings outperformed their steel counterparts, and bearings with higher conformity (54%) outperformed bearings with lower conformity (52%). The team is disassembling and inspecting the bearings, and initial results have been surprising. The TDT was able to “recover” some of the bearings that failed during the life test and get them running as well as they did when testing began. Some bearings survived over five billion revolutions and appeared like new when they were disassembled and inspected. These results will be published once analysis is complete.
X-57 Design Assessment
The Mechanical Systems TDT was asked by the Aeronautics Mission Directorate to assess the design of the electric cruise motors installed on X-57. The team responded quickly to meet the Project’s schedule, making an onsite visit and attending numerous technical interchange meetings. After careful review of the design, the TDT identified areas for higher-level consideration and risk assessment and attended follow-on reviews to provide additional comments and advice.
CLARREO Pathfinder Inner Radial Bearing Anomaly
The Climate Absolute Radiance and Refractivity Observatory (CLARREO) Pathfinder was designed to take highly accurate measurements of reflected solar radiation to better-understand Earth’s climate. During payload functional testing, engineers detected a noise as the HySICS pointing system was rotated from its normal storage orientation. Mechanical Systems TDT members reviewed the design and inspection reports after disassembly of the inner bearing unit, noticing contact marks on the bore of the inner ring and the shaft that confirmed that the inner ring of the bearing was moving on the shaft with respect to the outer ring. Lubricant applied to this interface resolved the noise problem and allowed the project to maintain schedule without any additional costs.
JPL Wheel Drive Actuator Extended Life Test Independent Review Team
A consequence of changes to its mission on Mars will require the Perseverance Rover to travel farther than originally planned. Designed to drive 20 km, the rover will now need to drive ~91 km to rendezvous and support Mars sample tube transfer to the Sample Retrieval Lander. The wheel drive actuators with integral brakes had only been life tested to 40 km, so a review was scheduled to discuss an extended life test. The OCE Science Mission Directorate Chief Engineer assembled an independent review team (IRT) that included NESC Mechanical Systems TDT members. This IRT issued findings and guidance that questioned details of the JPL assumptions and plan. Several important recommendations were made that improved the life test plan and led to the identification of brake software issues that were reducing brake life. The life test has achieved 40 km of its 137 km goal and is ongoing. In addition, software updates were sent to the rover to improve brake life.
Orion Crew Module Hydrazine Valve
When an Orion crew module hydrazine valve failed to close, the production team asked the Mechanical Systems TDT for help. A TDT member attended two meetings and then visited the valve manufacturer, where it was determined this valve was a scaled-down version of the 12-inch SLS prevalve that was the subject of a previous NESC assessment and shared similar issues. The Orion Program requested NESC materials and mechanical systems support. The Mechanical Systems TDT member then worked closely with a Lockheed Martin (LM) Fellow for Mechanisms to review all the valve vendor’s detailed drawings and assembly procedures and document any issues. A follow-on meeting was held to brief both the LM and NASA Technical Fellows for Propulsion that a redesign and requalification was recommended. These recommendations have now been elevated to the LM Vice President for Mission Success and the LM Chief Engineer for Orion.
NASA’s Perseverance Mars rover selfie taken in July 2024.
View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA Deputy Administrator Pam Melroy and Deputy Associate Administrator Casey Swails visit the American Airlines Integrated Operations Center near Dallas Fort Worth International Airport on a recent trip to see NASA’s digital tools for aviation efficiency in operational use.American Airlines It’s the holiday season — which means many are taking to the skies to join their loved ones.
If you’ve ever used an app to navigate on a road trip, you’ve probably noticed how it finds you the most efficient route to your destination, even before you depart. To that end, NASA has been working to make flight departures out of major international airports more efficient — thereby saving fuel and reducing delays — in close collaboration with the aviation industry and the Federal Aviation Administration (FAA).
The savings are possible thanks to a NASA-developed tool called Collaborative Digital Departure Rerouting.
This tool determines where potential time savings could be gained by slightly altering a departure route, based on existing data about delays. The software presents its proposed more-efficient route in real time to an airline, who can then decide whether or not to use it and coordinate with air traffic control through a streamlined digital process.
The capability is being tested thoroughly at Dallas Fort Worth International Airport and Love Field Airport in Texas in collaboration with several major air carriers, including American Airlines, Delta, JetBlue, Southwest, and United.
Now, these capabilities are expanding out of the Dallas area to other major airports in Houston for further research.
“We’re enabling the use of digital services to greatly improve aviation efficiency,” said Shivanjli Sharma, manager of NASA’s Air Traffic Management — eXploration project which oversees the research on aviation services. “Streamlining airline operations, reducing emissions, and saving time are all part of making an efficient next-generation airspace system.”
NASA / Maria Werries The animation above shows the savings Collaborative Digital Departure Rerouting is responsible for at just a single airport. As the tool is expanded to be used at other airports, the savings begin to add up even more.
It’s all part of NASA’s vision for transforming the skies above our communities to be more sustainable, efficient, safer, and quieter.
Collaborative Digital Departure Rerouting is one of a series of new cloud-based digital air traffic management tools NASA and industry plan to develop and demonstrate as part of the agency’s Sustainable Flight National Partnership. These new flight management capabilities will contribute to the partnership’s goal of accelerating progress towards aviation achieving net-zero greenhouse gas emissions by 2050.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAAero@NASA_es @NASA@NASAAero@NASA_es Instagram logo @NASA@NASAAero@NASA_es Linkedin logo @NASA Explore More
2 min read NASA, Notre Dame Connect Students to Inspire STEM Careers
Article 19 mins ago 4 min read NASA Finds ‘Sideways’ Black Hole Using Legacy Data, New Techniques
Article 2 days ago 8 min read 2024 in Review: Highlights from NASA in Silicon Valley
Article 3 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
Share
Details
Last Updated Dec 20, 2024 Related Terms
Aeronautics Aeronautics Research Mission Directorate Air Traffic Management – Exploration Air Traffic Solutions Airspace Operations and Safety Program Ames Research Center Green Aviation Tech Sustainable Flight National Partnership View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
When it comes to building spaceflight missions, the software is at least as important as the hardware. For computer engineer Nargess Memarsadeghi, having a hand in the programming is like getting to go along for the ride.
Name: Nargess Memarsadeghi
Title: Associate Branch Head, Software Systems Engineering Branch
Formal Job Classification: Supervisory Computer Engineer
Organization: Software Systems Engineering Branch, Software Engineering Division, Engineering Directorate (Code 581)
Nargess Memarsadeghi is the associate branch head of the Software Systems Engineering branch at NASA’s Goddard Space Flight Center in Greenbelt, Md.Courtesy of Nargess Memarsadeghi What do you do and what is most interesting about your role here at Goddard?
As associate branch head for the Software Systems Engineering Branch, I spend half of my time supporting the branch head on internal functions, different planning activities, and supervising our employees who are senior software systems engineers and often team leads themselves.
For the other half of my time, I work on a technical project. Currently, I am supporting the Human Landing Systems (HLS) project. I am a member of NASA HLS Software Insight Team working with NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Johnson Space Center in Houston, and industry partners SpaceX and Blue Origin to meet software requirements and milestones, and to ensure the Artemis campaign succeeds in taking astronauts to the Moon.
I enjoy learning about various NASA missions and being part of them either by supporting our branch employees who work on these missions or by being a project team member and making technical contributions directly.
Why did you become a software engineer?
I always loved math and sciences. Software engineering seemed like a good and practical way to apply math to different scientific and engineering applications.
What is your educational background?
I got my bachelor’s (2001), master’s (2004), and doctorate (2007) degrees in computer science from the University of Maryland at College Park.
How did you come to Goddard?
I joined Goddard in 2001 right after college. The university had a recruitment event at its career center. I signed up for an interview with NASA, which went well. I then got an invitation for an onsite interview, and then an offer to join Goddard as a computer engineer.
What is your supervisory style?
I have been supervising on average 10 employees. We have tag-ups every two weeks to learn about their work and see if they have any issues or need anything from management. We keep in constant communication which goes both ways. I have an open-door policy. I try to match an employee’s interests and expertise to their work. I am willing to hear their concerns and address them to the best of my ability or putting them in contact with those who can. I enjoy learning about their work and celebrating the achievements.
What are some of the most exciting projects and missions that the Software Systems Engineering Branch is involved with?
We provide end-to-end software systems engineering support to many high-impact missions, like the upcoming flagship astrophysics Roman Space Telescope mission. We support Roman’s software systems, as well as its testing and assembly with one of our software products, the Goddard Dynamic Simulator.
Our team also supports a variety of Earth science missions, such as the Joint Polar Satellite Systems (JPSS), GOES-R, and GOES-U, all of which NASA supports on behalf of the National Oceanic and Atmospheric Administration (NOAA). We also develop and manage different ground segment software systems for different missions including PACE, TSIS-II, and others.
What are some of your career highlights so far?
One was being part of the James Webb Space Telescope team and working on stability testing of microshutters. Webb is a huge, multinational observatory making many scientific discoveries.
Another is being part of the Dawn mission’s satellite working group searching for moons of the asteroid Vesta and dwarf planet Ceres. I worked on this from prelaunch through launch and operations. We were some of the first to see the scientific images soon after being downlinked. It felt like going on a ride with the spacecraft itself.
I would add my more recent work on the Roman Space Telescope.
In general, I really enjoyed working on various missions during their different stages of their life cycle. I got to see the whole picture of how software is used for missions, from technology development to post-launch.
What advice do you give your graduate students and interns as a mentor?
I emphasize that they also need to work on their communication skills, leadership skills, and team building. I tell them to focus not just on their technical skills but also on their interpersonal skills both written and oral. NASA has a lot of collaborative projects and being able to effectively communicate across different levels is crucial for mission success.
Whom do you wish to thank?
I would like to thank my family for their support. I would also like to thank my past teachers and mentors who made a big difference in me and positively impacted my life.
What do you do to relax?
I like going for long walks, spending time with family and friends, and doing activities with my son including attending his piano recitals.
Who is your favorite author?
As a young reader, I enjoyed reading Jules Verne. I also enjoy reading poetry. My favorites are Robert Frost, Emily Dickinson, and Persian poets Sohrab Sepehri and Saadi Shirazi.
What motto do you live by?
Be the change you want to see in the world.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Dec 19, 2024 Related Terms
Goddard Space Flight Center People of Goddard People of NASA Explore More
7 min read Very Cold Detectors Reveal the Very Hot Universe and Kick Off a New Era in X-ray Astronomy
X-rays are radiated by matter hotter than one million Kelvin, and high-resolution X-ray spectroscopy can…
Article 2 days ago 7 min read NASA’s Webb Finds Planet-Forming Disks Lived Longer in Early Universe
NASA’s James Webb Space Telescope just solved a conundrum by proving a controversial finding made…
Article 3 days ago 5 min read NASA DAVINCI Mission’s Many ‘Firsts’ to Unlock Venus’ Hidden Secrets
NASA’s DAVINCI probe will be first in the 21st century to brave Venus’ atmosphere as…
Article 3 days ago View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.