Jump to content

Astronaut Loral O’Hara boards a T-38 trainer jet


Recommended Posts

  • Publishers
Posted
NASA astronaut Loral O'Hara conducts preflight training aboard a T-38 trainer jet at Ellington Field in Houston, Texas, before beginning her mission to the International Space Station.
jsc2023e014640 (March 10, 2023) — NASA astronaut Loral O’Hara conducts preflight training aboard a T-38 trainer jet at Ellington Field in Houston, Texas, before beginning her mission to the International Space Station.
NASA

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Space is not the safest place to be. During spaceflight, both devices and humans risk exposure to high levels of radiation. Without sufficient protection, instruments would malfunction, and astronauts might face serious health risks. A team of researchers from Ghent University in Belgium are testing the potential of 3D-printed hydrogels – materials that can soak up large amounts of water – to serve as highly-effective radiation shields.
      View the full article
    • By NASA
      (Jan. 13, 2025) Astronaut Nick Hague swaps samples of materials to observe how they burn in weightlessness.Credit: NASA Students from the Thomas Edison EnergySmart Charter School in Somerset, New Jersey, will have the chance to connect with NASA astronaut Nick Hague as he answers prerecorded science, technology, engineering, and mathematics (STEM) related questions from aboard the International Space Station.
      Watch the 20-minute space-to-Earth call at 11:10 a.m. EST on Tuesday, Feb. 11, on NASA+ and learn how to watch NASA content on various platforms, including social media.
      Media interested in covering the event must RSVP by 5 p.m., Thursday, Feb. 6, to Jeanette Allison at: oyildiz@energysmartschool.org or 732-412-7643.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lay the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Abbey Donaldson
      Headquarters, Washington
      202-358-1600
      Abbey.a.donaldson@nasa.gov
      Sandra Jones 
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Feb 05, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space In-flight Education Downlinks ISS Research STEM Engagement at NASA View the full article
    • By NASA
      NASA Administrator Bill Nelson, left, and Deputy Administrator Pam Melroy, right, present Bob Cabana, who served as a NASA associate administrator, astronaut, and a colonel in the United States Marine Corps, the President’s Award for Distinguished Federal Civilian Service, recognizing his exceptional achievements and public service to the nation, Jan. 10, 2025, at the Mary W. Jackson NASA Headquarters in Washington. The award, signed by President Biden, is the highest honor the federal government can grant to a federal civilian employee.Credit: NASA/Bill Ingalls Robert Cabana, who served as a NASA associate administrator, astronaut, and a colonel in the United States Marine Corps, received the President’s Award for Distinguished Federal Civilian Service, recognizing his exceptional achievements and public service to the nation. The award, signed by President Biden, is the highest honor the federal government can grant to a federal civilian employee.
      NASA Administrator Bill Nelson and Deputy Administrator Pam Melroy presented Cabana with the award during a ceremony at NASA Headquarters in Washington on Jan. 10. Cabana most recently served as NASA’s associate administrator, which is the agency’s highest ranking civil servant, from 2021 until he retired from the agency at the end of 2023.
      “A true public servant, Bob has spent his entire career in service to his country. I can think of no one more deserving of this rare honor than Bob,” said Nelson. “From his time as a naval aviator to his role as associate administrator of NASA, Bob has dedicated his life to improving his country. I join with President Biden in thanking Bob for his dedication and commitment.”
      The award recognized Cabana for his roles as a Marine aviator, test pilot, astronaut and becoming the first American to enter the International Space Station. He was further recognized for continuing to push for the bounds of the possible, launching the James Webb Space Telescope, the Artemis I mission and the Orion spacecraft which will send humans back to the Moon for the first time in decades.
      As a NASA astronaut, Cabana flew in space four times, including twice as commander. His final space shuttle flight in 1998 was the first International Space Station assembly mission. Cabana also was the director of the agency’s Kennedy Space Center in Florida for more than a decade. There he led its transition from retirement of the space shuttle to a multi-user spaceport once again launching NASA astronauts to low Earth orbit, and for the first time, doing so with commercial partners.  
      As NASA associate administrator, Cabana led the agency’s 10 center directors, as well as the mission directorate associate administrators at NASA Headquarters. He was the agency’s chief operating officer for more than 18,000 employees and oversaw an annual budget of more than $25 billion.  
      Cabana was selected as an astronaut candidate in June 1985 and completed training in July 1986. He logged 38 days in space during four shuttle missions. Cabana was a pilot aboard space shuttle Discovery on both the STS-41 mission in October 1990 that deployed the Ulysses spacecraft and the STS-53 mission in December 1992. He was the mission commander aboard space shuttle Columbia for the STS-65 mission in July 1994 that conducted experiments as part of the second International Microgravity Laboratory mission. He commanded space shuttle Endeavour for the STS-88 mission in December 1998.
      Cabana was appointed a member of the Federal Senior Executive Service in 2000 and served in numerous senior management positions at NASA’s Johnson Space Center in Houston, ultimately becoming deputy director. He was named director of NASA’s Stennis Space Center in Mississippi in October 2007 and a year later was selected as NASA Kennedy director. 
      Born in Minneapolis, Cabana graduated from the U.S. Naval Academy in 1971 with a bachelor’s degree in mathematics. He became a naval aviator and graduated with distinction from the U.S. Naval Test Pilot School in 1981. In his career, Cabana logged over 7,000 hours in more than 50 different kinds of aircraft. He retired as a colonel from the U.S. Marine Corps in September 2000. 
      In addition to receiving the President’s Award for Distinguished Federal Service, Cabana’s accomplishments have been recognized with induction into the Astronaut Hall of Fame and being named an Associate Fellow in the American Institute of Aeronautics and Astronautics and a Fellow in the Society of Experimental Test Pilots. He has received numerous personal awards and decorations, including the Distinguished Flying Cross and the Presidential Distinguished Rank Award. He also is a recipient of the Rotary National Award for Space Achievement’s National Space Trophy. 
      For Cabana’s full bio, visit: 
      https://go.nasa.gov/3u9hGB2
      -end- 
      Meira Bernstein / Jennifer Dooren
      Headquarters, Washington
      202-615-1747 / 202-358-1600
      meira.b.bernstein@nasa.gov / jennifer.m.dooren@nasa.gov
      Share
      Details
      Last Updated Jan 13, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      Robert D. Cabana Bill Nelson Johnson Space Center Kennedy Space Center NASA Headquarters Pamela A. Melroy Space Shuttle Stennis Space Center View the full article
    • By NASA
      Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary 4 Min Read Hubble Reveals Surprising Spiral Shape of Galaxy Hosting Young Jet
      Quasar J0742+2704 Credits:
      NASA, ESA, Kristina Nyland (U.S. Naval Research Laboratory); Image Processing: Joseph DePasquale (STScI) The night sky has always played a crucial role in navigation, from early ocean crossings to modern GPS. Besides stars, the United States Navy uses quasars as beacons. Quasars are distant galaxies with supermassive black holes, surrounded by brilliantly hot disks of swirling gas that can blast off jets of material. Following up on the groundbreaking 2020 discovery of newborn jets in a number of quasars, aspiring naval officer Olivia Achenbach of the United States Naval Academy has used NASA’s Hubble Space Telescope to reveal surprising properties of one of them, quasar J0742+2704.
      “The biggest surprise was seeing the distinct spiral shape in the Hubble Space Telescope images. At first I was worried I had made an error,” said Achenbach, who made the discovery during the course of a four-week internship.
      Quasar J0742+2704 (center) became the subject of astronomers’ interest after it was discovered to have a newborn jet blasting from the disk around its supermassive black hole in 2020, using the Karl G. Jansky Very Large Array (VLA) radio observatory. This led to follow-up with other observatories in an effort to determine the properties of the galaxy and what may have triggered the jet. While the jet itself cannot be seen in this Hubble Space Telescope infrared-light image, the spiral shape of J0742+2704 is clear, with faint but detectable arms branching above and below the galaxy center. This was a big surprise to the research team, as quasars hosting jets are typically elliptical-shaped, and its suspected that messy mergers with other galaxies are what funnel gas toward the black hole and fuel jets. These mergers would also disrupt any spiral formation a galaxy may have had before mixing its contents with another galaxy. Though its intact spiral shape means it has not experienced a major merger, Hubble does show evidence that its lower arm has been disrupted, possibly by the tidal forces of interaction with another galaxy. This could mean that jets can be triggered by a far less involved, dramatic interaction of galaxies than a full merger. The large galaxy to the lower right of the quasar appears to be a ring galaxy, another sign of interaction. Some ring galaxies form after a small galaxy passes through the center of a larger galaxy, reconfiguring its gas and dust. The brightest parts of this image — foreground stars and the bright center of the quasar — show the characteristic “starry” spikes produced by Hubble (and other telescopes’) interior structure. They are not actual aspects of the cosmic objects. NASA, ESA, Kristina Nyland (U.S. Naval Research Laboratory); Image Processing: Joseph DePasquale (STScI) “We typically see quasars as older galaxies that have grown very massive, along with their central black holes, after going through messy mergers and have come out with an elliptical shape,” said astronomer Kristina Nyland of the Naval Research Laboratory, Achenbach’s adviser on the research.
      “It’s extremely rare and exciting to find a quasar-hosting galaxy with spiral arms and a black hole that is more than 400 million times the mass of the Sun — which is pretty big — plus young jets that weren’t detectable 20 years ago,” Nyland said.
      The unusual quasar takes its place amid an active debate in the astronomy community over what triggers quasar jets, which can be significant in the evolution of galaxies, as the jets can suppress star formation. Some astronomers suspect that quasar jets are triggered by major galaxy mergers, as the material from two or more galaxies mashes together, and heated gas is funneled toward merged black holes. Spiral galaxy quasars like J0742+2704, however, suggest that there may be other pathways for jet formation.
      While J0742+2704 has maintained its spiral shape, the Hubble image does show intriguing signs of its potential interaction with other galaxies. One of its arms shows distortion, possibly a tidal tail.
      Hubble captured intriguing hints of interaction, if not full merging, between galaxies including quasar J0742+2704. There is evidence of a distorted tidal tail, or a streamer of gas, that has been pulled out by the gravity of a nearby galaxy. The presence of a ring galaxy also suggests interaction: The distinctive shape of ring galaxies are thought to form when one galaxy passes through another, redistributing its contents into a central core circled by stars and gas. Astronomers will be doing further analysis of Hubble’s detailed spectroscopic data, plus follow-up with other telescopes that can see different types of light, to confirm the distances of the galaxies and how they may be affecting one another. NASA, ESA, Kristina Nyland (U.S. Naval Research Laboratory); Image Processing: Joseph DePasquale (STScI) “Clearly there is something interesting going on. While the quasar has not experienced a major disruptive merger, it may be interacting with another galaxy, which is gravitationally tugging at its spiral arm,” said Nyland.
      Another galaxy that appears nearby in the Hubble image (though its location still needs to be spectroscopically confirmed) has a ring structure. This rare shape can occur after a galaxy interaction in which a smaller galaxy punches through the center of a spiral galaxy. “The ring galaxy near the quasar host galaxy could be an intriguing clue as to what is happening in this system. We may be witnessing the aftermath of the interaction that triggered this young quasar jet,” said Nyland.
      Both Achenbach and Nyland emphasize that this intriguing discovery is really a new starting point, and there will be additional multi-wavelength analysis of J0742+2704 with data from NASA’s Chandra X-ray Observatory and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. It’s also a case for keeping our eyes on the skies, said Achenbach.
      “If we looked at this galaxy 20 years, or maybe even a decade ago, we would have seen a fairly average quasar and never known it would eventually be home to newborn jets,” said Achenbach. “It goes to show that if you keep searching, you can find something remarkable that you never expected, and it can send you in a whole new direction of discovery.”
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More

      Hubble Science Behind the Discoveries: Quasars


      NASA’s Hubble Takes the Closest-Ever Look at a Quasar


      Hubble Unexpectedly Finds Double Quasar in Distant Universe


      NASA’s Hubble Helps Astronomers Uncover the Brightest Quasar in the Early Universe


      NASA’s Hubble Sees the ‘Teenage Years’ of Quasars

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Leah Ramsay, Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Share








      Details
      Last Updated Jan 13, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Active Galaxies Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Quasars Keep Exploring Discover More Topics From NASA
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble’s Night Sky Challenge



      Universe Uncovered


      View the full article
    • By NASA
      4 min read
      Astronaut Set to Patch NASA’s X-ray Telescope Aboard Space Station
      NASA astronaut Nick Hague will install patches to the agency’s NICER (Neutron star Interior Composition Explorer) X-ray telescope on the International Space Station as part of a spacewalk scheduled for Jan. 16. Hague, along with astronaut Suni Williams, will also complete other tasks during the outing.
      NICER will be the first NASA observatory repaired on-orbit since the last servicing mission for the Hubble Space Telescope in 2009.
      Hague and other astronauts, including Don Pettit, who is also currently on the space station, rehearsed the NICER patch procedures in the NBL (Neutral Buoyancy Laboratory), a 6.2-million-gallon indoor pool at NASA’s Johnson Space Center in Houston, in 2024. 
      NASA astronaut Nick Hague holds a patch for NICER (Neutron star Interior Composition Explorer) at the end of a T-handle tool during a training exercise on May 16, 2024, in the NBL (Neutral Buoyancy Laboratory) at NASA’s Johnson Space Center in Houston. NASA/NBL Dive Team Astronaut Nick Hague removes a patch from the caddy using a T-handle tool during a training exercise in the NBL at NASA Johnson on May 16, 2024. The booklet on his wrist has a schematic of the NICER telescope and where the patches will go.NASA/NBL Dive Team “We use the NBL to mimic, as much as possible, the conditions astronauts will experience while preforming a task during a spacewalk,” said Lucas Widner, a flight controller at KBR and NASA Johnson who ran the NICER NBL sessions. “Most projects outside the station focus on maintenance and upgrades to components like solar panels. It’s been exciting for all of us to be part of getting a science mission back to normal operations.”
      From its perch near the space station’s starboard solar array, NICER studies the X-ray sky, including erupting galaxies, black holes, superdense stellar remnants called neutron stars, and even comets in our solar system. 
      But in May 2023, NICER developed a “light leak.” Sunlight began entering the telescope through several small, damaged areas in the telescope’s thin thermal shields. During the station’s daytime, the light reaches the X-ray detectors, saturating sensors and interfering with NICER’s measurements of cosmic objects. The mission team altered their daytime observing strategy to mitigate the effect. 
      UAE (United Arab Emirates) astronaut Sultan Alneyadi captured this view of NICER from a window in the space station’s Poisk Mini-Research Module 2 in July 2023. Photos like this one helped the NICER team map the damage to the telescope’s thermal shields.NASA/Sultan Alneyadi Some of NICER’s damaged thermal shields (circled) are visible in this photograph.NASA/Sultan Alneyadi The team also developed a plan to cover the largest areas of damage using wedge-shaped patches. Hague will slide the patches into the telescope’s sunshades and lock them into place. 
      “We designed the patches so they could be installed either robotically or by an astronaut,” said Steve Kenyon, NICER’s mechanical engineering lead at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “They’re installed using a tool called a T-handle that the astronauts are already familiar with.”
      The NBL contains life-size mockups of sections of the space station. Under the supervision of a swarm of scuba divers, a pair of astronauts rehearse exiting and returning through an airlock, traversing the outside of the station, and completing tasks. 
      For the NICER repair, the NBL team created a full-scale model of NICER and its surroundings near the starboard solar array. Hague, Pettit, and other astronauts practiced taking the patches out of their caddy, inserting them into the sunshades, locking them into place, and verifying they were secure. 
      The task took just under an hour each time, which included the time astronauts needed to travel to NICER, set up their tools, survey the telescope for previously undetected damage, complete the repair, and clean up their tools. 
      Practice runs also provided opportunities for the astronauts to troubleshoot how to position themselves so they could reach NICER without touching it too often and for flight controllers to identify safety concerns around the repair. 
      Astronaut Don Pettit simulates taking pictures of the NICER telescope mockup during a training exercise in the NBL at NASA Johnson on May 16, 2024.NASA/NBL Dive Team Astronaut Don Pettit removes a patch from the caddy during a training exercise in the NBL at NASA Johnson on May 16, 2024.NASA/NBL Dive Team Being fully submerged in a pool is not the same as being in space, of course, so some issues that arose were “pool-isms.” For example, astronauts sometimes drifted upward while preparing to install the patches in a way unlikely to happen in space. 
      Members of the NICER team, including Kenyon and the mission’s principal investigator, Keith Gendreau at NASA Goddard, supported the NBL practice runs. They helped answer questions about the physical aspects of the telescope, as well as science questions from the astronauts and flight controllers. NICER is the leading source of science results on the space station. 
      “It was awesome to watch the training sessions and be able to debrief with the astronauts afterward,” Gendreau said. “There isn’t usually a lot of crossover between astrophysics science missions and human spaceflight. NICER will be the first X-ray telescope serviced by astronauts. It’s been an exciting experience, and we’re all looking forward to the spacewalk where it will all come together.”
      The NICER telescope is an Astrophysics Mission of Opportunity within NASA’s Explorers Program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined, and efficient management approaches within the heliophysics and astrophysics science areas. NASA’s Space Technology Mission Directorate supported the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.
      Download high-resolution images and videos of NICER at NASA’s Scientific Visualization Studio. By Jeanette Kazmierczak
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Media Contact:
      Claire Andreoli
      301-286-1940
      claire.andreoli@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Facebook logo @NASAUniverse @NASAUniverse Instagram logo @NASAUniverse Share
      Details
      Last Updated Jan 08, 2025 Related Terms
      Astrophysics Black Holes Goddard Space Flight Center International Space Station (ISS) ISS Research Johnson Space Center Neutron Stars NICER (Neutron star Interior Composition Explorer) Pulsars The Universe View the full article
  • Check out these Videos

×
×
  • Create New...