Jump to content

NASA: Rueda de prensa en Houston con el astronauta que batió un récord


Recommended Posts

  • Publishers
Posted
Expedition 69 NASA astronaut Frank Rubio is seen outside the Soyuz MS-23 spacecraft after he landed with Roscosmos cosmonauts Sergey Prokopyev and Dmitri Petelin in a remote area near the town of Zhezkazgan, Kazakhstan on Wednesday, Sept. 27, 2023.
El astronauta Frank Rubio, de la Expedición 69 de la NASA, es visto fuera de la nave espacial Soyuz MS-23 tras aterrizar junto a los cosmonautas de Roscosmos Sergey Prokopyev y Dmitri Petelin en una zona remota cerca de la ciudad de Zhezkazgan, Kazajstán, el miércoles 27 de septiembre de 2023. El trío regresó a la Tierra tras pasar 371 días en el espacio como miembros de las Expediciones 68-69 a bordo de la Estación Espacial Internacional. Para Rubio, su misión es el vuelo espacial más largo realizado por un astronauta estadounidense en la historia.
NASA/Bill Ingalls

El astronauta de la NASA Frank Rubio, de regreso a la Tierra tras batir el récord del vuelo espacial individual más largo de la historia realizado por un estadounidense, participará en una rueda de prensa el viernes 13 de octubre a las 2 p.m. EDT (hora de verano del Este), en el Centro Espacial Johnson de la agencia en Houston.

La conferencia de prensa (en inglés) se retransmitirá en directo por NASA Television, la aplicación de la NASA y el sitio web de la agencia. Síguelo en línea en:

https://www.nasa.gov/nasatv

La misión extendida de Rubio a bordo de la Estación Espacial Internacional sumó un total de 371 días en el espacio. Las misiones prolongadas brindan a la comunidad científica la oportunidad de observar mejor los efectos de los vuelos espaciales de larga duración en los astronautas, ahora que la agencia vuelve a la Luna mediante las misiones Artemis y se prepara para la exploración de Marte con seres humanos.

Los medios de comunicación interesados en participar en persona en esta rueda de prensa deben ponerse en contacto con la sala de prensa de la NASA en Johnson antes de las 5 p.m. EDT del jueves 12 de octubre, llamando al 281-483-5111 o enviando un correo electrónico a: jsccommu@mail.nasa.gov. Los medios de comunicación que deseen participar virtualmente deberán ponerse en contacto con la sala de prensa a más tardar dos horas antes del comienzo del acto. La política de acreditación para medios de comunicación de la NASA está disponible en línea. También se pueden enviar preguntas a través de las redes sociales utilizando #AskNASA.

Rubio despegó el 21 de septiembre de 2022 junto con los cosmonautas de Roscosmos Sergey Prokopyev y Dmitri Petelin. El trío regresó a la Tierra el 27 de septiembre. La misión de 371 días de Rubio es el vuelo espacial más largo realizado por un astronauta estadounidense, récord que hasta ahora ostentaba el astronauta de la NASA Mark Vande Hei, con 355 días.

Rubio completó aproximadamente 5.936 órbitas de la Tierra y un viaje de más de 157 millones de millas durante este vuelo espacial (el primero para él), aproximadamente el equivalente a 328 viajes de ida y vuelta a la Luna. Fue testigo de la llegada de 15 naves espaciales y de la partida de tras 14 astronaves en misiones de carga tripuladas y no tripuladas.

Durante su misión récord, Rubio dedicó muchas horas a actividades científicas a bordo de la estación espacial, realizando tareas variadas que iban desde investigaciones sobre la salud humana a investigaciones con plantas. Un estudio evaluó el manejo de múltiples robots autónomos desde el espacio y los retos que podría plantear el hacer funcionar remotamente a robots en órbita desde tierra. También cultivó tomates espaciales para poner a prueba técnicas de crecimiento hidropónico (a base de agua) y aeropónico (a base de aire) en lugar de tierra u otros medios de crecimiento tradicionales, con el fin de ayudar a identificar formas de producir cultivos a mayor escala para futuras misiones espaciales.

Aprende más sobre las actividades de la estación espacial siguiendo las cuentas en inglés de X @space_station y @ISS_Research, o la cuenta en español @NASA_ES, así como las cuentas en inglés de Facebook  e Instagram de la estación, o las cuentas en español de Facebook e Instagram de la NASA.

Para más información (en inglés) sobre la Estación Espacial Internacional, su investigación y su tripulación, visita:

https://www.nasa.gov/station

-fin-

Maria-jose Vinas
Headquarters, Washington
202-358-1600
maria-jose.vinasgarcia@nasa.gov

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Soyuz MS-26 spacecraft is seen as it lands in a remote area near the town of Zhezkazgan, Kazakhstan with Expedition 72 NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard, April 19, 2025 (April 20, 2025, Kazakhstan time). The trio are returning to Earth after logging 220 days in space as members of Expeditions 71 and 72 aboard the International Space Station.NASA/Bill Ingalls NASA astronaut Don Pettit returned to Earth Saturday, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, concluding a seven-month science mission aboard the International Space Station.
      The trio departed the space station at 5:57 p.m. EDT aboard the Soyuz MS-26 spacecraft before making a safe, parachute-assisted landing at 9:20 p.m. (6:20 a.m. on Sunday, April 20, Kazakhstan time), southeast of Dzhezkazgan, Kazakhstan. Pettit also celebrates his 70th birthday on Sunday, April 20.
      Spanning 220 days in space, Pettit and his crewmates orbited the Earth 3,520 times, completing a journey of 93.3 million miles. Pettit, Ovchinin, and Vagner launched and docked to the orbiting laboratory on Sept. 11, 2024.
      During his time aboard the space station, Pettit conducted research to enhance in-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also used his surroundings aboard station to conduct unique experiments in his spare time and captivate the public with his photography.
      This was Pettit’s fourth spaceflight, where he served as a flight engineer for Expeditions 71 and 72. He has logged 590 days in orbit throughout his career. Ovchinin completed his fourth flight, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two spaceflights.
      NASA is following its routine postlanding medical checks, the crew will return to the recovery staging area in Karaganda, Kazakhstan. Pettit will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. According to NASA officials at the landing site, Pettit is doing well and in the range of what is expected for him following return to Earth.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a strong low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future astronaut missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      International Space Station (ISS) Expedition 72 Humans in Space ISS Research View the full article
    • By NASA
      NASA astronauts work to retrieve batteries and adapter plates from an external pallet during a spacewalk to upgrade the International Space Station’s power storage capacity.Credit: NASA Two NASA astronauts will venture outside the International Space Station, conducting U.S. spacewalk 93 on Thursday, May 1, to complete station upgrades.
      NASA will preview the upcoming spacewalk during a news conference at 2 p.m. EDT on Thursday, April 24, on the agency’s website from NASA’s Johnson Space Center in Houston. Learn how to watch NASA content through a variety of platforms, including social media.
      Participants in the news conference include:
      Bill Spetch, operations integration manager, International Space Station Program Diana Trujillo, spacewalk flight director, NASA Johnson Media interested in participating in person or by phone must contact the Johnson newsroom no later than 10 a.m. on Wednesday, April 23, at: 281-483-5111 or jsccommu@mail.nasa.gov. To ask questions, media must dial in no later than 15 minutes prior to the start of the news conference. Questions also may be submitted on social media using #AskNASA.
      The spacewalk is scheduled to last about six and a half hours. NASA will provide additional information, including live NASA+ coverage details, when available.
      NASA astronauts Anne McClain and Nichole Ayers will relocate a space station communications antennae and install a mounting bracket ahead of the installation of an additional set of International Space Station Rollout Solar Arrays, also called IROSA. The arrays will boost power generation capability by up to 30%, increasing the station’s total available power from 160 kilowatts to up to 215 kilowatts. The arrays will be installed on a future spacewalk following their arrival on a SpaceX Dragon commercial resupply services mission later this year.
      McClain will serve as spacewalk crew member 1 and will wear a suit with red stripes. Ayers will serve as spacewalk crew member 2 and will wear an unmarked suit. This will be the third spacewalk for McClain and the first for Ayers. U.S. spacewalk 93 will be the 275th spacewalk in support of space station assembly, maintenance, and upgrades.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Josh Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.oshea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 18, 2025 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Humans in Space ISS Research Johnson Space Center View the full article
    • By NASA
      NASA astronaut Nichole Ayers works at the controls of the robotics workstation in the International Space Station’s Destiny Laboratory. Credit: NASA Students from Woodland Park, Colorado, will connect with NASA astronaut Nichole Ayers as she answers prerecorded science, technology, engineering, and mathematics-related questions from aboard the International Space Station.
      Watch the 20-minute space-to-Earth call at 11:55 a.m. EDT on Monday, April 21, on the NASA STEM YouTube Channel.
      The event, hosted by Woodland Park High School, also is open to students from Woodland Park Middle School. The Colorado high school wants to show students that even though they reside in a small town, they can achieve big dreams. Ayers, who considers Colorado Springs and Divide, Colorado, home, is a graduate of Woodland Park.
      Media interested in covering the event must RSVP by 5 p.m., Friday, April 18 to Lindsey Prahl at lprah@wpsdk12.org or 719-922-1019.
      For more than 24 years, astronauts have continuously lived and worked aboard the space station, testing technologies, performing science, and developing skills needed to explore farther from Earth. Astronauts aboard the orbiting laboratory communicate with NASA’s Mission Control Center in Houston 24 hours a day through SCaN’s (Space Communications and Navigation) Near Space Network.
      Important research and technology investigations taking place aboard the space station benefit people on Earth and lays the groundwork for other agency missions. As part of NASA’s Artemis campaign, the agency will send astronauts to the Moon to prepare for future human exploration of Mars; inspiring Artemis Generation explorers and ensuring the United States continues to lead in space exploration and discovery.
      See videos and lesson plans highlighting space station research at:
      https://www.nasa.gov/stemonstation
      -end-
      Tiernan Doyle
      Headquarters, Washington
      202-358-1600
      tiernan.doyle@nasa.gov  
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 17, 2025 LocationNASA Headquarters Related Terms
      Astronauts Humans in Space International Space Station (ISS) ISS Research Johnson Space Center Nichole Ayers STEM Engagement at NASA View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA’s Curiosity Mars rover sees its tracks receding into the distance at a site nicknamed “Ubajara” on April 30, 2023. This site is where Curiosity made the discovery of siderite, a mineral that may help explain the fate of the planet’s thicker ancient atmosphere.Credit: NASA/JPL-Caltech/MSSS New findings from NASA’s Curiosity Mars rover could provide an answer to the mystery of what happened to the planet’s ancient atmosphere and how Mars has evolved over time.
      Researchers have long believed that Mars once had a thick, carbon dioxide-rich atmosphere and liquid water on the planet’s surface. That carbon dioxide and water should have reacted with Martian rocks to create carbonate minerals. Until now, though, rover missions and near-infrared spectroscopy analysis from Mars-orbiting satellites haven’t found the amounts of carbonate on the planet’s surface predicted by this theory.
      Reported in an April paper in Science, data from three of Curiosity’s drill sites revealed the presence of siderite, an iron carbonate mineral, within the sulfate-rich rocky layers of Mount Sharp in Mars’ Gale Crater.
      “The discovery of abundant siderite in Gale Crater represents both a surprising and important breakthrough in our understanding of the geologic and atmospheric evolution of Mars,” said Benjamin Tutolo, associate professor at the University of Calgary, Canada, and lead author of the paper.
      To study the Red Planet’s chemical and mineral makeup, Curiosity drills three to four centimeters down into the subsurface, then drops the powdered rock samples into its CheMin instrument. The instrument, led by NASA’s Ames Research Center in California’s Silicon Valley, uses X-ray diffraction to analyze rocks and soil. CheMin’s data was processed and analyzed by scientists at the Astromaterials Research and Exploration Science (ARES) Division at NASA’s Johnson Space Center in Houston.
      “Drilling through the layered Martian surface is like going through a history book,” said Thomas Bristow, research scientist at NASA Ames and coauthor of the paper. “Just a few centimeters down gives us a good idea of the minerals that formed at or close to the surface around 3.5 billion years ago.”
      The discovery of this carbonate mineral in rocks beneath the surface suggests that carbonate may be masked by other minerals in near-infrared satellite analysis. If other sulfate-rich layers across Mars also contain carbonates, the amount of stored carbon dioxide would be a fraction of that needed in the ancient atmosphere to create conditions warm enough to support liquid water. The rest could be hidden in other deposits or have been lost to space over time.
      In the future, missions or analyses of other sulfate-rich areas on Mars could confirm these findings and help us better understand the planet’s early history and how it transformed as its atmosphere was lost.
      Curiosity, part of NASA’s Mars Exploration Program (MEP) portfolio, was built by NASA’s Jet Propulsion Laboratory, which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington.
      For more information on Curiosity, visit: 
      https://science.nasa.gov/mission/msl-curiosity
      News Media Contacts 
      Karen Fox / Molly Wasser 
      NASA Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov 

      Andrew Good 
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-393-2433
      andrew.c.good@jpl.nasa.gov
      Share
      Details
      Last Updated Apr 17, 2025 Related Terms
      Ames Research Center Astromaterials Curiosity (Rover) General Jet Propulsion Laboratory Mars Science Laboratory (MSL) Explore More
      7 min read NASA’s SpaceX 32nd Commercial Resupply Mission Overview
      NASA and SpaceX are targeting no earlier than 4:15 a.m. EDT on Monday, April 21,…
      Article 21 hours ago 6 min read NASA’s Chandra Releases New 3D Models of Cosmic Objects
      Article 24 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
      Article 1 day ago Keep Exploring Discover Related Topics
      Curiosity Rover (MSL)
      Ames Research Center
      Mars
      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
      Curiosity Science Instruments
      Curiosity’s scientific instruments are the tools that bring us stunning images of Mars and ground-breaking discoveries.
      View the full article
    • By NASA
      6 Min Read NASA’s Chandra Releases New 3D Models of Cosmic Objects
      New three-dimensional (3D) models of objects in space have been released by NASA’s Chandra X-ray Observatory. These 3D models allow people to explore — and print — examples of stars in the early and end stages of their lives. They also provide scientists with new avenues to investigate scientific questions and find insights about the objects they represent.
      These 3D models are based on state-of-the-art theoretical models, computational algorithms, and observations from space-based telescopes like Chandra that give us accurate pictures of these cosmic objects and how they evolve over time.
      However, looking at images and animations is not the only way to experience this data. The four new 3D printable models of Cassiopeia A (Cas A), G292.0+1.8 (G292), Cygnus Loop supernova remnants, and the star known as BP Tau let us experience the celestial objects in the form of physical structures that will allow anyone to hold replicas of these stars and their surroundings and examine them from all angles.
      Cassiopeia A (Cas A)
      Using NASA’s James Webb Space Telescope, astronomers uncovered a mysterious feature within the remnant, nicknamed the “Green Monster,” alongside a puzzling network of ejecta filaments forming a web of oxygen-rich material. When combined with X-rays from Chandra, the data helped astronomers shed light on the origin of the Green Monster and revealed new insights into the explosion that created Cas A about 340 years ago, from Earth’s perspective.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of Cassiopeia A "Green Monster" INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of Cassiopeia AINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando BP Tau
      X-ray: NASA/CXC/SAO; Optical: PanSTARRS; Image Processing: NASA/CXC/SAO/N. Wolk This 3D model shows a star less than 10 million years old that is surrounded by a disk of material. This class of objects is known as T Tauri stars, named after a young star in the Taurus star-forming region. The model describes the effects of multiple flares, or outbursts that are detected in X-rays by Chandra from one T Tauri star known as BP Tau. These flares interact with the disk of material and lead to the formation of an extended outer atmosphere composed by hot loops, connecting the disk to the developing star.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of BP TauINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando Cygnus Loop
      X-ray: NASA/SAO/CXC; Optical: John Stone (Astrobin); Image Processing: NASA/SAO/CXC/L. Frattre, N. Wolk The Cygnus Loop (also known as the Veil Nebula) is a supernova remnant, the remains of the explosive death of a massive star. This 3D model is the result of a simulation describing the interaction of a blast wave from the explosion with an isolated cloud of the interstellar medium (that is, dust and gas in between the stars). Chandra sees the blast wave and other material that has been heated to millions of degrees. The Cygnus Loop is a highly extended, but faint, structure on the sky: At three degrees across, it has the diameter of six full moons.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of Cygnus LoopINAF-Osservatorio Astronomico di Palermo/Salvatore Orlando G292.0+1.8
      X-ray: NASA/CXC/SAO; Optical:NSF/NASA/DSS; Image Processing This is a rare type of supernova remnant observed to contain large amounts of oxygen. The X-ray image of G292.0+1.8 from Chandra shows a rapidly expanding, intricately structured field left behind by the shattered star. By creating a 3D model of the system, astronomers have been able to examine the asymmetrical shape of the remnant that can be explained by a “reverse” shock wave moving back toward the original explosion.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      3D Model of G292.0+1.8INAF-Osservatorio Astronomico di Palermo/Salvatore Orlando The 3D models here are the subject of several scholarly papers by Salvatore Orlando of INAF in Palermo, Italy, and colleagues published in The Astrophysical Journal, Astronomy & Astrophysics, and Monthly Notices of the Royal Astronomical Society. Much of this work is also publicly available work on SketchFab.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts.
      Read more from NASA’s Chandra X-ray Observatory.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/chandra
      https://chandra.si.edu
      Visual Description
      This release features visualizations of three supernova remnants and one star. Each is rendered as a composite image, and as a digital 3-dimensional model, presented in separate short video clips. The composite images are two dimensional and static, but the digital models rotate, showcasing their three-dimensionality.
      The first featured supernova is Cassiopeia A. In the X-ray, optical, and infrared composite image, the debris from an exploded star resembles a round purple gas cloud, marbled with streaks of golden light. In the rotating, 3D model, the purple gas cloud is depicted as a flat disk, like a record or CD. Bursting out the front and back of the disk is an orange and white shape similar to a ball of coral, or a head of cauliflower lined with stubby tendrils. Most of the ball, and the majority of the tendrils, appear on one side of the disk. On the opposite side, the shape resembles dollops of thick whipped cream.
      Next in the release is a star known as BP Tau. BP Tau is a developing star, less than 10 million years old, and prone to outbursts or flares. These flares interact with a disk of material that surrounds the young star, forming hot loops of extended atmosphere. In the composite image, BP Tau resembles a distant, glowing white dot surrounded by a band of pink light. The rotating, 3D model is far more dynamic and intriguing! Here, the disk of material resembles a large blue puck with round, ringed, concave surfaces. At the heart of the puck is a small, glowing red orb: the developing star. Shooting out of the orb are long, thin, green strands: the flares. Also emerging from the orb are orange and pink petal-shaped blobs: the loops of extended atmosphere. Together, the orb, strands, and petals resemble an exotic flowering orchid.
      The third celestial object in this release is the supernova remnant called Cygnus Loop. In the composite image, the remnant resembles a wispy cloud in oranges, blues, purples, and whites, shaped like a backwards letter C. The 3D model examines this cloud of interstellar material interacting with the superheated, supernova blast wave. In the 3D model, the Cygnus Loop resembles a bowl with a thick base, and a wedge cut from the side like a slice of pie. The sides of the bowl are rendered in swirled blues and greens. However, inside the thick base, revealed by the wedge-shaped cut, are streaks of red and orange. Surrounding the shape are roughly parallel thin red strands, which extend beyond the top and bottom of the digital model.
      The final supernova featured in this release is G292.0+1.8. The composite image depicts the remnant as a bright and intricate ball of red, blue, and white X-ray gas and debris set against a backdrop of gleaming stars. In the 3D model, the remnant is rendered in translucent icy blue and shades of orange. Here, the rotating shape is revealed to be somewhat like a bulbous arrowhead, or perhaps an iceberg on its side.
      News Media Contact
      Megan Watzke
      Chandra X-ray Center
      Cambridge, Mass.
      617-496-7998
      mwatzke@cfa.harvard.edu
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      About the Author
      Lee Mohon

      Share
      Details
      Last Updated Apr 16, 2025 Related Terms
      Chandra X-Ray Observatory Astrophysics General Marshall Astrophysics Marshall Space Flight Center Supernova Remnants The Universe Explore More
      4 min read Hubble Provides New View of Galactic Favorite
      As part of ESA/Hubble’s 35th anniversary celebrations, the European Space Agency (ESA) is sharing a new…
      Article 5 hours ago 3 min read NASA Sees Progress on Blue Origin’s Orbital Reef Design Development
      Article 6 hours ago 1 min read Why Do We Grow Plants in Space?
      Article 1 day ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...