Jump to content

15 U.S.C. CHAPTER 82 – LAND REMOTE SENSING POLICY ACT


Recommended Posts

  • Publishers
Posted

SUBCHAPTER I – LANDSAT

Sec. 5601. Findings

The Congress finds and declares the following:

(1) The continuous collection and utilization of land remote sensing data from space are of major benefit in studying and understanding human impacts on the global environment, in managing the Earth’s natural resources, in carrying out national security functions, and in planning and conducting many other activities of scientific, economic, and social importance.
(2) The Federal Government’s Landsat system established the United States as the world leader in land remote sensing technology.
(3) The national interest of the United States lies in maintaining international leadership in satellite land remote sensing and in broadly promoting the beneficial use of remote sensing data.
(4) The cost of Landsat data has impeded the use of such data for scientific purposes, such as for global environmental change research, as well as for other public sector applications.
(5) Given the importance of the Landsat program to the United States, urgent actions, including expedited procurement procedures, are required to ensure data continuity.
(6) Full commercialization of the Landsat program cannot be achieved within the foreseeable future, and thus should not serve as the near-term goal of national policy on land remote sensing; however, commercialization of land remote sensing should remain a long-term goal of United States policy.
(7) Despite the success and importance of the Landsat system, funding and organizational uncertainties over the past several years have placed its future in doubt and have jeopardized United States leadership in land remote sensing.
(8) Recognizing the importance of the Landsat program in helping to meet national and commercial objectives, the President approved, on February 11, 1992, a National Space Policy Directive which was developed by the National Space Council and commits the United States to ensuring the continuity of Landsat coverage into the 21st century.
(9) Because Landsat data are particularly important for national security purposes and global environmental change research, management responsibilities for the program should be transferred from the Department of Commerce to an integrated program management involving the Department of Defense and the National Aeronautics and Space Administration.
(10) Regardless of management responsibilities for the Landsat program, the Nation’s broad civilian, national security, commercial, and foreign policy interests in remote sensing will best be served by ensuring that Landsat remains an unclassified program that operates according to the principles of open skies and nondiscriminatory access.
(11) Technological advances aimed at reducing the size and weight of satellite systems hold the potential for dramatic reductions in the cost, and substantial improvements in the capabilities, of future land remote sensing systems, but such technological advances have not been demonstrated for land remote sensing and therefore cannot be relied upon as the sole means of achieving data continuity for the Landsat program.
(12) A technology demonstration program involving advanced remote sensing technologies could serve a vital role in determining the design of a follow-on spacecraft to Landsat 7, while also helping to determine whether such a spacecraft should be funded by the United States Government, by the private sector, or by an international consortium.
(13) To maximize the value of the Landsat program to the American public, unenhanced Landsat 4 through 6 data should be made available, at a minimum, to United States Government agencies, to global environmental change researchers, and to other researchers who are financially supported by the United States Government, at the cost of fulfilling user requests, and unenhanced Landsat 7 data should be made available to all users at the cost of fulfilling user requests.
(14) To stimulate development of the commercial market for unenhanced data and value-added services, the United States Government should adopt a data policy for Landsat 7 which allows competition within the private sector for distribution of unenhanced data and value-added services.
(15) Development of the remote sensing market and the provision of commercial value-added services based on remote sensing data should remain exclusively the function of the private sector.
(16) It is in the best interest of the United States to maintain a permanent, comprehensive Government archive of global Landsat and other land remote sensing data for long-term monitoring and study of the changing global environment.


(Pub. L. 102-555, Sec. 2, Oct. 28, 1992, 106 Stat. 4163.)

Land Remote Sensing Policy Act of 1992


Short Title: Section 1 of Pub. L. 102-555 provided that: “This Act [enacting this chapter and repealing chapter 68 (Sec. 4201 et seq.) of this title] may be cited as the `Land Remote Sensing Policy Act of 1992′.”
Sec. 5602. Definitions

In this chapter, the following definitions apply:

(1) The term ”Administrator” means the Administrator of the National Aeronautics and Space Administration.

(2) The term ”cost of fulfilling user requests” means the incremental costs associated with providing product generation, reproduction, and distribution of unenhanced data in response to user requests and shall not include any acquisition, amortization, or depreciation of capital assets originally paid for by the United States Government or other costs not specifically attributable to fulfilling user requests.

(3) The term ”data continuity” means the continued acquisition and availability of unenhanced data which are, from the point of view of the user

(A) sufficiently consistent (in terms of acquisition geometry, coverage characteristics, and spectral characteristics) with previous Landsat data to allow comparisons for global and regional change detection and characterization; and
(B) compatible with such data and with methods used to receive and process such data.

(4) The term ”data preprocessing” may include –

(A) rectification of system and sensor distortions in land remote sensing data as it is received directly from the satellite in preparation for delivery to a user;
(B) registration of such data with respect to features of the Earth; and
(C) calibration of spectral response with respect to such data, but does not include conclusions, manipulations, or calculations derived from such data, or a combination of such data with other data.

(5) The term ”land remote sensing” means the collection of data which can be processed into imagery of surface features of the Earth from an unclassified satellite or satellites, other than an operational United States Government weather satellite.

(6) The term ”Landsat Program Management” means the integrated program management structure –

(A) established by, and responsible to, the Administrator and the Secretary of Defense pursuant to section 5611(a) of this title; and
(B) consisting of appropriate officers and employees of the National Aeronautics and Space Administration, the Department of Defense, and any other United States Government agencies the President designates as responsible for the Landsat program.

(7) The term ”Landsat system” means Landsats 1, 2, 3, 4, 5, and 6, and any follow-on land remote sensing system operated and owned by the United States Government, along with any related ground equipment, systems, and facilities owned by the United States Government.

(8) The term ”Landsat 6 contractor” means the private sector entity which was awarded the contract for spacecraft construction, operations, and data marketing rights for the Landsat 6 spacecraft.

(9) The term ”Landsat 7” means the follow-on satellite to Landsat 6.

(10) The term ”National Satellite Land Remote Sensing Data Archive” means the archive established by the Secretary of the Interior pursuant to the archival responsibilities defined in section 5652 of this title.

(11) The term ”noncommercial purposes” refers to those activities undertaken by individuals or entities on the condition, upon receipt of unenhanced data, that –

(A) such data shall not be used in connection with any bid for a commercial contract, development of a commercial product, or any other non-United States Government activity that is expected, or has the potential, to be profitmaking;
(B) the results of such activities are disclosed in a timely and complete fashion in the open technical literature or other method of public release, except when such disclosure by the United States Government or its contractors would adversely affect the national security or foreign policy of the United States or violate a provision of law or regulation; and
(C) such data shall not be distributed in competition with unenhanced data provided by the Landsat 6 contractor.

(12) The term ”Secretary” means the Secretary of Commerce.

(13) The term ”unenhanced data” means land remote sensing signals or imagery products that are unprocessed or subject only to data preprocessing.

(14) The term ”United States Government and its affiliated users” means –

(A) United States Government agencies;
(B) researchers involved with the United States Global Change Research Program and its international counterpart programs; and
(C) other researchers and international entities that have signed with the United States Government a cooperative agreement involving the use of Landsat data for noncommercial purposes.

(Pub. L. 102-555, Sec. 3, Oct. 28, 1992, 106 Stat. 4164.)

Sec. 5611. Landsat Program Management

(a) Establishment
The Administrator and the Secretary of Defense shall be responsible for management of the Landsat program. Such responsibility shall be carried out by establishing an integrated program management structure for the Landsat system.

(b) Management plan
The Administrator, the Secretary of Defense, and any other United States Government official the President designates as responsible for part of the Landsat program, shall establish, through a management plan, the roles, responsibilities, and funding expectations for the Landsat Program (FOOTNOTE 1) of the appropriate United States Government agencies. The management plan shall – (FOOTNOTE 1) So in original. Probably should not be capitalized.

(1) specify that the fundamental goal of the Landsat Program Management is the continuity of unenhanced Landsat data through the acquisition and operation of a Landsat 7 satellite as quickly as practicable which is, at a minimum, functionally equivalent to the Landsat 6 satellite, with the addition of a tracking and data relay satellite communications capability;

(2) include a baseline funding profile that –
(A) is mutually acceptable to the National Aeronautics and Space Administration and the Department of Defense for the period covering the development and operation of Landsat 7; and
(B) provides for total funding responsibility of the National Aeronautics and Space Administration and the Department of Defense, respectively, to be approximately equal to the funding responsibility of the other as spread across the development and operational life of Landsat 7; (3) specify that any improvements over the Landsat 6 functional equivalent capability for Landsat 7 will be funded by a specific sponsoring agency or agencies, in a manner agreed to by the Landsat Program Management, if the required funding exceeds the baseline funding profile required by paragraph (2), and that additional improvements will be sought only if the improvements will not jeopardize data continuity; and

(4) provide for a technology demonstration program whose objective shall be the demonstration of advanced land remote sensing technologies that may potentially yield a system which is less expensive to build and operate, and more responsive to data users, than is the current Landsat system.


(c) Responsibilities

The Landsat Program Management shall be responsible for –

(1) Landsat 7 procurement, launch, and operations;
(2) ensuring that the operation of the Landsat system is responsive to the broad interests of the civilian, national security, commercial, and foreign users of the Landsat system;
(3) ensuring that all unenhanced Landsat data remain unclassified and that, except as provided in section 5656(a) and (b) of this title, no restrictions are placed on the availability of unenhanced data;
(4) ensuring that land remote sensing data of high priority locations will be acquired by the Landsat 7 system as required to meet the needs of the United States Global Change Research Program, as established in the Global Change Research Act of 1990 (15 U.S.C. 2921 et seq.), and to meet the needs of national security users;
(5) Landsat data responsibilities pursuant to this chapter;
(6) oversight of Landsat contracts entered into under sections 5612 and 5613 of this title;
(7) coordination of a technology demonstration program, pursuant to section 5633 of this title; and
(8) ensuring that copies of data acquired by the Landsat system are provided to the National Satellite Land Remote Sensing Data Archive.

(d) Authority to contract

The Landsat Program Management may, subject to appropriations and only under the existing contract authority of the United States Government agencies that compose the Landsat Program Management, enter into contracts with the private sector for services such as, but not limited to, satellite operations and data preprocessing.

(e) Landsat advisory process

(1) Establishment
The Landsat Program Management shall seek impartial advice and comments regarding the status, effectiveness, and operation of the Landsat system, using existing advisory committees and other appropriate mechanisms. Such advice shall be sought from individuals who represent –
(A) a broad range of perspectives on basic and applied science and operational needs with respect to land remote sensing data;
(B) the full spectrum of users of Landsat data, including representatives from United States Government agencies, State and local government agencies, academic institutions, nonprofit organizations, value-added companies, the agricultural, mineral extraction, and other user industries, and the public, and
(C) a broad diversity of age groups, sexes, and races.
(2) Reports
Within 1 year after October 28, 1992, and biennially thereafter, the Landsat Program Management shall prepare and submit a report to the Congress which –
(A) reports the public comments received pursuant to paragraph (1); and
(B) includes –
(i) a response to the public comments received pursuant to paragraph (1);
(ii) information on the volume of use, by category, of data from the Landsat system; and
(iii) any recommendations for policy or programmatic changes to improve the utility and operation of the Landsat system.

(Pub. L. 102-555, title I, Sec. 101, Oct. 28, 1992, 106 Stat. 4166.)

References in Text
The Global Change Research Act of 1990, referred to in subsec. (c)(4), is Pub. L. 101-606, Nov. 16, 1990, 104 Stat. 3096, which is classified generally to chapter 56A (Sec. 2921 et seq.) of this title. For complete classification of this Act to the Code, see Short Title note set out under section 2921 of this title and Tables.
Landsat Remote-Sensing Satellite Program. Pub. L. 103-139, title VIII, Sec. 8060, Nov. 11, 1993, 107 Stat. 1453, authorized Department of Defense to develop and procure the Landsat 7 vehicle, prior to repeal by Pub. L. 103-335, title VIII, Sec. 8051, Sept. 30, 1994, 108 Stat. 2629. Similar provisions were contained in the following prior acts: Pub. L. 102-484, div. A, title II, Sec. 243, Oct. 23, 1992, 106 Stat. 2360, as amended by Pub. L. 103-35, title II, Sec. 202(a)(3), May 31, 1993, 107 Stat. 101. Pub. L. 102-396, title IX, Sec. 9082A, Oct. 6, 1992, 106 Stat. 1920.

Sec. 5612. Procurement of Landsat 7
(a) Contract negotiations
The Landsat Program Management shall, subject to appropriations and only under the existing contract authority of the United States Government agencies that compose the Landsat Program Management, expeditiously contract with a United States private sector entity for the development and delivery of Landsat 7.
(b) Development and delivery consideration
In negotiating a contract under this section for the development and delivery of Landsat 7, the Landsat Program Management shall –
(1) seek, as a fundamental objective, to have Landsat 7 operational by the expected end of the design life of Landsat 6;
(2) seek to ensure data continuity by the development and delivery of a satellite which is, at a minimum, functionally equivalent to the Landsat 6 satellite; and
(3) seek to incorporate in Landsat 7 any performance improvements required to meet United States Government needs that would not jeopardize data continuity.

(c) Notification of cost and schedule changes
The Landsat Program Management shall promptly notify the Congress of any significant deviations from the expected cost, delivery date, and launch date of Landsat 7, that are specified by the Landsat Program Management upon award of the contract under this section.

(d) United States private sector entities
The Landsat Program Management shall, for purposes of this chapter, define the term ”United States private sector entities”, taking into account the location of operations, assets, personnel, and other such factors. (Pub. L. 102-555, title I, Sec. 102, Oct. 28, 1992, 106 Stat. 4168.)

Sec. 5613. Data policy for Landsat 4 through 6

(a) Contract negotiations
Within 30 days after October 28, 1992, the Landsat Program Management shall enter into negotiations with the Landsat 6 contractor to formalize an arrangement with respect to pricing, distribution, acquisition, archiving, and availability of unenhanced data for which the Landsat 6 contractor has responsibility under its contract. Such arrangement shall provide for a phased transition to a data policy consistent with the Landsat 7 data policy (developed pursuant to section 5615 of this title) by the date of initial operation of Landsat 7. Conditions of the phased arrangement should require that the Landsat 6 contractor adopt provisions so that by the final phase of the transition period –

(1) such unenhanced data shall be provided, at a minimum, to the United States Government and its affiliated users at the cost of fulfilling user requests, on the condition that such unenhanced data are used solely for noncommercial purposes;
(2) instructional data sets, selected from the Landsat data archives, will be made available to educational institutions exclusively for noncommercial, educational purposes at the cost of fulfilling user requests;
(3) Landsat data users are able to acquire unenhanced data contained in the collective archives of foreign ground stations as easily and affordably as practicable;
(4) adequate data necessary to meet the needs of global environmental change researchers and national security users are acquired;
(5) the United States Government and its affiliated users shall not be prohibited from reproduction or dissemination of unenhanced data to other agencies of the United States Government and other affiliated users, on the condition that such unenhanced data are used solely for noncommercial purposes;
(6) nonprofit, public interest entities receive vouchers, data grants, or other such means of providing them with unenhanced data at the cost of fulfilling user requests, on the condition that such unenhanced data are used solely for noncommercial purposes;
(7) a viable role for the private sector in the promotion and development of the commercial market for value added and other services using unenhanced data from the Landsat system is preserved; and
(8) unenhanced data from the Landsat system are provided to the National Satellite Land Remote Sensing Data Archive at no more than the cost of fulfilling user requests.

(b) Failure to reach agreement
If negotiations under subsection (a) of this section have not, by September 30, 1993, resulted in an agreement that the Landsat Program Management determines generally achieves the goals stated in subsection (b)(1) through (8) of this section, the Administrator and the Secretary of Defense shall, within 30 days after the date of such determination, jointly certify and report such determination to the Congress. The report shall include a review of options and projected costs for achieving such goals, and shall include recommendations for achieving such goals. The options reviewed shall include –

(1) retaining the existing or modified contract with the Landsat 6 contractor;
(2) the termination of existing contracts for the exclusive right to market unenhanced Landsat data; and
(3) the establishment of an Alternative private sector mechanism for the marketing and commercial distribution of such data.

(Pub. L. 102-555, title I, Sec. 103, Oct. 28, 1992, 106 Stat. 4168.)

Sec. 5614. Transfer of Landsat 6 program responsibilities

The responsibilities of the Secretary with respect to Landsat 6 shall be transferred to the Landsat Program Management, as agreed to between the Secretary and the Landsat Program Management, pursuant to section 5611 of this title.
(Pub. L. 102-555, title I, Sec. 104, Oct. 28, 1992, 106 Stat. 4170.)

Sec. 5615. Data policy for Landsat 7

(a) Landsat 7 data policy
The Landsat Program Management, in consultation with other appropriate United States Government agencies, shall develop a data policy for Landsat 7 which should –

(1) ensure that unenhanced data are available to all users at the cost of fulfilling user requests;
(2) ensure timely and dependable delivery of unenhanced data to the full spectrum of civilian, national security, commercial, and foreign users and the National Satellite Land Remote Sensing Data Archive;
(3) ensure that the United States retains ownership of all unenhanced data generated by Landsat 7;
(4) support the development of the commercial market for remote sensing data;
(5) ensure that the provision of commercial value-added services based on remote sensing data remains exclusively the function of the private sector; and
(6) to the extent possible, ensure that the data distribution system for Landsat 7 is compatible with the Earth Observing System Data and Information System.

(b) Additional data policy considerations
In addition, the data policy for Landsat 7 may provide for –

(1) United States private sector entities to operate ground receiving stations in the United States for Landsat 7 data;
(2) other means for direct access by private sector entities to unenhanced data from Landsat 7; and
(3) the United States Government to charge a per image fee, license fee, or other such fee to entities operating ground receiving stations or distributing Landsat 7 data.

(c) Landsat 7 Data Policy Plan
Not later than July 15, 1994, the Landsat Program Management shall develop and submit to Congress a report that contains a Landsat 7 Data Policy Plan. This plan shall define the roles and responsibilities of the various public and private sector entities distribution, and archiving of Landsat 7 data and in operations of the Landsat 7 spacecraft.
(d) Reports
Not later than 12 months after submission of the Landsat 7 Data Policy Plan, required by subsection (c) of this section, and annually thereafter until the launch of Landsat 7, the Landsat Program Management, in consultation with representatives of appropriate United States Government agencies, shall prepare and submit a report to the Congress which –

(1) provides justification for the Landsat 7 data policy in terms of the civilian, national security, commercial, and foreign policy needs of the United States; and
(2) provides justification for any elements of the Landsat 7 data policy which are not consistent with the provisions of subsection (a) of this section.

(Pub. L. 102-555, title I, Sec. 105, Oct. 28, 1992, 106 Stat. 4170.)

SUBCHAPTER III – RESEARCH, DEVELOPMENT, AND DEMONSTRATION

Sec. 5631. Continued Federal research and development

(a) Roles of NASA and Department of Defense

(1) The Administrator and the Secretary of Defense are directed to continue and to enhance programs of remote sensing research and development.
(2) The Administrator is authorized and encouraged to –
(A) conduct experimental space remote sensing programs (including applications demonstration programs and basic research at universities);
(B) develop remote sensing technologies and techniques, including those needed for monitoring the Earth and its environment; and
(C) conduct such research and development in cooperation with other United States Government agencies and with public and private research entities (including private industry, universities, non-profit organizations, State and local governments, foreign governments, and international organizations) and to enter into arrangements (including joint ventures) which will foster such cooperation.

(b) Roles of Department of Agriculture and Department of the Interior

(1) In order to enhance the ability of the United States to manage and utilize its renewable and nonrenewable resources, the Secretary of Agriculture and the Secretary of the Interior are authorized and encouraged to conduct programs of research and development in the applications of remote sensing using funds appropriated for such purposes.
(2) Such programs may include basic research at universities, demonstrations of applications, and cooperative activities involving other Government agencies, private sector parties, and foreign and international organizations.


(c) Role of other Federal agencies
Other United States Government agencies are authorized and encouraged to conduct research and development on the use of remote sensing in the fulfillment of their authorized missions, using funds appropriated for such purposes.
(Pub. L. 102-555, title III, Sec. 301, Oct. 28, 1992, 106 Stat. 4174.)

Sec. 5632. Availability of federally gathered unenhanced data

(a) General rule
All unenhanced land remote sensing data gathered and owned by the United States Government, including unenhanced data gathered under the technology demonstration program carried out pursuant to section 5633 of this title, shall be made available to users in a timely fashion.

(b) Protection for commercial data distributor
The President shall seek to ensure that unenhanced data gathered under the technology demonstration program carried out pursuant to section 5633 of this title shall, to the extent practicable, be made available on terms that would not adversely affect the commercial market for unenhanced data gathered by the Landsat 6 spacecraft.
(Pub. L. 102-555, title III, Sec. 302, Oct. 28, 1992, 106 Stat. 4174.)

Sec. 5633. Technology demonstration program

(a) Establishment
As a fundamental component of a national land remote sensing strategy, the President shall establish, through appropriate United States Government agencies, a technology demonstration program. The goals of such programs shall be to –

(1) seek to launch advanced land remote sensing system components within 5 years after October 28, 1992;
(2) demonstrate within such 5-year period advanced sensor capabilities suitable for use in the anticipated land remote sensing program; and
(3) demonstrate within such 5-year period an advanced land remote sensing system design that could be less expensive to procure and operate than the Landsat system projected to be in operation through the year 2000, and that therefore holds greater potential for private sector investment and control.


(b) Execution of program
In executing the technology demonstration program, the President shall seek to apply technologies associated with United States National Technical Means of intelligence gathering, to the extent that such technologies are appropriate for the technology demonstration and can be declassified for such purposes without causing adverse harm to United States national security interests.

(c) Broad application
To the greatest extent practicable, the technology demonstration program established under subsection (a) of this section shall be designed to be responsive to the broad civilian, national security, commercial, and foreign policy needs of the United States.

(d) Private sector funding
The technology demonstration program under this section may be carried out in part with private sector funding.

(e) Landsat Program Management coordination
The Landsat Program Management shall have a coordinating role in the technology demonstration program carried out under this section.

(f) Report to Congress
The President shall assess the progress of the technology demonstration program under this section and, within 2 years after October 28, 1992, submit a report to the Congress on such progress.

(Pub. L. 102-555, title III, Sec. 303, Oct. 28, 1992, 106 Stat. 4174.)

SUBCHAPTER IV – ASSESSING OPTIONS FOR SUCCESSOR LAND REMOTE SENSING SYSTEM

Sec. 5641. Assessing options for successor land remote sensing system

(a) Assessment
Within 5 years after October 28, 1992, the Landsat Program Management, in consultation with representatives of appropriate United States Government agencies, shall assess and report to the Congress on the options for a successor land remote sensing system to Landsat 7. The report shall include a full assessment of the advantages and disadvantages of –

(1) private sector funding and management of a successor land remote sensing system;
(2) establishing an international consortium for the funding and management of a successor land remote sensing system;
(3) funding and management of a successor land remote sensing system by the United States Government; and
(4) a cooperative effort between the United States Government and the private sector for the funding and management of a successor land remote sensing system.


(b) Goals
In carrying out subsection (a) of this section, the Landsat Program Management shall consider the ability of each of the options to –

(1) encourage the development, launch, and operation of a land remote sensing system that adequately serves the civilian, national security commercial, and foreign policy interests of the United States;
(2) encourage the development, launch, and operation of a land remote sensing system that maintains data continuity with the Landsat system; and
(3) incorporate system enhancements, including any such enhancements developed under the technology demonstration program under section 5633 of this title, which may potentially yield a system that is less expensive to build and operate, and more responsive to data users, than is the Landsat system projected to be in operation through the year 2000.


(c) Preference for private sector system
If a successor land remote sensing system to Landsat 7 can be funded and managed by the private sector while still achieving the goals stated in subsection (b) of this section without jeopardizing the domestic, national security, and foreign policy interests of the United States, preference should be given to the development of such a system by the private sector without competition from the United States Government.

(Pub. L. 102-555, title IV, Sec. 401, Oct. 28, 1992, 106 Stat. 4175.)

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA test pilot Nils Larson inspects the agency’s F-15D research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California, ahead of a calibration flight for a newly installed near-field shock-sensing probe. Mounted on the F-15D, the probe is designed to measure shock waves generated by the X-59 quiet supersonic aircraft during flight. The data will help researchers better understand how shock waves behave in close proximity to the aircraft, supporting NASA’s Quesst mission to enable quiet supersonic flight over land.NASA/Steve Freeman NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross NASA’s F-15D research aircraft conducts a test flight near Edwards, California, with a newly installed near-field shock-sensing probe. Identical to a previously flown version that was intended as the backup, this new probe will capture shock wave data near the X-59 as it flies faster than the speed of sound, supporting NASA’s Quesst mission.NASA/Jim Ross When you’re testing a cutting-edge NASA aircraft, you need specialized tools to conduct tests and capture data –but if those tools need maintenance, you need to wait until they’re fixed. Unless you have a backup. That’s why NASA recently calibrated a new shock-sensing probe to capture shock wave data when the agency’s X-59 quiet supersonic research aircraft begins its test flights.
      When an aircraft flies faster than the speed of sound, it produces shock waves that travel through the air, creating loud sonic booms. The X-59 will divert those shock waves, producing just a quiet supersonic thump. Over the past few weeks, NASA completed calibration flights on a new near-field shock-sensing probe, a cone-shaped device that will capture data on the shock waves that the X-59 will generate.
      This shock-sensing probe is mounted to an F-15D research aircraft that will fly very close behind the X-59 to collect the data NASA needs. The new unit will serve as NASA’s primary near-field probe, with an identical model NASA developed last year acting as a backup mounted to an additional F-15B.
      The two units mean the X-59 team has a ready alternative if the primary probe needs maintenance or repairs. For flight tests like the X-59’s – where data gathering is crucial and operations revolve around tight timelines, weather conditions, and other variables – backups for critical equipment help to ensure continuity, maintain schedule, and preserve efficiency of operations.
      “If something happens to the probe, like a sensor failing, it’s not a quick fix,” said Mike Frederick, principal investigator for the probe at NASA’s Armstrong Flight Research Center in Edwards, California. “The other factor is the aircraft itself. If one needs maintenance, we don’t want to delay X-59 flights.”
      To calibrate the new probe, the team measured the shock waves of a NASA F/A-18 research aircraft. Preliminary results indicated that the probe successfully captured pressure changes associated with shock waves, consistent with the team’s expectations. Frederick and his team are now reviewing the data to confirm that it aligns with ground mathematical models and meets the precision standards required for X-59 flights.
      Researchers at NASA Armstrong are preparing for additional flights with both the primary and backup probes on their F-15s. Each aircraft will fly supersonic and gather shock wave data from the other. The team is working to validate both the primary and backup probes to confirm full redundancy – in other words, making sure that they have a reliable backup ready to go.
      Share
      Details
      Last Updated Apr 17, 2025 EditorDede DiniusContactNicolas Cholulanicolas.h.cholula@nasa.gov Related Terms
      Aeronautics Aeronautics Research Mission Directorate Armstrong Flight Research Center Commercial Supersonic Technology Low Boom Flight Demonstrator Quesst (X-59) Supersonic Flight Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 20 hours ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
      Article 2 days ago 3 min read Going Home: NASA Retires S-3B Viking to POW/MIA Museum
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      Image: The Copernicus Sentinel-2 mission takes us over the Sequoia and Kings Canyon National Parks in California’s Sierra Nevada mountains. View the full article
    • By NASA
      Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 4 min read
      Sols 4484-4485: Remote Sensing on a Monday
      NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 17, 2025 — sol 4483, or Martian day 4,483 of the Mars Science Laboratory mission — at 09:38:17 UTC. NASA/JPL-Caltech Written by Conor Hayes, Graduate Student at York University
      Earth planning date: Monday, March 17, 2025
      Last week I was in Houston, Texas, at the Lunar and Planetary Science Conference. The mid-March weather in Houston is often more like mid-summer weather here in Toronto, so it has been a bit of a shock coming home to temperatures that are hovering around freezing rather than being in the upper 20s (degrees Celsius, or the low to mid 80s for those of you still using Fahrenheit). Still, Toronto is positively balmy compared to Gale Crater, where temperatures usually range between minus 80°C and minus 20°C (or minus 110°F to minus 5°F) during this part of the year. These cold temperatures and their associated higher demands on the rover’s available power for heating are continuing to motivate many of the decisions that we make during planning.
      We received the double good news this morning that the weekend’s drive completed successfully, including the mid-drive imaging of the other side of “Humber Park” that Michelle mentioned in Friday’s blog, and that our estimates of the weekend plan’s power consumption ended up being a little conservative. So we started planning exactly where we wanted to be, and with more power to play around with than we had expected. Yay!
      The weekend’s drive left us parked in front of some rocks with excellent layering and interesting ripples that we really wanted to get a closer look at with MAHLI. (See the cover image for a look at these rocks as seen by Navcam.) Sadly, we also ended up parked in such a way that presented a slip hazard if the arm was unstowed. As much as we would have loved to get close-up images of these rocks, we love keeping Curiosity’s arm safe even more, so we had to settle for a remote sensing-only plan instead.
      Both the geology and mineralogy (GEO) and the environmental science (ENV) teams took full advantage of the extra power gifted to us today to create a plan packed full of remote sensing observations. Because we’re driving on the first sol of this two-sol plan, any “targeted” observations, i.e. those where we know exactly where we want to point the rover’s cameras, must take place before the drive. The first sol is thus packed full of Mastcam and ChemCam observations, starting with a 14×3 Mastcam mosaic of the area in front of us that’s outside of today’s workspace. Individual targets then get some Mastcam love with mosaics of various ripple and layering features at “Verdugo Peak,” “Silver Moccasin Trail,” and “Jones Peak.” Mastcam and ChemCam also team up on a LIBS target, “Trancas Canyon,” and some more long-distance mosaics of Gould Mesa, a feature about 100 meters away from us (about 328 feet) that we’ll be driving to the south of as we continue to head toward the “boxwork” structures.
      After a drive, there often aren’t many activities scheduled other than the imaging of our new location that we’ll need for the next planning day. However, in this plan ENV decided to take advantage of the fact that Navcam observations can take place at the same time that the rover is talking to one of the spacecraft that orbit Mars. This is a useful trick when power is tight as it allows us to do more science without adding additional awake time (since the rover needs to be awake anyway to communicate with the orbiters). Today, it’s being used to get some extra cloud observations right before sunset, a time that we don’t often get to observe. These observations include a zenith movie that looks straight up over the rover and a “phase function sky survey,” which takes a series of nine movies that form a dome around the rover to examine the properties of the clouds’ ice crystals. 
      The second sol of this plan is much more relaxed, as post-drive sols often are because we don’t know exactly where we’ll be after a drive. Today, we’ve just got our usual ChemCam AEGIS activity, followed by a pair of Navcam cloud and cloud shadow movies to measure the altitude of clouds over Gale. As always, we’ve also got our usual set of REMS, RAD, and DAN activities throughout this plan.
      Share








      Details
      Last Updated Mar 20, 2025 Related Terms
      Blogs Explore More
      2 min read Sols 4481-4483: Humber Pie


      Article


      2 days ago
      3 min read Sols 4479-4480: What IS That Lumpy, Bumpy Rock?


      Article


      6 days ago
      3 min read Navigating a Slanted River


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      Mars


      Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…


      All Mars Resources


      Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…


      Rover Basics


      Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…


      Mars Exploration: Science Goals


      The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…

      View the full article
    • By Space Force
      DAF guidance on Return to In-Person Work for the purpose of creating a more capable and lethal force.
      View the full article
    • By NASA
      Explore This Section Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 27 min read
      Summary of Special Engage Session on “Remote Sensing and the Future of Earth Observations”
      Introduction
      On October 16, 2024, a special session of the NASA Goddard Engage series took place in the Goett Auditorium (Building 3) at NASA’s Goddard Space Flight Center (GSFC). The Engage series is intended to explain work at GSFC in an immersive and nontechnical setting. GSFC’s Office of Communications, Earth Sciences Division, and Scientific Colloquium organized this special session.
      The featured speaker for this event was The Honorable Al Gore [former Vice President of the U.S.], who has a long history of advocating for the environment and raising public awareness of the worsening “climate crisis” – having received the Nobel Peace Prize for his efforts.
      The event also featured a panel discussion called “Remote Sensing and the Future of Earth Observations.” Three distinguished scientists spoke about what drew their interest in Earth science and responded to questions from the moderator and the in-person and online audience.
      Editor’s Note: This is not intended to be a comprehensive review of all NASA’s future plans regarding Earth Remote Sensing. Rather the panelists focused on some specific activities on which they had expertise that was intended to give a sense of the full suite of activities planned for the coming decade.
      While The Earth Observer typically does not usually report on Center-specific events, the newsletter makes an exception for this event because the former Vice President participated – and because the topic of the panel discussion is directly relevant to this publications’ wider audience. The remainder of this article summarizes the Engage session, including Gore’s remarks, the panel discussion, and the question-and-answer (Q&A) session that followed. A YouTube video of the full event is available for viewing.
      Opening Remarks
      Dalia Kirschbaum [GSFC—Director of Earth Sciences Division] welcomed the participants – both in-person and virtual. Casey Swails [NASA Headquarters—Deputy Associate Administrator] continued by thanking Gore for being one of most influential voices in the U.S. on climate . She said that Gore’s words and actions have inspired much more than just the Deep Space Climate Observatory (DSCOVR) mission. NASA – and GSFC in particular – has been conducting environmental studies since its beginning. She named historical missions, such as Vanguard, the Television Infrared Observation Satellite (TIROS), Landsat (partnership with U.S. Geological Service), and the Earth Observing System (EOS) – including more than 20 years of observations from the three Flagship Missions: Terra, Aqua, and Aura. (The Earth Observer’s Archives Page includes a “Bibliography of Articles with Historical Content” in which links to articles written on most of the missions mentioned in the previous sentence can be found.)
      Swails pointed out that GSFC is home to the largest population of Earth Scientists who produce more than 400 journal articles each year.
      “It will be you and your successors who will also make NASA (GSFC) the future of Earth observations,” said Swails. “You are continuing to accelerate core science research and enable action through the newly established Earth System Observatory project office, the Greenhouse Gas (GHG) project office, and new flagship missions, such as the Atmospheric Observing System (AOS) and Landsat Next.”
      On behalf of – at the time of the meeting – NASA Administrator Bill Nelson, Swails thanked Gore for participating in the Engage event, and she thanked all the scientists and engineers – past and present – that have led the way in making NASA (GSFC) a leader in Earth observations for more than six decades.
      Featured Speaker: The Honorable Al Gore
      Kirschbaum then introduced Al Gore – shown in Photo 1 – whom she described as an environmental advocate and a central figure in advancing public discourse on climate and sustainability. Following Gore’s many years of political service, he confronted the world with “An Inconvenient Truth,” a documentary on climate change that helped raise global awareness of the worsening state of Earth’s climate. For these efforts, Gore received the Nobel Peace Prize on October 12, 2007.
      Photo 1. Former U.S. Vice President Al Gore was the featured speaker at the Engage session on October 16, 2024. In addition to overall discussion of NASA’s Earth observing fleet and how Earth observations are used to investigate Earth’s changing climate, Gore’s remarks included reminiscences about his involvement in the Triana mission, which NASA canceled, then later revived and revised becoming known as DSCOVR – a NASA–NOAA partnership. See related article, “Summary of the 10th DSCOVR EPIC and NISTAR Science Team Meeting,” to learn more about DSCOVR and its scientific achievements over a decade in space. Photo credit: Travis Wohlrab [NASA’s Goddard Space Flight Center (GSFC)] Kirschbaum continued that Gore played a pivotal role in inspiring Triana , a NASA Earth science mission that would provide a near continuous view of Earth and measure Earth’s complete albedo while orbiting the first Sun–Earth Lagrange Point (hereinafter referred to as “the L1 point”). While Triana was canceled, the concept would live on and ultimately transition into the NASA–NOAA DSCOVR mission, which celebrates the 10th anniversary of its launch in February 2025. Gore made brief remarks at the opening session of the 10th DSCOVR Science Team meeting earlier in the day before coming to this meeting. A full “Summary of the 10th DSCOVR EPIC/ NISTAR Science Team Meeting” is published as a separate article in The Earth Observer.
      Gore began by thanking all who worked on DSCOVR and other missions at NASA and NOAA. He thanked Makenize Lystrup [GSFC—Center Director] and the team for welcoming him. He also acknowledged the DSCOVR project leaders from GSFC: Adam Szabo [DSCOVR Project Scientist (PS)], Alexander Marshak [DSCOVR Deputy PS], Jay Herman [Earth Polychromatic Imaging Camera (EPIC) Instrument Scientist], Richard Eckman [National Institutes of Health’s Advanced Radiometer (NISTAR) Instrument Scientist], and all those who worked on the mission.
      Gore reminisced about when the Triana mission was put into storage in 2001. He remembered his former Senate colleague, Barbara Mikulski [longtime MD Senator] assuring him that they would “feed [the satellite] space snacks” and take care of it until it was ready to use – which ultimately happened in 2008. He also acknowledged those who’ve worked on the DSCOVR mission since launch to extend its capabilities. He also recognized Francisco Valero [former Triana Principal Investigator] who was at University of California, San Diego’s Scripps Institute of Oceanography at the time, and was integral in championing the first iteration of this mission (i.e., Triana), as well as Alan Lazarus [Massachusetts Institute of Technology (MIT)—Research Scientist], who helped design DSCOVR’s solar particle sensor. (Jay Herman was also involved in Triana.) He also mentioned how Bill Nelson chaired the House Space Subcommittee contemporaneously to when Gore chaired the Senate Space Subcommittee.
      Gore acknowledged that DSCOVR is just one member of NASA’s fleet of Earth observing satellites – see Figure 1 er– plus those of domestic and international partners. What’s unique about DSCOVR, however, is its location – orbiting the L1 point, nearly one million miles (1.1 million km) away from Earth.
      Figure 1. [Top] NASA’s Earth Observing Fleet consists of over 20 satellite missions that, with one exception, continuously monitor our home planet from polar or low Earth orbit – including several installed on the International Space Station. The exception is the Deep Space Climate Observatory (DSCOVR) which orbits the first Earth–Sun Lagrange point in the Earth–Sun system [bottom], about 1 million mi (~1.1 million km) from Earth [bottom]. This gives the mission’s two Earth-observing instruments (EPIC and NISTAR) a unique vantage point for observing the full sunlit Earth. [Bottom] Some version of the placeholder diagram above showing DSCOVR orbiting the L1 point between Sun and Earth, 1 million miles from Earth.  Figure credit: TBD It can be argued that the modern environmental movement – which resulted in the development NASA’s Earth Observing System and other Earth observing missions – was inspired by a single image – “Earthrise,” which NASA Astronaut Bill Anders took of Earth on Christmas Eve 1968 during the Apollo 8 mission. The adage that “a picture is worth 1000 words” proved true in this instance as this single image changed how society viewed Earth, opening society’s awareness to the fragility and beauty of our home planet. Four years later, on Christmas Eve 1972, the first “Blue Marble” image was released, having been taken by Apollo-12 astronauts, as the spacecraft approached the Moon. (The image inspired subsequent “Blue Marble” images created using composites of satellite data.)
      Per the Wikipedia page linked above, “The [Blue Marble image] has been identified as one of the most widely publicized and influential images since its release – particularly in the advocacy for environmental protection.”
      Gore mentioned this in his remarks and stressed that this iconic image helped inspire the Triana/DSCOVR concept. This mission has helped scientists develop a more “complete picture” of Earth. He noted that today, DSCOVR/EPIC obtains a new “Blue Marble” (i.e. a full-disc image of Earth) every fifteen minutes – e.g., a set of images of Africa obtained on the 50th anniversary to mimic the original image from Apollo 12. Gore said that we learn so much about Earth from observing it from above (e.g., cloud dynamics, heating, vegetation, and the concentrations of ozone, sulfur dioxide, and particulate matter in the atmosphere). More than 100 peer-reviewed papers have been published on the unique science done at the L1 point by DSCOVR.
      Gore said that DSCOVR – along with the rest of NASA’s Earth observing fleet – has produced a treasure trove of information that makes it possible to make the invisible, visible. What was once a mystery can now be explained with scientific data. When DSCOVR was proposed in 1998, the scientific community was on the verge of a technological explosion via the Internet that would allow the collection, storage, processing, and display of untold mountains of information about Earth. It has now evolved even further with the advent of Artificial Intelligence (AI), leading to another potential information explosion just at the time when having such information is crucial.
      “We are in the midst of a violent collision between our current society’s organization and the surprisingly fragile ecological systems on which human flourishing depends,” said Gore.
      As the participants convened to celebrate the 10th anniversary of DSCOVR, he encouraged those present to think about how this data can be applied to address the incredible challenges of our generation – chief among them the Earth’s rapidly changing climate.
      “It’s hard to grapple with just how serious the [situation] is,” said Gore. However, he noted that, “Mother nature is a persuasive advocate. She has our attention!”
      He cited the two hurricanes – Helene and Milton – that impacted the U.S. in the weeks prior to this event. Despite the ever-present threat, Gore also pointed to the problematic “assault on funding” for science throughout the Federal budget. To address this need, Gore spoke of the growing need for private–public partnerships to address the imposing climate crisis.
      Gore discussed how Climate TRACE, the organization he cofounded, is harnessing NASA data and fusing it with other sources to pinpoint the sources of GHGs. Climate TRACE has determined the 500 million most relevant point sources, along with metadate (data describing the data). In essence, Climate TRACE seeks to reverse-engineer the GHG levels based on other environmental variables. He said that the newest Climate TRACE dataset will be released on November 14, 2024 at COP-29. Gore acknowledged that NASA [Jet Propulsion Laboratory (JPL)] contributes data and conducts analysis of data used in Climate TRACE.
      Quoting Lord Kelvin, Gore said, “you can only manage what you measure,” noting that our society has been having trouble managing global warming to date. However, thanks to organizations like NASA, our society is gaining the ability to measure it accurately.
      Gore then referenced John F. Kennedy’s famous speech at Rice University in 1961 that is most remembered for the line about “going to the Moon in this decade.” But in that speech Kennedy also said, “We set sail on this new sea, because there is new knowledge to be gained and new rights to be won. And they must be won and used for the progress of all people.”
      Gore applied this quote to the ongoing study of Earth’s climate. He said that our society is continuing to “sail on this new sea.” He gave kudos to all the people at NASA who are seizing all the opportunities to gather and reflect on “new knowledge” and apply it to issues directly relevant to societal flourishing.
      Gore concluded by saying that the DSCOVR mission is a great example of combining scientific discovery and public enlightenment. It has been incredibly successful, and he feels it should be extended, counting on scientists to expand our access to the knowledge we need to ensure the survival of human civilization.
      “If you ever doubt we have the political will to make changes,” said Gore, “just remember that political will is itself a renewable resource.”
      After a standing ovation from the audience, Kirschbaum thanked Gore for his remarks and his continued support of the Earth science community.
      Panel Discussion on the Future of Earth Science Remote Sensing
      Kirschbaum then transitioned to the panel discussion. She reflected on how we live with the impacts of climate every day – e.g., air quality impacting students, hurricanes impacting coastlines and coastal communities, shifting storm patterns impacting farmers.
      Since its inception in 1958, NASA has been a leader in studying Earth. The agency makes critical observations from space, aircraft, and the ground to understand climate change. NASA researchers integrate this information into climate models to understand the past, represent the present, and project the future state of our home planet.
      Kirschbaum said that today’s panel discussion focuses on the future. While questions remain, she emphasized that the agency works with partners on opportunities to do things differently and open new possibilities. She then introduced three NASA scientists, who also provide leadership beyond the walls of NASA.
      Miguel Román[GSFC Earth Sciences Division—Deputy Director for Atmospheres]; Lesley Ott [GSFC—Project Scientist for the U.S. Greenhouse Gas Center]; and John Bolten [GSFC—Chief of Hydrological Sciences Branch]. She asked each panelist – shown in Photo 2 – to start with by sharing a bit of their story with the audience to give some initial insights into their work and background on how they themselves became interested in studying climate.
      Photo 2. Following Gore’s remarks, there was a panel discussion entitled “Remote Sensing and the Future of Earth Observations.” Dalia Kirschbaum [GSFC—Director of Earth Sciences Division – left] moderated the discussion, directing questions to the three panelists seated to her right [left to right]: Miguel Román [GSFC Earth Sciences Division—Deputy Director for Atmospheres]; Lesley Ott [GSFC—Project Scientist for the U.S. Greenhouse Gas Center]; and John Bolten [GSFC—Chief of Hydrological Sciences Branch]. Photo credit: Travis Wohlrab Román began his career as an intern at NASA. After rising through the ranks, he left NASA to work in private industry before recently returning to GSFC. Originally from Puerto Rico, Román has been “inside the walls of a hurricane six times in his life.” He said that American citizens are increasingly experiencing what he experienced as a youth. He noted that two things happen when one in the middle of a hurricane – barometric pressure drops (ears pop) and there is a distinctive hissing sound.
      Román said the term hurricane is derived from a Taino word. He explained that in Puerto Rican folklore, Juracán (i.e., the “evil” Goddess of wind – especially hurricanes) was in opposition to Yucahu (i.e., the “good” God of creation, agriculture, peace, and tranquility).
      “The hissing winds of Juracán now reverberate across Florida, “ said Román—see Figure 2.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Figure 2.  Animation of brightness temperature data obtained by the Atmospheric Infrared Sounder (AIRS) on NASA’s Aqua mission, showing Hurricane Milton as it approached and impacted Florida in October 2024. Colder temperatures (blues) are associated with the tops of high clouds, so the storm track stands out from the warmer temperature over the waters of the Gulf of Mexico.
      Figure credit: TBD
      He stressed that these winds are “different” – more intense – than the ones dealt with in the past. He added that we now have “land hurricanes” – called derechos, which are intense, widespread, and fast-moving lines of storms.
      Ott said that, in a sense, “science chose her.” She was raised by two scientists who met while studying physics. But she chose to study meteorology because it seemed to her to be the most ‘personal’ of the sciences. As Kirschbaum alluded to in her remarks earlier, weather impacts us all – physically and even emotionally. She loved this aspect of weather and wanted to understand the science behind the “air that we all swim in.”
      “Weather seems to be less in background and more on the ‘front page’ these days,” said Ott. “We regularly hear news stories about superstorms and devastating fires. We’re all increasingly impacted by extreme weather.”
      She also spoke about the ‘untold’ costs of climate change (e.g., lost school days, lost wages, not knowing if your home will survive a natural disaster), which has impacted how Ott practices meteorology. While she is a meteorologist, Ott doesn’t work on weather prediction. Instead, she uses the same kind of predictive models that are used for weather forecasting to focus on GHGs, which could help society navigate the realities of a changing planet.
      In her work, Ott tracks how climate changes – for better or worse. While the trend toward a warming world (climate) fuels more frequent and powerful extreme events (weather), e.g., heat waves, droughts, and storms, there are exceptions achieved through intentional human intervention – e.g., the recovery of the ozone hole (bought about through enforcement of the Montreal Protocol and its Amendments) and improvements of air quality. Both of these examples of positive change illustrate the value of international collaboration to address environmental issues. Ott said that research efforts can help to “track the future of the planet,” leading to more positive changes. Extending these positive changes to GHGs will help communities more effectively plan for and respond to a rapidly changing world.
      Bolten began by saying that he comes from Wood County WV and is the youngest of five boys. He could see the Ohio River from his kitchen window where he swam and canoed. Bolten explained that Wood County is in an area known as chemical valley, because a large number of chemical plants in the region provide important products for the world. These plants employ many of the people living in the region.
      Bolten’s father designed wastewater treatment systems for these chemical plants and passed along a deep appreciation of the impact humans can have on the environment. Similarly, Bolten spent many years enjoying the Ohio River and West Virginia wilderness, which instilled in him the value of protecting our freshwater resources. He grew up immersed in the environment and wanted to contribute to the greater good of society and make a positive difference in the world. He said that NASA is championing these same core values as an innovator and leader in Earth System Science. Bolten thanked Gore for spurring public discourse around climate.
      Question and Answer Session
      Kirschbaum began the Q&A session with several prepared questions followed by questions from both in-person and virtual participants – along with some more interspersed comments from the guest of honor.
      Kirschbaum posed the first question to Román: How do you see GSFC (NASA) advancements in tech and science helping us to predict extreme weather (e.g., heatwaves and hurricanes)?
      Román began his answer by stating that NASA’s EOS era is coming to an end – after more than two decades of observations. NASA’s EOS flagship missions – Terra, Aqua, and Aura – have each far exceeded their scheduled mission life. While scientists and engineers work together to extend the function as long as possible, practical realities (e.g., fuel supply, orbit decay) dictate that all the satellites must be decommissioned in the next few years. The EOS era has taught NASA and its partners many lessons about how to operate under what he described as “an accelerated set of extreme climate events.”
      “We simply could not have anticipated some of things we’re facing now when the EOS missions were designed,” said Ramon, citing the development of derechos and the rapid intensification of tropical cyclones.
      The EOS mission instrument teams developed a whole Earth observing technology toolbox on the fly. For example, scientists learned that while microwave sounders work well over water, these instruments face challenges over land due to surface emissivity variations. Infrared (IR) sounders, on the other hand, provide valuable data over all surfaces during clear conditions, but they can’t penetrate thick clouds. Investigators combined both measurements, producing a powerful tool for observing the changing Earth system and beginning to quantify the impact of those changes.
      While it is sad to see the EOS era end, Román said that NASA is entering an exciting new era where new technologies will allow for miniaturization of sounders. He also mentioned new observing technologies, such as the Hyperspectral Microwave Photonic Instrument (HyMPI) . The microwave sounders currently flying – which are part of NASA’s current Program of Record – retrieve atmospheric profiles with approximately 20 vertical layers. By contrast, HyMPI can produce as many as 1000 layers, offering enhanced thermodynamic sounding skill in the Earth’s planetary boundary layer (PBL) – the first 2 km (~1 mi) of the atmosphere – over conventional microwave sounders from the current Program of Record.
      Román emphasized that the PBL is an area that is still poorly observed and understood. This lowest level of the atmosphere is where humans and other plants and animals live – and where most climate impacts occur. It is thus vitally important to improve our understanding of the PBL. To emphasize this point, Román cited that one million stillbirths can be linked to tropospheric ozone pollution every year. The encouraging news is that NASA’s data can inform public health policy to help mitigate these harmful impacts.
      “The problem is an integrated one,” said Román, “and the Earth System Observatory (ESO) is designed for all of its missions to be integrated.”
      Román stressed that the climate challenges are complex, and ESO provides a model for all future campaigns to integrate many approaches to solve big problems.
      Kirschbaum directed the next question to Ott: As the NASA leader of the U.S. Greenhouse Gas Center, where do you see NASA making contributions?
      Ott responded that there has been tremendous innovation and advancement in the field of Earth observations over the past several decades – i.e., during the EOS era. As Al Gore alluded to in his earlier remarks, increasingly, this innovation comes from the pairing of private sector with the public data from satellites, aircraft campaigns, and ground networks that provide the infrastructure that companies need to test and improve new approaches.
      NASA has also played a foundational role in developing the systems approach to studying Earth. For example, half of human-produced emissions (sources) of carbon dioxide (CO2) are absorbed by vegetation and the ocean (sinks). It remains unclear how long this balance will continue, however. NASA aims to bring together different measurements of vegetation, ocean productivity, and gases in the atmosphere and make them readily available to the public. A wholistic approach to climate requires input from multiple satellites to successfully model changes in the concentration GHGs throughout the Earth system. To achieve this goal, the best from the government (e.g., NASA data) needs to merge with private industry to produce consistent long term data records that people can trust.
      Kirschbaum agreed that delivering trusted information and providing foundational datasets are core activities for NASA, and used that to segue to the next question, which she addressed to Bolten: NASA (GSFC) sits at the nexus of satellite observations and modeling. Where do you see progress of Earth Science to Action particularly in area of water quality?
      Bolten said that the first image of Earth was obtained 78 years ago in 1946. It happened somewhat by chance. Soldiers and scientists at White Sands Missile Range strapped a camera to a captured German V2 rocket, and they were fortunate to get a clear image of Earth. Fast forward to today, NASA has a fleet of more than 20 Earth-observing satellites – see Figure 1 [top] – that provide routine Earth observations. These data are vital for understanding our home planet, and for decision making. The observations from these satellites can be analyzed and used to inform decisions about Earth.
      The Electronic Numerical Integrator and Computer (ENIAC) was created the same year as the first Earth image. He noted that ENIAC took up an entire room. Today, his smart phone, which fits in his pocket, is more than 230 million times faster than ENIAC – driving home the point that technology has advanced beyond what most could imagine. Bolten also noted that 2024 is NASA’s Year of Open Science.
      Bolten said that his job focuses on food and water insecure areas, which often correlates with areas that lack data infrastructure. There is a vital need to strategically integrate open science and cloud-based services.
      “We can’t do this [work] in a bubble,” said Bolten. “We must work together.”
      Kirschbaum elevated a question from an attendee: There have been various climate change scenarios that have been offered as possibilities. Which one seems most likely to you to be correct?
      Ott explained that the worst- or best-case scenarios are usually outliers (i.e., the conditions in the “real world” typically lie somewhere in between the extremes). She commented that we’ve seen a large climate change investment from the Biden Administration. Those kinds of investments will have impact and have the power to change the trajectory for the future. Part of what NASA does is to show the world that the data we collect does make a tangible difference. That gives society reason for hope. The point of U.S. Greenhouse Gas Center is to bring together all these GHG observations in one place to analyze them and study them to show that we’re making progress on confronting this challenging issue. The objective is to create tangible evidence that, “when we take action, we can change things.”
      As if to underscore Ott’s point, Gore responded during her presentation that he believes that public choice does significantly impact how the future unfolds.
      “What we decide has consequences,” he said. 
      Gore is convinced the issue of our changing climate could be addressed if our society made up our collective mind to do it and then committed ourselves to take the decisive action needed to make that decision a reality in the near future.
       “The future is really up to us,” said Gore.
      The final three questions came from online participants.
      How can NASA improve its messaging?
      Bolten replied that this is a question that comes up repeatedly in the context of NASA outreach and communications. In the context of today’s discussion, he suggested the need to produce information that is not just useful but also usable (i.e., it can be applied in ways that directly benefit society). As an example, he pointed to the use of machine learning to model a flash flooding event in Ellicott City, MD (described in a 2020 article in Journal of Hydrometeorology) where waters rose from a normal levels to a devastating flash flood in about seven minutes – see Photo 3. Bolten continued that transparency, as well as connecting to people’s motivations, are keys to being more successful with NASA’s messaging.
      Photo 3. In May 2018 devastating floodwaters impacted the town of Ellicott City, MD. Water levels in the small basin above the down rose from normal levels to flash flooding in seven minutes.  Figure credit: NOAA’s Physical Science Laboratory What big challenges could NASA turn to an opportunity to address climate change?
      Román said that advances in forecasting on seasonal to sub-seasonal scales are key areas of focus for studies of Earth’s atmosphere. He noted that it is important to have observations and understand these observations to model events. For sub-seasonal prediction, we need to understand stratospheric dynamics and the chemistry going on in the upper troposphere and lower stratosphere.
      “Major fires and volcanic eruptions create massive changes in the atmosphere,” said Román. “We can’t see them like we can when we view a Landsat image.”
      One tool that could help us with sub-seasonal forecasting is the Stratosphere Troposphere Response using Infrared Vertically-resolved light Explorer (STRIVE) mission, which is one of four mission proposals for the first Earth System Explorer missions chosen for initial Phase A study. This mission aims to examine the interaction between the upper troposphere and the lower stratosphere. In particular, STRIVE will make observations of Earth’s limb (i.e., a narrow slice of atmosphere), which can help scientists gain insight into aerosol loading. According to Román, this data will be key to getting an accurate 30-day forecast. He referred to this information as the “holy grail” in terms of preparedness and resilience by improving early warnings for extreme weather. Some nations are limited to only using Doppler radar and if it fails, they are essentially blind to what is coming.
      Kirschbaum cited NASA’s AOS mission, which will be part of ESO, as another example of an important new measuring capability. This mission will represent the “next generation” for precipitations and aerosol observations. Scientists can use the data collected to understand how these phenomena interact with each other and with other atmospheric constituents to form storms.
      “AOS will be the baseline while STRIVE would be the bottom line,” concluded Román.
      What is the path forward to develop capacity for new observations while still maintaining high-quality, long-term time series and making the data accessible to the public?
      Ott cited the Carbon Mapper coalition as a current example where such a balance is being achieved/. Carbon Mapper made its first light images available to the public last week. This mission brings together a unique coalition of partners (including NASA/JPL and Planet, a private company) to develop and deploy two satellites with capabilities to detect and quantify methane (CH4) – e.g., see Figure 3 – and CO2 super-emitters at a level of granularity needed to support direct mitigation action.
      Figure 3. On December 4, 2024, the Tanager–1 satellite detected methane (CH4) plumes streaming downwind from oil and gas facilities in the Permian Basin (in west Texas and southeast New Mexico). This is one of more than 300 images of CH4 super-emitters from the oil and gas, coal, waste, and agriculture sectors across 25 countries that were released in February 2025. Tanager–1 launched in August 2024 and is the first satellite developed by the Carbon Mapper coalition between Planet (a private company) and NASA/Jet Propulsion Laboratory (JPL) and other partners. Planet owns, launched, and operates the satellite, which is equipped with technology from JPL. Figure credit: Carbon Mapper NASA’s investments in technology via its Earth Science Technology Office (ESTO) have enabled new airborne instruments that can be deployed in partnership with industry to demonstrate the quality of present-day satellite technologies and to provide a pathway toward next generation technologies. She stressed that the Federal government continues to play a crucial role in establishing standards and ensuring data integrity and continuity. NASA, for example, invests in ground-based systems and data services that help enable the commercial satellite industry. Long-term continuity of measurements is essential to connect new observations to existing ones. In this way, we can enable the continuing rise of NewSpace, while still providing foundational integrity and stability of the long-term climate data records that NASA and other Federal agencies maintain. This framework helps tie all the NewSpace endeavors together.
      Gore cited an example of a public–private partnership that happened in the past. He commented that in 1998 (the same year that Triana was proposed) he was also involved in proposal for Digital Earth. The guiding vision behind Digital Earth was to be able to hover over any point and drop down through successively more detailed layers. NASA contracted with a company called Keyhole, which Google acquired in the early 2000s. Gore raised this example to point out that Google Earth is the result of those initial efforts.
      Gore also connected this discussion to his work on Climate TRACE, which he had mentioned in his remarks earlier as a current example of public–private partnership. He stated that while we can see CH4 from space, the resolution is relatively low, i.e., a wide area must be scanned to get a CH4 measurement) and higher resolution is required to identify specific (or point) sources of CH4. Climate TRACE offers such higher resolution CH4 measurements, allowing researchers to focus more on identifying specific sources of pollution. By contrast the atmosphere is so enriched with CO2 that the signal-to-noise ratio is too high to measure the gas from space. For CO2 analysis, Climate TRACE uses AI to fuse together various images to allow CO2 to be detectable. The resulting measurements are precise enough to detect ripple ponds created by rotating fan blades.
      Closing Remarks
      Dalia Kirschbaum closed the meeting by thanking the guest of honor, Al Gore, once again for coming to the GSFC event. Gore not only spoke but was an active participant who demonstrated his knowledge of this subject area gained from years of experience working on climate issues. She quipped that “he’s the only former Vice President ever to use the Term signal-to-noise ratio correctly when talking to scientists.”.
      Kirschbaum also thanked everyone who participated in this event – including the over 800 online participants. While the discussions today offered numerous glimpses into the future of Earth remote-sensing observations, this information barely scratches the surface of all the work being carried out by scientists and engineers at NASA to make these plans a reality. She thanked all of those who work at NASA – who often put in long hours, quietly, behind the scenes without much recognition – for the work they do daily to enable NASA’s mission.
      Alan B. Ward
      NASA’s Goddard Space Flight Center/Global Science & Technology Inc.
      alan.b.ward@nasa.gov
      Share








      Details
      Last Updated Mar 11, 2025 Related Terms
      Earth Science View the full article
  • Check out these Videos

×
×
  • Create New...