Members Can Post Anonymously On This Site
42 USC Sec. 2466 Shuttle pricing policy; Congressional findings and declaration of purpose
-
Similar Topics
-
By NASA
The space shuttle Discovery launches from NASA’s Kennedy Space Center in Florida, heading through Atlantic skies toward its 51-D mission. The seven-member crew lifted off at 8:59 a.m. ET, April 12, 1985.NASA The launch of space shuttle Discovery is captured in this April 12, 1985, photo. This mission, STS-51D, was the 16th flight of NASA’s Space Shuttle program, and Discovery’s fourth flight.
Discovery carried out 39 missions, more than any other space shuttle. Its missions included deploying and repairing the Hubble Space Telescope and 13 flights to the International Space Station – including the very first docking in 1999. The retired shuttle now resides at the National Air and Space Museum’s Steven F. Udvar-Hazy Center in Virginia.
Learn more about NASA’s Space Shuttle Program.
Image credit: NASA
View the full article
-
By NASA
Explore This Section Science Science Activation Findings from the Field: A… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
Findings from the Field: A Research Symposium for Student Scientists
Within the scientific community, peer review has become the process norm for which an author’s research or ideas undergo careful examination by other experts in their field. It encourages each scientist to meet the high standards that they themselves, as writers and reviewers, have aided in setting. It has become essential to the academic writing practice.
Historically, the peer review process has been limited to higher education and scholars more established in their academic careers. It has been required by only the more reputable publications, which can mean that lesser-known journals that don’t require this rigorous peer review process contain lower quality or less reliable information.
In an effort to give scientists of all ages the opportunity to participate in and contribute to the advancement of human knowledge in a meaningful and reliable way, the Gulf of Maine Research Institute (GMRI) began publishing Findings from the Field, a journal of student ecological and environmental science, launched in 2017. Students conduct authentic scientific inquiry, subject their research to the peer review process, and submit their revised work for editorial board review before publication—the same process a NASA scientist must go through! This hands-on, real-world experience in scientific communication sharpens these young scientists’ skills and immerses them in the collaborative nature of research—an essential foundation for the next generation of scientists.
After 7 years and 7 published volumes, Findings from the Field was ready to expand, and the Findings Student Research Symposium was launched. The Symposium was a success from the start, with 65 student scientists joining the event the first year and attendance climbing to 95 for year two. On March 10, 2025, GMRI (the anchor institution for the NASA Science Activation program’s Learning Ecosystems Northeast (LENE) project) welcomed nearly 100 young scientists, ranging from grades 5-12. These students, representing eight schools across Maine and New Hampshire, came together to share their research and engage in an evolving, intergenerational scientific community—one that fosters curiosity, collaboration, and scientific discovery.
Students presented their research through posters and live presentations, covering topics ranging from invasive green crab species, to the changing landscapes of Ash and Hemlock trees, and more. By connecting students with professional researchers, fostering peer discussions, and providing a platform for publishing legitimate scientific work, the Findings Symposium is a launch pad for the future of the scientific community.
One important element of the Symposium is the opportunity for young scientists to dialogue with professional scientists. Students engaged with researchers from Markus Frederich’s lab at the University of New England, volunteers from local organizations like Unum and Avangrid, and expert staff from GMRI.
Student Madalyn Bartlett from Sacoppee Valley Middle School shared, “It makes me feel really proud, because I get to talk to professional scientists that have a lot of experience in this, and it make me feel like I am contributing to something bigger than my school and my community.”
These interactions emphasize that science isn’t confined to white coats and labs—it’s about curiosity, observation, and shared knowledge. The keynote speaker, Kat Gardner-Vandy from a former NASA Science Activation project team, Native Earth | Native Sky, reinforced this message, inspiring students to see themselves as vital contributors to science and our collective knowledge about the world.
The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about Learning Ecosystems Northeast: https://www.learningecosystemsnortheast.org/
Native Earth | Native Sky’s Kat Gardner-Vandy delivering the keynote speech to students at the Findings Symposium. Share
Details
Last Updated Apr 08, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation Earth Science Opportunities For Students to Get Involved Explore More
34 min read Style Guidelines for ‘The Earth Observer’ Newsletter
Article
2 hours ago
5 min read Connected Learning Ecosystems: Educators Gather to Empower Learners and Themselves
Article
24 hours ago
3 min read NSTA Hyperwall Schedule
Article
2 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
On March 6, 1985, NASA’s newest space shuttle, Atlantis, made its public debut during a rollout ceremony at the Rockwell International manufacturing plant in Palmdale, California. Under construction for three years, Atlantis joined NASA’s other three space-worthy orbiters, Columbia, Challenger, and Discovery, and atmospheric test vehicle Enterprise. Officials from NASA, Rockwell, and other organizations attended the rollout ceremony. By the time NASA retired Atlantis in 2011, it had flown 33 missions in a career spanning 26 years and flying many types of missions envisioned for the space shuttle. The Visitor Center at NASA’s Kennedy Space Center in Florida has Atlantis on display.
Space shuttle Atlantis under construction at Rockwell International’s Palmdale, California, plant in 1984. Credit/NASA. Atlantis during the rollout ceremony in Palmdale. Credit/NASA. Workers truck Atlantis from Palmdale to NASA’s Dryden, now Armstrong, Flight Research Center. Credit/NASA. On Jan. 25, 1979, NASA announced the names of the first four space-worthy orbiters – Columbia, Challenger, Discovery, and Atlantis. Like the other vehicles, NASA named Atlantis after an historical vessel of discovery and exploration – the Woods Hole Oceanographic Institute’s two-masted research ship Atlantis that operated from 1930 to 1966. On Jan. 29, NASA signed the contract with Rockwell International of Downey, California, to build and deliver Atlantis. Construction began in March 1980 and finished in April 1984. Nearly identical to Discovery but with the addition of hardware to support the cryogenic Centaur upper stage then planned to deploy planetary spacecraft in 1986, plans shelved following the Challenger accident. After a year of testing, workers prepared Atlantis for its public debut.
Atlantis arrives at NASA’s Dryden, now Armstrong, Flight Research Center to prepare for its cross-country ferry flight. Credit/NASA. Atlantis during an overnight stop at Ellington Air Force Base, now Ellington Field, in Houston. Credit/NASA. Atlantis arrives at NASA’s Kennedy Space Center in Florida.Credit/NASA. Three days after the rollout ceremony, workers trucked Atlantis 36 miles overland to NASA’s Dryden, now Armstrong, Flight Research Center at Edwards Air Force Base in California’s Mojave Desert, for final preparations for its cross-country ferry flight. In the Mate Demate Device, workers placed Atlantis atop the Shuttle Carrier Aircraft, a modified Boeing 747, to begin the ferry flight. The duo left Edwards on April 12, the fourth anniversary of the first space shuttle flight. Following an overnight stop at Houston’s Ellington Air Force Base, now Ellington Field, Atlantis arrived at NASA’s Kennedy Space Center in Florida on April 13.
Atlantis following its first rollout to Launch Pad 39A. Credit/NASA. The flight readiness firing of Atlantis’ three main engines.Credit/NASA. Liftoff of Atlantis on its first mission, STS-51J. Credit/NASA. Four months later, on Aug. 12, workers towed Atlantis from the processing facility to the assembly building and mated it to an external tank and twin solid rocket boosters. The entire stack rolled out to Launch Pad 39A on Aug. 30 in preparation for the planned Oct. 3 launch of the STS-51J mission. As with any new orbiter, on Sept. 13 NASA conducted a 20-second Flight Readiness Firing of Atlantis’ three main engines. On Sept. 16, the five-person crew participated in a countdown demonstration test, leading to an on time Oct. 3 launch. Atlantis had joined the shuttle fleet and begun its first mission to space.
Space shuttle Atlantis in the Visitor Center at NASA’s Kennedy Space Center in Florida. Credit/NASA. Over the course of its 33 missions spanning more than 26 years, Atlantis flew virtually every type of mission envisioned for the space shuttle, including government and commercial satellite deployments, deploying spacecraft to visit interplanetary destinations, supporting scientific missions, launching and servicing scientific observatories such as the Hubble Space Telescope, performing crew rotations and resupplying the Mir space station, and assembling and maintaining the International Space Station. Atlantis flew the final mission of the shuttle program, STS-135, in July 2011. The following year, NASA transported Atlantis to the Kennedy Visitor Center for public display.
Explore More
7 min read 40 Years Ago: Space Shuttle Discovery Makes its Public Debut
Article 1 year ago 14 min read 40 Years Ago: STS-4, Columbia’s Final Orbital Flight Test
Article 3 years ago 6 min read 45 Years Ago: Space Shuttle Enterprise Makes its Public Debut
Article 3 years ago View the full article
-
By NASA
On Feb. 11, 2000, space shuttle Endeavour took to the skies on its 14th trip into space on the Shuttle Radar Topography Mission (SRTM). The international STS-99 crew included Commander Kevin Kregel, Pilot Dominic Gorie, and Mission Specialists Gerhard Thiele of Germany representing the European Space Agency, Janet Kavandi, Janice Voss, who served as payload commander on the mission, and Mamoru Mohri of the National Space Development Agency (NASDA) of Japan, now the Japan Aerospace Exploration Agency.
During their 11-day mission, the astronauts used the radar instruments in Endeavour’s payload bay to obtain elevation data on a near global scale. The data produced the most complete, high-resolution digital elevation model of the Earth. The SRTM comprised a cooperative effort among NASA with the Jet Propulsion Laboratory (JPL) in Pasadena, California, managing the project, the Department of Defense’s National Imagery and Mapping Agency, the German space agency, and the Italian space agency. Prior to SRTM, scientists had a more detailed topographic map of Venus than of the Earth, thanks to the Magellan radar mapping mission.
The STS-99 crew patch. Official photo of the STS-99 crew of Janice Voss, left, Mamoru Mohri of the National Space Development Agency of Japan, now the Japan Aerospace Exploration Agency, Kevin Kregel, Dominic Gorie, Gerhard Thiele of Germany representing the European Space Agency, and Janet Kavandi. The Shuttle Radar Topography Mission patch. Schematic of the Space Radar Topography Mission payloads including the deployed mast. The mast antenna during preflight processing. NASA assigned the STS-99 crew in October 1998. For Kregel, selected by NASA as an astronaut in 1992, STS-99 marked his fourth trip to space, having served as pilot on STS-70 and STS-78 and commanded STS-87. Gorie and Kavandi, both selected in 1994, previously flew together as pilot and mission specialist, respectively, on STS-91, the final Shuttle Mir docking mission. Voss, selected in 1990, served as a mission specialist on STS-57 and STS-63, and as payload commander on STS-83 and STS-94. NASDA selected Mohri as an astronaut in 1985 and he previously flew as a payload specialist on STS-47, the Spacelab-J mission. Selected as an astronaut by the German space agency in 1987, Thiele joined the European Astronaut Corps in 1998, completing his first spaceflight on STS-99.
The SRTM used an innovative technique called radar interferometry to image the Earth’s landmasses at resolutions up to 30 times greater than previously achieved. Two of the synthetic aperture radar instruments comprising the SRTM payload had flown previously, on the STS-59 Shuttle Radar Laboratory-1 (SRL-1) and the STS-68 SRL-2 missions in April and October 1994, respectively. A second receiver antenna, placed at the end of a 200-foot deployable mast, enabled the interferometry during SRTM.
The SRTM payload in Endeavour’s cargo bay in the orbiter processing facility. Endeavour rolls out to Launch Pad 39A. The STS-99 crew walks out of crew quarters for the van ride to the launch pad. Workers rolled Endeavour to the Vehicle Assembly Building on Dec. 2 for mating with its external tank and solid rocket boosters, and then out to Launch Pad 39A on Dec. 13. The astronauts traveled to Kennedy to participate in the Terminal Countdown Demonstration Test Jan. 11-14, returning afterwards to Houston for final training. They traveled back to Kennedy on Jan. 27 for the first launch attempt four days later. After two launch attempts, the STS-99 mission prepared to liftoff on Feb. 11, 2000.
Liftoff! Space shuttle Endeavour takes to the skies to begin the STS-99 mission. At 12:43 p.m. EST, Endeavour thundered into the sky from Kennedy’s Launch Pad 39A to begin the STS-99 mission. Thirty-seven minutes later, a brief firing of the orbiter’s two engines placed Endeavour in the proper 145-mile orbit for the radar scanning.
The SRTM instruments in Endeavour’s payload bay with the mast holding the second antenna receiver deployed at right. The antenna at the end of the deployed mast. STS-99 astronauts Janet Kavandi, left, Dominic Gorie, and Mamoru Mohri in Endeavour’s middeck. Astronaut Janice Voss in the commander’s seat on Endeavour’s flight deck. Astronauts Kevin Kregel, left, and Gerhard Thiele on Endeavour’s flight deck. Shortly after reaching orbit, the crew opened the payload bay doors and deployed the shuttle’s radiators. Kavandi and Thiele turned on the instruments, deployed the 200-foot mast, and conducted initial checkouts of the radars. The crew split into two shifts to enable data collection around the clock during the mission. After overseeing the initial activation of the radars, the red shift of Kregel, Kavandi, and Thiele began their first sleep period as the blue shift of Gorie, Voss, and Mohri picked up with activation and began the first data takes.
The major crew activity for SRTM involved changing tapes every 30 minutes. The SRTM generated 332 high density tapes during more than 222 hours of data collection and these recordings covered 99.96 percent of the planned observations. Data collection finished on the mission’s 10th flight day, after which the astronauts reeled the mast back into its container in the payload bay.
EarthKAM image of the greater Boston area. The EarthKAM camera mounted in a space shuttle window. STS-99 crew Earth observation photograph of El Paso, Texas, and Ciudad Juarez, Mexico. STS-99 crew Earth observation photograph of the Galapagos Islands. STS-99 crew Earth observation photograph of the greater New York area. STS-99 crew Earth observation photograph of Erg Chech, or sand sea, in the Algerian Sahara. NASA’s EarthKAM program enabled middle school students to remotely take photographs of the Earth using an electronic still camera mounted in one of the shuttle’s windows. The University of California at San Diego houses the control center for EarthKAM, linked with middle schools via the Internet. Students choose Earth targets of interest, and the camera takes photos of that region as the shuttle passes overhead. A then-record 75 schools from around the world participated in the EarthKAM project on STS-99, the camera returning 2,715 images of the Earth.
The STS-99 astronauts also spent time taking photographs of the Earth using handheld cameras and the high inclination orbit enabled views of some parts of the Earth rarely seen by shuttle astronauts.
The six-person STS-99 crew pose for their inflight photo. Kevin Kregel guides Endeavour to a smooth touchdown on the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. The STS-99 crew poses with NASA Administrator Daniel Goldin under Endeavour at the Shuttle Landing Facility at NASA’s Kennedy Space Center in Florida. Kevin Kregel addresses the crowd at Houston’s Ellington Field during the welcome home ceremony for the STS-99 crew. On Feb. 22, the crew closed Endeavour’s payload bay doors, donned their launch and entry suits, and strapped themselves into their seats for entry and landing. Kregel piloted Endeavour to a smooth landing on Kennedy’s Shuttle Landing Facility. The crew had flown 181 orbits around the Earth in 11 days, 5 hours, and 39 minutes. Enjoy the crew narrate a video about the STS-99 mission.
Postscript
Final coverage map for the SIR-C radar, indicating 99.96 percent coverage of planned land mass targets, with many areas imaged more than once.
False-color image generated from SRTM data of the island of Oahu. False-color image generated from SRTM data of Mt. Cotopaxi in Ecuador, the tallest active volcano in the world. During the 11-day mission, SRTM collected more than one trillion data points, generating 12.3 terabytes of 3-D data of the Earth. Earnest Paylor, SRTM program scientist at NASA Headquarters in Washington, D.C., called the mission “a magnificent accomplishment.” He cited that SRTM imaged by radar equatorial regions of the Earth previously unmapped due to constant cloud cover.
Explore More
12 min read 30 Years Ago: STS-68 The Second Space Radar Lab Mission
Article 5 months ago 22 min read 35 Years Ago: NASA Selects its 13th Group of Astronauts
Article 4 weeks ago 17 min read 30 Years Ago: NASA Selects its 15th Group of Astronauts
Article 2 months ago View the full article
-
By NASA
NASA Blue mach diamonds from the main engine nozzles and bright exhaust from the solid rocket boosters mark the successful launch of space shuttle Endeavour 25 years ago on Feb. 11, 2000. The STS-99 mission crew – including astronauts from NASA, the National Space Development Agency of Japan (NASDA), and the European Space Agency (ESA) – were aboard the shuttle.
This mission saw the deployment of the Shuttle Radar Topography Mission mast and the antenna turned to its operation position. After a successful checkout of the radar systems, mapping began less than 12 hours after launch. Crewmembers split into two shifts so they could work around the clock.
Also aboard Endeavour was a student experiment called EarthKAM, which took 2,715 digital photos during the mission through an overhead flight-deck window. The NASA-sponsored program lets middle school students select photo targets and receive the images via the Internet.
Image credit: NASA
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.