Jump to content

Cross-­‐Waiver/Indemnification Authority (developer of experimental aerospace vehicle) -­ 42 U.S.C. 2458c


NASA

Recommended Posts

  • Publishers

(a) In General. – The Administrator may provide liability insurance for, or indemnification to, the developer of an experimental aerospace vehicle developed or used in execution of an agreement between the Administration and the developer.

(b) Terms and Conditions. –

    (1) In general.
    Except as otherwise provided in this section, the insurance and indemnification provided by the Administration under subsection (a) to a developer shall be provided on the same terms and conditions as insurance and indemnification is provided by the Administration under section 308 of the National Aeronautics and Space Act of 1958 (42 U.S.C. 2458b) to the user of a space vehicle.
    (2) Insurance.

    (A) In general. – A developer shall obtain liability insurance or demonstrate financial responsibility in amounts to compensate for the maximum probable loss from claims by – (i) a third party for death, bodily injury, or property damage, or loss resulting from an activity carried out in connection with the development or use of an experimental aerospace vehicle; and (ii) the United States Government for damage or loss to Government property resulting from such an activity.
    (B) Maximum required. – The Administrator shall determine the amount of insurance required, but, except as provided in subparagraph (C), that amount shall not be greater than the amount required under section 70112(a)(3) of title 49, United States Code, for a launch. The Administrator shall publish notice of the Administrator’s determination and the applicable amount or amounts in the Federal Register within 10 days after making the determination.
    (C) Increase in dollar amounts. – The Administrator may increase the dollar amounts set forth in section 70112(a)(3)(A) of title 49, United States Code, for the purpose of applying that section under this section to a developer after consultation with the Comptroller General and such experts and consultants as may be appropriate, and after publishing notice of the increase in the Federal Register not less than 180 days before the increase goes into effect. The Administrator shall make available for public inspection, not later than the date of publication of such notice, a complete record of any correspondence received by the Administration, and a transcript of any meetings in which the Administration participated, regarding the proposed increase.
    (D) Safety review required before administrator provides insurance. – The Administrator may not provide liability insurance or indemnification under subsection (a) unless the developer establishes to the satisfaction of the Administrator that appropriate safety procedures and practices are being followed in the development of the experimental aerospace vehicle.

    (3) No indemnification without cross-waiver.
    Notwithstanding subsection (a), the Administrator may not indemnify a developer of an experimental aerospace vehicle under this section unless there is an agreement between the Administration and the developer described in subsection (c).

    (4) Application of certain procedures.
    If the Administrator requests additional appropriations to make payments under this section, like the payments that may be made under section 308(b) of the National Aeronautics and Space Act of 1958 (42 U.S.C. 2458b(b)), then the request for those appropriations shall be made in accordance with the procedures established by subsections (d) and (e) of section 70113 of title 49, United States Code.


(c) Cross-Waivers. –

    (1) Administrator authorized to waive. – The Administrator, on behalf of the United States, and its departments, agencies, and related entities, may reciprocally waive claims with a developer and with the related entities of that developer under which each party to the waiver agrees to be responsible, and agrees to ensure that its own related entities are responsible, for damage or loss to its property for which it is responsible, or for losses resulting from any injury or death sustained by its own employees or agents, as a result of activities connected to the agreement or use of the experimental aerospace vehicle.
    (2) Limitations.

    (A) Claims. – A reciprocal waiver under paragraph (1) may not preclude a claim by any natural person (including, but not limited to, a natural person who is an employee of the United States, the developer, or the developer’s subcontractors) or that natural person’s estate, survivors, or subrogees for injury or death, except with respect to a subrogee that is a party to the waiver or has otherwise agreed to be bound by the terms of the waiver.
    (B) Liability for negligence. – A reciprocal waiver under paragraph (1) may not absolve any party of liability to any natural person (including, but not limited to, a natural person who is an employee of the United States, the developer, or the developer’s subcontractors) or such a natural person’s estate, survivors, or subrogees for negligence, except with respect to a subrogee that is a party to the waiver or has otherwise agreed to be bound by the terms of the waiver.
    (C) Indemnification for damages. – A reciprocal waiver under paragraph (1) may not be used as the basis of a claim by the Administration or the developer for indemnification against the other for damages paid to a natural person, or that natural person’s estate, survivors, or subrogees, for injury or death sustained by that natural person as a result of activities connected to the agreement or use of the experimental aerospace vehicle.

    (3) Effect on previous waivers.
    Subsection (c) applies to any waiver of claims entered into by the Administration without regard to whether it was entered into before, on, or after the date of the enactment of this Act (Oct. 21, 1998).


(d) Definitions. – In this section:

    (1) Administration. – The term ‘Administration’ means the National Aeronautics and Space Administration.
    (2) Administrator. – The term ‘Administrator’ means the Administrator of the National Aeronautics and Space Administration.
    (3) Common terms. – Any term used in this section that is defined in the National Aeronautics and Space Act of 1958 (42 U.S.C. 2451 et seq.) has the same meaning in this section as when it is used in that Act.
    (4) Developer. – The term ‘developer’ means a United States person (other than a natural person) who – ”(A) is a party to an agreement that was in effect before the date of the enactment of this Act (Oct. 21, 1998) with the Administration for the purpose of developing new technology for an experimental aerospace vehicle; ”(B) owns or provides property to be flown or situated on that vehicle; or ”(C) employs a natural person to be flown on that vehicle.
    (5) Experimental aerospace vehicle. – The term ‘experimental aerospace vehicle’ means an object intended to be flown in, or launched into, suborbital flight for the purpose of demonstrating technologies necessary for a reusable launch vehicle, developed under an agreement between the Administration and a developer that was in effect before the date of the enactment of this Act (Oct. 21, 1998).
    (6) Related entity. – The term ‘related entity’ includes a contractor or subcontractor at any tier, a supplier, a grantee, and an investigator or detailee.


(e) Relationship to Other Laws.

    (1) Section 308 of national aeronautics and space act of 1958. – This section does not apply to any object, transaction, or operation to which section 308 of the National Aeronautics and Space Act of 1958 (42 U.S.C. 2458b) applies.
    (2) Chapter 701 of title 49, united states code. – The Administrator may not provide indemnification to a developer under this section for launches subject to license under section 70117(g)(1) of title 49, United States Code.


(f) Termination.

    (1) In general. – The provisions of this section shall terminate on December 31, 2002, except that the Administrator may extend the termination date to a date not later than September 30, 2005, if the Administrator determines that such an extension is necessary to cover the operation of an experimental aerospace vehicle.
    (2) Effect of termination on agreements. – The termination of this section does not terminate or otherwise affect a cross-waiver agreement, insurance agreement, indemnification agreement, or any other agreement entered into under this section except as may be provided in that agreement.

    – Source –

    Pub. L. 105-276, title IV, Sec. 431, Oct. 21, 1998, 112 Stat. 2513.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      This artist concept shows a NASA-developed small-core jet engine installed in General Electric Aerospace’s CFM RISE jet engine design. The more fuel-efficient small core powers a large open turbofan, which also helps increase efficiency. The effort is part of NASA’s Sustainable Flight National Partnership to help inform the next generation of ultra-efficient airliners.GE Aerospace Hybrid-electric cars have been a staple of the road for many years now.
      Soon that same idea of a part-electric-, part-gas-powered engine may find its way into the skies propelling a future jet airliner.
      NASA is working in tandem with industry partner GE Aerospace on designing and building just such an engine, one that burns much less fuel by including new components to help electrically power the engine.
      In this hybrid jet engine, a fuel-burning core powers the engine and is assisted by electric motors. The motors produce electric power, which is fed back into the engine itself—therefore reducing how much fuel is needed to power the engine in the first place.
      It really opens the door for more sustainable aviation even beyond the 2030s.
      Anthony nerone
      NASA Project Manager
      High Tech Hybrid-Electric
      The work is happening as part of NASA’s Hybrid Thermally Efficient Core (HyTEC) project. This work intends to demonstrate this engine concept by the end of 2028 to enable its use on airliners as soon as the 2030s.
      It represents a major step forward in jet engine technology.
      This jet engine would be the first ever mild hybrid-electric jet engine. A “mild hybrid” engine can be powered partially by electrical machines operating both as motors and generators.
      “This will be the first mild hybrid-electric engine and could lead to the first production engine for narrow-body airliners that’s hybrid electric,” said Anthony Nerone, who leads the HyTEC project from NASA’s Glenn Research Center in Cleveland. “It really opens the door for more sustainable aviation even beyond the 2030s.”
      The hybrid-electric technology envisioned by NASA and GE Aerospace also could be powered by a new small jet engine core.
      A major HyTEC project goal is to design and demonstrate a jet engine that has a smaller core but produces about the same amount of thrust as engines being flown today on single-aisle aircraft.
      At the same time, the smaller core technology aims to reduce fuel burn and emissions by an estimated 5 to 10%.
      Michael Presby, a research materials engineer at NASA’s Glenn Research Center in Cleveland, adjusts an infrared thermal imaging camera used to monitor the temperature profile of a NASA-developed, high-temperature environmental barrier coating deposited on a ceramic matrix composite in support of the agency’s HyTEC project. The composite’s environmental barrier coating surface temperature is 3,000 degrees Fahrenheit.NASA / Bridget Caswell How Does It Work?
      A GE Aerospace Passport engine is being modified with hybrid electric components for testing.
      “Today’s jet engines are not really hybrid electric,” Nerone said. “They have generators powering things like lights, radios, TV screens, and that kind of stuff. But not anything that can power the engines.”
      The challenge is figuring out the best times to use the electric motors.
      “Later this year, we are doing some testing with GE Aerospace to research which phases of flight we can get the most fuel savings,” Nerone said.
      Embedded electric motor-generators will optimize engine performance by creating a system that can work with or without energy storage like batteries. This could help accelerate the introduction of hybrid-electric technologies for commercial aviation prior to energy storage solutions being fully matured.
      “Together with NASA, GE Aerospace is doing critical research and development that could help make hybrid-electric commercial flight possible,” said Arjan Hegeman, general manager of future of flight technologies at GE Aerospace.
      The technologies related to HyTEC are among those GE Aerospace is working to mature and advance under CFM International’s Revolutionary Innovation for Sustainable Engines (RISE) program. CFM is a joint venture between GE Aerospace and Safran Aircraft Engines. CFM RISE, which debuted in 2021, encompasses a suite of technologies including advanced engine architectures and hybrid electric systems aimed at being compatible with 100% Sustainable Aviation Fuel.
      HyTEC, part of NASA’s Advanced Air Vehicles Program, is a key area of NASA’s Sustainable Flight National Partnership, which is collaborating with government, industry, and academic partners to address the U.S. goal of net-zero greenhouse gas emissions in aviation by the year 2050.
      About the Author
      John Gould
      Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
      Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
      5 min read Air Traffic Management – eXploration (ATM-X) Description
      Article 6 days ago 1 min read Gateway Space Station in 3D
      Article 6 days ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 2 weeks ago Keep Exploring Discover More Topics From NASA
      Missions
      Artemis
      Aeronautics STEM
      Explore NASA’s History
      Share
      Details
      Last Updated Sep 16, 2024 EditorJim BankeContactBrian Newbacherbrian.t.newbacher@nasa.gov Related Terms
      Aeronautics Advanced Air Vehicles Program Aeronautics Research Mission Directorate Glenn Research Center Green Aviation Tech Hybrid Thermally Efficient Core View the full article
    • By NASA
      For 25 years, the Office of STEM Engagement (OSTEM) at NASA’s Johnson Space Center has inspired and provided high school students across the state of Texas with NASA-focused learning experiences through the High School Aerospace Scholars (HAS) program. The OSTEM team celebrated the milestone on Monday, July 29 at Johnson’s Gilruth Center with poster sessions, special presentations, and a networking reception.

      Fifty-one students who participated in the 2024 High School Aerospace Scholars program were invited to NASA’s Johnson Space Center in Houston to participate in an on-site experience. NASA/James Blair An authentic STEM learning experience for Texas high school juniors, HAS provides opportunities for students to engage with NASA’s missions and become the next generation of explorers. The year-long program begins in the fall with an online, state-aligned STEM learning experience focused on Earth science, technology, aeronautics, the solar system, the International Space Station, and NASA’s Moon to Mars exploration approach. Students engage in approximately four months of virtual learning through curriculum including interactive lessons, rubric-based activities, and quizzes.

      Students who complete the online courses with an overall average of 70% or greater receive an invitation to a five-day virtual summer experience called Moonshot. While actively mentored by NASA scientists and engineers, students work with a team to complete an Artemis-themed Moon to Mars mission and design challenge. The summer session also includes numerous gamified activities and guidance towards pathways to STEM careers.

      High School Aerospace Scholars collaborated on an engineering design challenge during their on-site experience at Johnson Space Center. NASA/Bill Stafford The top performing Moonshot teams are then invited to a four-day residential experience at Johnson, with lodging, meals, and transportation provided at no cost to the students. During the on-site session, students participate in NASA facility tours, complete engineering design challenges, and meet with NASA scientists and engineers who offer guidance on STEM careers. At the completion of the program, students can earn up to one full science elective credit for school.

      The HAS 25th anniversary celebration coincided with this year’s on-site experience. During the 2023-2024 school year, 798 students participated in the HAS online course, with 359 advancing to the summer Moonshot experience. The top six Moonshot teams (51 students) were invited to Johnson.

      High School Aerospace Scholars presented their Moonshot projects to Johnson Space Center team members during a poster session. NASA/James Blair The 51 selected students kicked off the anniversary celebration with a poster session to present their Moonshot projects. Following the session, students heard from Johnson Center Director Vanessa Wyche and Deputy Director Steve Koerner during a fireside chat. Speakers included Pam Melroy, NASA Deputy Administrator; Arturo Sanchez, Johnson External Relations Office Director; Mike Kincaid, NASA OSTEM Associate Administrator; Greg Bonnen, member of the Texas House of Representatives; Brian Freedman, Bay Area Houston Economic Partnership President; and Shelly Tornquist, director of Texas A&M University College of Engineering’s education outreach program, Spark!

      NASA astronaut Mike Fincke meets with 2024 High School Aerospace Scholars.NASA/Helen Arase Vargas Other notable attendees included NASA astronaut Mike Fincke, HAS activity managers from the past 25 years, and current HAS activity manager, Jakarda Varnado.

      Continuing the celebration, HAS hosted the second annual Alumni Social on Wednesday, July 31 encouraging current and former HAS students and mentors to connect over lunch. The annual student rocket launch was also held onsite on Thursday, August 1.
      2024 High School Aerospace Scholars prepare their model rockets for launch during the program’s on-site activities at Johnson Space Center. NASA/Josh Valcarcel Additionally, the HAS team activated a mobile exhibit at two different on-site locations throughout the week. Over 150 guests stopped by the exhibit, which featured a HAS video montage and the opportunity to touch a lunar sample. Several of the visitors communicated their appreciation for HAS, noting the program has made significant impact on their children’s motivation, school performance, and career paths. Many alumni have gone on to pursue careers within STEM, including nearly 30 HAS participants who have been employed by NASA within the past five years.

      2024 High School Aerospace Scholars connected with program alumni and HAS mentors during the Alumni Social held onsite at Johnson Space Center. NASA/Helen Arase Vargas For alumni who wish to continue their experience beyond the year-long program, HAS recently launched a mentorship course, for high school seniors. The course contains modules about leadership and STEM career opportunities and was designed to continue to engage the students as they prepare for the next step in their education or to launch their careers. Alumni also act as an additional layer of support for the junior scholars as they navigate their HAS experience.

      HAS is made possible through collaborations among NASA, the State of Texas, Bay Area Houston Economic Partnership, Texas A&M Engineering Experiment Station, Houston Livestock Show and Rodeo, and Rotary National Award for Space Achievement.

      Applications will reopen in September for students interested in participating in the 2025 HAS experience.
      View the full article
    • By NASA
      NASA is preparing space at the agency’s Kennedy Space Center in Florida for upcoming assembly activities of the SLS (Space Launch System) rocket core stage for future Artemis missions, beginning with Artemis III.
      Teams are currently outfitting the assembly building’s High Bay 2 for future vertical assembly of the rocket stage that will help power NASA’s Artemis campaign to the Moon. During Apollo, High Bay 2, one of four high bays inside the Vehicle Assembly Building, was used to stack the Saturn V rocket. During the Space Shuttle Program, the high bay was used for external tank checkout and storage and as a contingency storage area for the shuttle.
      Technicians are building tooling in High Bay 2 at NASA Kennedy that will allow NASA and Boeing, the SLS core stage lead contractor, to vertically integrate the core stage. NASA Michigan-based Futuramic is constructing the tooling that will hold the core stage in a vertical position, allowing NASA and Boeing, the SLS core stage lead contractor, to integrate the SLS rocket’s engine section and four RS-25 engines to finish assembly of the rocket stage. Vertical integration will streamline final production efforts, offering technicians 360-degree access to the stage both internally and externally.
      “The High Bay 2 area at NASA Kennedy is critical for work as SLS transitions from a developmental to operational model,” said Chad Bryant, deputy manager of the SLS Stages Office. “While teams are stacking and preparing the SLS rocket for launch of one Artemis mission, the SLS core stage for another Artemis mission will be taking shape just across the aisleway.”
      Under the new assembly model beginning with Artemis III, all the major structures for the SLS core stage will continue to be fully produced and manufactured at NASA’s Michoud Assembly Facility in New Orleans. Upon completion of manufacturing and thermal protection system application, the engine section will be shipped to NASA Kennedy for final outfitting. Later, the top sections of the core stage – the forward skirt, intertank, liquid oxygen tank, and liquid hydrogen tank – will be outfitted and joined at NASA Michoud and shipped to NASA Kennedy for final assembly.
      The fully assembled core stage for Artemis II arrived at Kennedy on July 23. NASA’s Pegasus barge delivered the SLS engine section for Artemis III to Kennedy in December 2022. Teams at NASA Michoud are outfitting the remaining core stage elements and preparing to horizontally join them. The four RS-25 engines for the Artemis III mission are complete at NASA’s Stennis Space Center in Bay St. Louis, Mississippi, and will be transported to NASA Kennedy in 2025. Major core stage and exploration upper stage structures are in work at NASA Michoud for Artemis IV and beyond.
      NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch.
      News Media Contact
      Jonathan Deal
      Marshall Space Flight Center
      Huntsville, Ala.
      256-544-0034
      View the full article
    • By NASA
      Linda Krause and Heidi Haviland (ST13) along with Jeff Apple, Miguel Rodriguez-Otero (ES11), Kurt Dietz (ES52), and Gary Thornton (ES21) contributed to the Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) proposal LVACCS that was selected for funding. Omar Leon (University of Michigan) is the instrument suite PI. Electric charge accumulates on the lunar rovers and landers from ambient plasma, ionizing radiation, suprathermal charged particles, dust, and surface regolith. LVACCS will measure both the positive and negative charge, acts to discharge negative charge buildup, and actively charges the vehicle to a known positive potential. This increases the accuracy and precision of related instruments including dust, plasma, and electric fields. LVACCS builds from heritage systems in geosynchronous orbit but with a much smaller size, weight, and power. LVACCS has two main components: a collimated photoelectron gun (CPEG, led by MSFC), and a spacecraft charge detector (led by the University of Michigan). Within the two years of the award, the instrument will mature from TRL 2 to 5. LVACCS solves the important and timely problem of charge build up at the lunar surface for future lander and rover missions.

      View the full article
    • By Space Force
      Two procurement experts from the Space Force are the first Guardian civilians to graduate from the demanding “Azimuth” aerospace missions training program for early career personnel.

      View the full article
  • Check out these Videos

×
×
  • Create New...