Members Can Post Anonymously On This Site
Human Resources
-
Similar Topics
-
By NASA
NASA’s Human Landing System (HLS) will transport the next astronauts that land on the Moon, including the first woman and first person of color, beginning with Artemis III. For safety and mission success, the landers and other equipment in development for NASA’s Artemis campaign must work reliably in the harshest of environments.
The Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, provides engineers with thermal analysis of materials that may be a prototype or in an early developmental stage using a vacuum chamber, back left, and a conduction chamber, right. NASA/Ken Hall Engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are currently testing how well prototype insulation for SpaceX’s Starship HLS will insulate interior environments, including propellant storage tanks and the crew cabin. Starship HLS will land astronauts on the lunar surface during Artemis III and Artemis IV.
Marshall’s Hub for Innovative Thermal Technology Maturation and Prototyping (HI-TTeMP) laboratory provides the resources and tools for an early, quick-check evaluation of insulation materials destined for Artemis deep space missions.
“Marshall’s HI-TTeMP lab gives us a key testing capability to help determine how well the current materials being designed for vehicles like SpaceX’s orbital propellant storage depot and Starship HLS, will insulate the liquid oxygen and methane propellants,” said HLS chief engineer Rene Ortega. “By using this lab and the expertise provided by the thermal engineers at Marshall, we are gaining valuable feedback earlier in the design and development process that will provide additional information before qualifying hardware for deep space missions.”
A peek inside the conductive test chamber at NASA Marshall’s HI-TTeMP lab where thermal engineers design, set up, execute, and analyze materials destined for deep space to better understand how they will perform in the cold near-vacuum of space. NASA/Ken Hall On the Moon, spaceflight hardware like Starship HLS will face extreme temperatures. On the Moon’s south pole during lunar night, temperatures can plummet to -370 degrees Fahrenheit (-223 degrees Celsius). Elsewhere in deep space temperatures can range from roughly 250 degrees Fahrenheit (120 degrees Celsius) in direct sunlight to just above absolute zero in the shadows.
There are two primary means of managing thermal conditions: active and passive. Passive thermal controls include materials such as insulation, white paint, thermal blankets, and reflective metals. Engineers can also design operational controls, such as pointing thermally sensitive areas of a spacecraft away from direct sunlight, to help manage extreme thermal conditions. Active thermal control measures that could be used include radiators or cryogenic coolers.
Engineers use two vacuum test chambers in the lab to simulate the heat transfer effects of the deep space environment and to evaluate the thermal properties of the materials. One chamber is used to understand radiant heat, which directly warms an object in its path, such as when heat from the Sun shines on it. The other test chamber evaluates conduction by isolating and measuring its heat transfer paths.
NASA engineers working in the HI-TTeMP lab not only design, set up, and run tests, they also provide insight and expertise in thermal engineering to assist NASA’s industry partners, such as SpaceX and other organizations, in validating concepts and models, or suggesting changes to designs. The lab is able to rapidly test and evaluate design updates or iterations.
NASA’s HLS Program, managed by NASA Marshall, is charged with safely landing astronauts on the Moon as part of Artemis. NASA has awarded contracts to SpaceX for landing services for Artemis III and IV and to Blue Origin for Artemis V. Both landing services providers plan to transfer super-cold propellant in space to send landers to the Moon with full tanks.
With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the HLS, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.
For more on HLS, visit:
https://www.nasa.gov/humans-in-space/human-landing-system
News Media Contact
Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256.544.0034
corinne.m.beckinger@nasa.gov
Explore More
8 min read Preguntas frecuentes: La verdadera historia del cuidado de la salud de los astronautas en el espacio
Article 1 day ago 6 min read FAQ: The Real Story About Astronaut Health Care in Space
Article 1 day ago 3 min read Ready, Set, Action! Our Sun is the Star in Dazzling Simulation
Article 1 day ago
r
View the full article
-
By European Space Agency
The Space Resources Challenge was launched last week, an opportunity for innovators to pioneer the technologies that will help humankind live and work sustainably on the Moon.
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Expedition 64 Flight Engineer Victor Glover of NASA sips on a water bag. The latest book marks our third effort to review available literature regarding the role of nutrition in astronaut health. In 2009, we reviewed the existing knowledge and history of human nutrition for spaceflight, with a key goal of identifying additional data that would be required before NASA could confidently reduce the risk of an inadequate food system or inadequate nutrition to as low as possible in support of human expeditions to the Moon or Mars. We used a nutrient-by-nutrient approach to address this effort, and we included a brief description of the space food systems during historical space programs.
In 2014, we published a second volume of the book, which was not so much a second edition, but rather a view of space nutrition from a different perspective. This volume updated research that had been published in the intervening 6 years and addressed space nutrition with a more physiological systems-based approach.
The current version is an expanded, updated version of that second book, providing both a systems approach overall, but also including details of nutrients and their roles within each system. As such, this book is divided into chapters based on physiological systems (e.g., bone, muscle, ocular); highlighted in each chapter are the nutrients associated with that particular system. We provide updated information on space food
systems and constraints of the same, and provide dietary intake data from International Space Station (ISS) astronauts.
We present data from ground-based analog studies, designed to mimic one or more conditions similar to those produced by spaceflight. Head-down tilt bed rest is a common analog of the general (and specifically musculoskeletal) disuse of spaceflight. Nutrition research from Antarctica relies on the associated confinement
and isolation, in addition to the lack of sunlight exposure during the winter months. Undersea habitats help expand our understanding of nutritional changes in a confined space with a hyperbaric atmosphere. We also review spaceflight research, including data from now “historical” flights on the Space Shuttle, data from the Russian space station Mir, and earlier space programs such as Apollo and Skylab. The ISS, now more than
20 years old, has provided (and continues to provide) a wealth of nutrition findings from extended-duration spaceflights of 4 to 12 months. We review findings from this platform as well, providing a comprehensive review of what is known regarding the role of human nutrition in keeping astronauts healthy.
With this latest book, we hope we have accurately captured the current state of the field of space food and nutrition, and that we have provided some guideposts for work that remains to be done to enable safe and successful human exploration beyond low-Earth orbit.
Human Adaptation to Spaceflight: The Role of Food and Nutrition – 2nd Edition
Download 2nd Edition PDF
Human Adaptation to Spaceflight: The Role of Food and Nutrition – 1st Edition
Download 1st Edition PDF
Education and Outreach Share
Details
Last Updated Oct 23, 2024 EditorRobert E. LewisLocationJohnson Space Center Related Terms
Human Health and Performance Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
NASA canvases the areas impacted by Hurricane Milton using cloud-penetrating L-band radar providing responders insight into flooding across Florida.NASA In the wake of Hurricane Milton, NASA is deploying resources to support Federal Emergency Management Agency (FEMA) and state emergency management agencies to aid their response effort including satellite and aerial data collection.
The agency’s Disasters Response Coordination System and Airborne Science Program are began conducting flights Friday to provide emergency responders with better insight into flooding, damage in Florida, and debris.
“After the devastating impact from hurricanes Helene and Milton, NASA immediately sprang into action,” said Karen St. Germain, director, Earth Sciences Division at NASA Headquarters in Washington. “Whether it is through observations from space or from airplanes, NASA is ready to assist communities affected by severe storms. We are working together with our federal and state partners to provide a better understanding of what is happening on the ground, in real time. NASA’s Disasters Response Coordination System was designed with the goal of delivering trusted, actionable Earth science information, where and when people need it, to enable effective response when these events strike.”
NASA’s Uninhabited Aerial Synthetic Aperture Radar Vehicle (UAVSAR) instrument is gathering rapid wide area L-Band synthetic aperture radar data shared directly with FEMA and other organizations. Flights are coordinated directly with FEMA to augment their existing satellite and aerial data collection.
Since Hurricane Milton struck, persistent cloud cover over the State of Florida has made it challenging to obtain optical satellite observations of conditions in the region. Synthetic aperture radar instruments, such as those aboard UAVSAR, can see through the clouds to observe changes on the ground. This provides much-needed observations of flood inundation across communities in Florida, as well as the extent of inland river flooding and resource deployment.
The Disaster Response Coordination System has been working closely with FEMA and state emergency management agencies to aid response efforts as Hurricane Milton approached and impacted Florida. The team is actively sharing resources with other agency partners, the state of Florida, and disaster response non-profit organizations.
NASA continues to determine the needs of its partners and is sharing maps and data on the NASA Disasters Mapping Portal as they become available.
Hurricane Milton caused significant wind, flooding, power outages, and damage across central Florida, from Sarasota and Tampa to Palm Springs and the Space Coast. Impacts are currently being assessed alongside lifesaving operations and emergency repairs. The Disasters Response Coordination System is collaborating directly with FEMA, the State of Florida Geospatial Information Office, U.S. Geological Survey, NOAA (National Oceanic and Atmospheric Administration), and the American Red Cross. The Disasters Response Coordination System is also sharing any available Earth observation data with NASA’s Kennedy Space Center emergency managers to support their damage assessment process.
By using tools like NASA’s Black Marble, and updating daily with differential analysis done to highlight areas with extended power outages, the agency provides FEMA, states, and non-profits the opportunity to distribute temporary generators, life-sustaining resources, and damage assessments.
The UAVSAR flights are being conducted with support from NASA’s Disasters Program, NASA’s Earth Action Program, and NASA’s Research and Analysis Program, and are being managed by NASA’s Armstrong Flight Research Center in Edwards, California, a NASA’s Jet Propulsion Laboratory in Southern and California, and the California Institute of Technology.
To learn more about NASA’s Disaster Response Coordination System, visit:
https://disastersresponsecoordinationsystem.gov
View the full article
-
By NASA
NASA’s SpaceX Crew-9 commander Nick Hague is pictured in his flight suit during training at SpaceX headquarters in Hawthorne, California. Hague will perform human health and performance research on the International Space Station as part of his mission.SpaceX NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov will soon dock with the International Space Station as part of the agency’s SpaceX Crew-9 mission, a venture which will enhance scientific research and bolster the knowledge about how people can live and work in space.
During the planned five-month mission, Hague’s mission tasks will include participating in a variety of research projects for NASA’s Human Research Program. Each study is designed to help address the health challenges that astronauts may face during future long-duration missions to the Moon, Mars, and beyond.
“Hague’s experiences and research may potentially lead to scientific breakthroughs that may not be possible on Earth,” said Steven Platts, chief scientist for human research at NASA’s Johnson Space Center in Houston.
A major focus for Hague’s time aboard the station is to study the suite of space-related vision disorders called Spaceflight Associated Neuro-ocular Syndrome (SANS) which occur as body fluids shift toward the head in weightlessness. These shifts can cause changes to the eye: the optic nerve can swell, the retina may develop folds, and the back of the eye can even flatten. Earlier research suggests multiple factors contribute to the syndrome, so two vision-related studies on this mission will tackle different yet distinct approaches that may help address or even prevent such changes during future missions.
One project, called Thigh Cuff, will explore whether wearing fitted cuffs could counter the syndrome by keeping more bodily fluids in the legs. Thigh cuffs are compact, lightweight, and easy to use, which makes them appealing for potential use during long-duration, deep space missions.
For this study, Hague will wear the thigh cuffs for six hours during two sessions. To help researchers measure how well the cuffs work, he will record ultrasound images of blood flow in his legs and neck veins during the sessions. Researchers will also compare this data against ultrasounds taken without the cuff to examine flow differences.
“Thigh cuffs like these may allow researchers to better investigate medical conditions that result in extra fluid in the brain or too much blood returning to the heart,” said study leader Brandon Macias at NASA Johnson.
In another study, Hague will test if a vitamin regimen may help combat SANS. The study, led by Sara Zwart, a nutritional biochemist at NASA Johnson, seeks to examine if a daily vitamin B supplement—taken before, during, and after flight—can prevent or mitigate swelling at the back of the eye. The research will also assess how an individual’s genetics may influence the response.
“Earlier research suggests that some people are more susceptible to this ocular syndrome than others based on genetics that can influence B vitamin requirements, so taking daily vitamins may make all the difference,” Zwart said. “We think by giving the B vitamins, we could be taking that piece of genetic variability out of the equation.”
The work also may eventually improve care options for women on Earth with polycystic ovary syndrome, a condition that can cause eye changes and infertility in women. Researchers hope that patients may similarly benefit from targeting the same genetic pathways and vitamin supplementation as crew members in space.
Hague also will record data to study whether a new way of administering a common anti-nausea medicine can help alleviate motion sickness following launch and landing. In this study, Hague can self-administer a novel nasal gel formulation of the medication scopolamine. Hague will note his experiences using this medicine and any other motion sickness aides, including alternative medications or behavioral interventions like specific head movements.
This research, led by neuroscientist Scott Wood of NASA Johnson, eventually will include 48 people.
“Our goal is to understand how to help future space travelers adapt to motion sickness when living and working in space,” Wood said. “Crew members must stay healthy and perform key tasks, including landing on the Moon and other destinations.”
To help NASA plan future missions, Hague also will participate in human research studies that tackle other space challenges, such as avoiding injury upon landing back on Earth and learning how space travel affects the human body on a molecular level.
____
NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. The program studies how spaceflight affects human bodies and behaviors through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy and mission-ready as space exploration expands to the Moon, Mars, and beyond.
Explore More
1 min read NASA Invites Public to Join as Virtual Guests for SpaceX Crew-9 Launch
Article 2 days ago 4 min read Educational Activities in Space
Article 4 days ago 4 min read NASA Astronaut Tracy C. Dyson’s Scientific Mission aboard Space Station
Article 1 week ago Keep Exploring Discover More Topics From NASA
Living in Space
Artemis
Human Research Program
Space Station Research and Technology
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.