Jump to content

NASA and Bastion: A Collaborative Teamwork Advancing Deep Space Exploration and Ensuring Safety in Missions  


Recommended Posts

  • Publishers
Posted

As we continue to celebrate Hispanic Heritage Month, the NASA Office of Small Business Programs is pleased to share the contributions of Bastion Technologies Inc. (Bastion), a Hispanic-owned company that supports NASA’s missions. Their primary role is in Safety & Mission Assurance at NASA’s Marshall Space Flight Center in Huntsville, Alabama. This includes systems engineering, where they have worked on design and analysis activities for the International Space Station, space shuttle, and Artemis programs

Bastion engages in critical assessments to ensure the highest standards of safety and reliability in NASA missions. Their team provides mission assurance support for both crewed and uncrewed flight systems at various other NASA centers such as Stennis Space Center, Ames Research Center, Glenn Research Center, and NASA’s Jet Propulsion Laboratory. In addition to supporting the success of NASA missions, they have prioritized the safety of our astronauts and valuable payloads. As a result, Bastion has received the Marshall Space Flight Center Safety Award for maintaining an exemplary safety record, with 2 million work hours without any injuries.  

NASA has also recognized Bastion with the Space Flight Awareness Award for their role in multiple aspects of the Space Launch Program, particularly in ensuring the successful delivery and launch of the Artemis I launch vehicle.  During Artemis I, NASA’s SLS (Space Launch System), soared into the sky and sent the Orion spacecraft on a 1.4-million-mile journey beyond the Moon and back. The Space Launch System is NASA’s heavy-lift rocket and serves as the cornerstone for human exploration beyond Earth’s orbit. The SLS is the only rocket capable of sending the Orion spacecraft, four astronauts, and transporting extensive cargo directly to the Moon within a single mission.  

The core stage of NASA's Space Launch System (SLS) rocket has more than 1,000 sensors and 45 miles of cabling.
Liftoff! NASA’s Space Launch System carrying the Orion spacecraft lifts off the pad at Launch Complex 39B at the agency’s Kennedy Space Center in Florida at 1:47 a.m. EST on Nov. 16, 2022. The first in a series of increasingly complex missions, Artemis I will provide a foundation for human deep space exploration and demonstrate our commitment and capability to extend human presence to the Moon and beyond. The primary goal of Artemis I is to thoroughly test the integrated systems before crewed missions by operating the spacecraft in a deep space environment, testing Orion’s heat shield, and recovering the crew module after reentry, descent, and splashdown.

a

They have also aided in a 12-test series of the new RS-25 engines at the agency’s Stennis Space Center in Mississippi, which are integral to future SLS rocket missions. For over three decades, the RS-25 engine powered the space shuttle, completing 135 missions. This engine stands as one of the most rigorously tested large rocket engines in history, with over 3,000 starts and an accumulated firing time exceeding 1 million seconds through ground tests and flight. Throughout the Space Shuttle Program, the RS-25 underwent numerous design enhancements aimed at improving durability, reliability, safety, and performance. 

Four RS-25 engines attached to the core stage for Artemis I
Four RS-25 engines attached to the core stage for Artemis I

Furthermore, Bastion’s assistance in projects such as the Sample Cartridge Assembly and Copper Indium Sulfide Defect Growth  has been critical in completing the CISDG-C1 hardware for shipment and launch on the 28th SpaceX commercial resupply services mission for NASA. It launched to the International Space Station from the agency’s Kennedy Space Center in Florida on June 3, 2023.  On this mission, SpaceX’s Dragon spacecraft transported several thousand pounds of essential hardware,  scientific experiments, and technology demonstrations. It also encompassed research on plant stress adaptation, investigations into genetic structures known as telomeres, as well as the deployment of satellite projects designed by Canadian students.  

Embed Video: https://youtu.be/KMB9fvH-EsM  

Lastly, Bastion’s contribution to the Life Science Glovebox payload has seen a significant increase, with them completing 2.5 times as many integrated safety assessments in 2023 as they did in 2022. The Life Sciences Glovebox is a sealed work area in the International Space Station  which provides bioisolation and waste control. Crew members can perform experimental procedures in cell, insect, aquatic, plant, and animal developmental biology. 

NASA's new Life Sciences Glovebox undergoes testing at Marshall prior to its scheduled Sept. 10 flight to the ISS.
NASA’s new Life Sciences Glovebox undergoes testing at Marshall prior to its scheduled Sept. 10 flight to the International Space Station. The research facility is 26 inches high, 35 inches wide and 24 inches deep, with a 15-cubic-foot workspace.
NASA/MSFC/Steve Moon 

Hispanic professional continues to influence his daily work with NASA and Bastion in profound ways.  “Growing up in a culturally rich and diverse background, I have brought a unique perspective to problem-solving and teamwork. I’ve learned to adapt to different challenges and appreciate the value of diversity in the workplace,” says Hernandez.   

He goes on to emphasize that Bastion actively supports mentorship and advocates for underrepresented minorities in STEM fields, aiming to inspire the next generation of diverse professionals to reach for the stars.  

“Bastion’s journey supporting NASA has been deeply influenced by my heritage, which has driven our company to excel and promote diversity within the agency. Bastion is proud to contribute to NASA’s mission and play our part in advancing our understanding of the universe.” – Jorge Hernandez 

By: Maliya Malik 

NASA Office Of Small Business Programs Intern 

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Soyuz MS-26 spacecraft is seen as it lands in a remote area near the town of Zhezkazgan, Kazakhstan with Expedition 72 NASA astronaut Don Pettit, and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner aboard, April 19, 2025 (April 20, 2025, Kazakhstan time). The trio are returning to Earth after logging 220 days in space as members of Expeditions 71 and 72 aboard the International Space Station.NASA/Bill Ingalls NASA astronaut Don Pettit returned to Earth Saturday, accompanied by Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, concluding a seven-month science mission aboard the International Space Station.
      The trio departed the space station at 5:57 p.m. EDT aboard the Soyuz MS-26 spacecraft before making a safe, parachute-assisted landing at 9:20 p.m. (6:20 a.m. on Sunday, April 20, Kazakhstan time), southeast of Dzhezkazgan, Kazakhstan. Pettit also celebrates his 70th birthday on Sunday, April 20.
      Spanning 220 days in space, Pettit and his crewmates orbited the Earth 3,520 times, completing a journey of 93.3 million miles. Pettit, Ovchinin, and Vagner launched and docked to the orbiting laboratory on Sept. 11, 2024.
      During his time aboard the space station, Pettit conducted research to enhance in-orbit metal 3D printing capabilities, advance water sanitization technologies, explore plant growth under varying water conditions, and investigate fire behavior in microgravity, all contributing to future space missions. He also used his surroundings aboard station to conduct unique experiments in his spare time and captivate the public with his photography.
      This was Pettit’s fourth spaceflight, where he served as a flight engineer for Expeditions 71 and 72. He has logged 590 days in orbit throughout his career. Ovchinin completed his fourth flight, totaling 595 days, and Vagner has earned an overall total of 416 days in space during two spaceflights.
      NASA is following its routine postlanding medical checks, the crew will return to the recovery staging area in Karaganda, Kazakhstan. Pettit will then board a NASA plane bound for the agency’s Johnson Space Center in Houston. According to NASA officials at the landing site, Pettit is doing well and in the range of what is expected for him following return to Earth.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a strong low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future astronaut missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Apr 19, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      International Space Station (ISS) Expedition 72 Humans in Space ISS Research View the full article
    • By NASA
      NASA researchers are sending three air quality monitors to the International Space Station to test them for potential future use on the Moon.Credit: NASA/Sara Lowthian-Hanna As NASA prepares to return to the Moon, studying astronaut health and safety is a top priority. Scientists monitor and analyze every part of the International Space Station crew’s daily life—down to the air they breathe. These studies are helping NASA prepare for long-term human exploration of the Moon and, eventually, Mars.

      As part of this effort, NASA’s Glenn Research Center in Cleveland is sending three air quality monitors to the space station to test them for potential future use on the Moon. The monitors are slated to launch on Monday, April 21, aboard the 32nd SpaceX commercial resupply services mission for NASA.

      Like our homes here on Earth, the space station gets dusty from skin flakes, clothing fibers, and personal care products like deodorant. Because the station operates in microgravity, particles do not have an opportunity to settle and instead remain floating in the air. Filters aboard the orbiting laboratory collect these particles to ensure the air remains safe and breathable.

      Astronauts will face another air quality risk when they work and live on the Moon—lunar dust.
      “From Apollo, we know lunar dust can cause irritation when breathed into the lungs,” said Claire Fortenberry, principal investigator, Exploration Aerosol Monitors project, NASA Glenn. “Earth has weather to naturally smooth dust particles down, but there is no atmosphere on the Moon, so lunar dust particles are sharper and craggier than Earth dust. Lunar dust could potentially impact crew health and damage hardware.”

      Future space stations and lunar habitats will need monitors capable of measuring lunar dust to ensure air filtration systems are functioning properly. Fortenberry and her team selected commercially available monitors for flight and ground demonstration to evaluate their performance in a spacecraft environment, with the goal of providing a dust monitor for future exploration systems.
      NASA Glenn Research Center’s Claire Fortenberry holds a dust sample collected from International Space Station air filters.Credit: NASA/Sara Lowthian-Hanna Glenn is sending three commercial monitors to the space station to test onboard air quality for seven months. All three monitors are small: no bigger than a shoe box. Each one measures a specific property that provides a snapshot of the air quality aboard the station. Researchers will analyze the monitors based on weight, functionality, and ability to accurately measure and identify small concentrations of particles in the air.

      The research team will receive data from the space station every two weeks. While those monitors are orbiting Earth, Fortenberry will have three matching monitors at Glenn. Engineers will compare functionality and results from the monitors used in space to those on the ground to verify they are working as expected in microgravity. Additional ground testing will involve dust simulants and smoke.

      Air quality monitors like the ones NASA is testing also have Earth-based applications. The monitors are used to investigate smoke plumes from wildfires, haze from urban pollution, indoor pollution from activities like cooking and cleaning, and how virus-containing droplets spread within an enclosed space.

      Results from the investigation will help NASA evaluate which monitors could accompany astronauts to the Moon and eventually Mars. NASA will allow the manufacturers to review results and ensure the monitors work as efficiently and effectively as possible. Testing aboard the space station could help companies investigate pollution problems here on Earth and pave the way for future missions to the Red Planet.
      NASA Glenn Research Center’s Claire Fortenberry demonstrates how space aerosol monitors analyze the quality of the air.Credit: NASA/Sara Lowthian-Hanna “Going to the Moon gives us a chance to monitor for planetary dust and the lunar environment,” Fortenberry said. “We can then apply what we learn from lunar exploration to predict how humans can safely explore Mars.”
      NASA commercial resupply missions to the International Space Station deliver scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space.
      Learn more about NASA and SpaceX’s 32nd commercial resupply mission to the space station:
      https://www.nasa.gov/nasas-spacex-crs-32/
      Explore More
      3 min read NASA Studies Wind Effects and Aircraft Tracking with Joby Aircraft
      Article 17 hours ago 4 min read Science Meets Art: NASA Astronaut Don Pettit Turns the Camera on Science
      Article 1 day ago 1 min read Recognizing Employee Excellence 
      Article 1 day ago View the full article
    • By NASA
      Explore This Section Science Science Activation Building for a Better World:… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science   6 min read
      Building for a Better World: Norfolk Students Bring STEM to Life with NASA Partnership
      At Norfolk Technical Center in Norfolk, Virginia, carpentry students in Jordan Crawford’s first-year class aren’t just learning how to measure and cut wood—they’re discovering how their skills can serve a greater purpose.
      When the NASA Science Activation program’s NASA eClips project—led by the National Institute of Aerospace’s Center for Integrative Science, Technology, Engineering, and Mathematics (STEM) Education (NIA-CISE)—needed help building weather instrument shelters for local schools, Norfolk Public Schools’ Career and Technical Education (CTE) team saw an opportunity to connect students to something bigger than the classroom. The shelters are used to house scientific equipment that K–12 students rely on to collect data using GLOBE (Global Learning and Observations to Benefit the Environment) protocols—a set of standardized, internationally recognized methods for gathering environmental data such as temperature, soil moisture, and cloud cover. These observations contribute to a global citizen science database, giving young learners a meaningful role in real-world environmental research.
      Originally, shelters were being ordered from a national supplier to support GLOBE training sessions for teachers in GO (Growth & Opportunity) Virginia Region 5, an economic development region. These training sessions were funded through a generous grant from the Coastal Virginia STEM Hub (COVA STEM Hub), which supports regional collaboration in STEM education. But when the supplier couldn’t keep up with demand, Norfolk Public Schools CTE Specialist Dr. Deborah Marshall offered a bold solution: why not have local students build them?
      That’s when the project truly took off. Under the guidance of Jordan Crawford, students took on the challenge of building 20 high-quality shelters in spring 2024, following precise construction plans provided through the GLOBE Program. Materials were funded by the COVA STEM grant, and the students rolled up their sleeves to turn lumber into lasting educational tools for their community.
      “As an instructor, you look for opportunities that challenge your students, allow them to do things bigger than themselves, and let them see a project through from start to finish,” Crawford said. “This project allowed my students to hone existing skills and build new ones, and I saw incredible growth not just in craftsmanship but in teamwork. The most rewarding part was seeing the impact of their work in real schools.”
      And the students rose to the occasion—taking pride in their work, learning advanced techniques, and developing new confidence. One of the most challenging parts of the build involved crafting the louvers—angled slats on the sides of the shelters needed for proper air circulation. Student Zymere Watts took the lead in designing and building a jig to make sure the louvers could be cut uniformly and precisely for every unit.
      “Building the weather shelters was a fun and challenging task that pushed me to strive for perfection with each one,” said student Amir Moore. “After completion, I was delighted to see the faces of the people who were proud and happy with what we built.”
      “It was an extreme pleasure working on this project. I would love to work with NIA again,” added LaValle Howard. “I am proud to be a part of this vocational school and team.”
      Jaymyson Burden agreed: “It was fun and great to be exposed to the carpentry realm and install them in the real world. It was gratifying to know what we have done has an impact.”
      After completing the shelters, the students volunteered to install them at seven Hampton City Schools. Their work completed the full circle—from building the shelters in their carpentry classroom to setting them up where younger students would use them to collect real environmental data.
      Their dedication did not go unnoticed. The team was invited to NASA’s Langley Research Center for a behind-the-scenes tour of the NASA Model Shop, where they met Sam James, a Mechanical Engineering Technician and Fabrication Specialist. James showed the students how the same kind of craftsmanship they’d used is essential in the creation of tools and components for NASA missions. They also learned about NASA summer internships and discovered that their hands-on skills could open doors to exciting careers in STEM fields.
      “It was an honor to help where we were needed,” said student Josh Hunsucker. “Assembling these gave us a new perspective on the importance of duplication and how each step impacts the result. We’re happy to help wherever or whenever we’re needed—it provides a learning experience for us.”
      Kyra Pope summed it up: “It’s been a great amount of work over the past few months, but it pays off—especially when you’re giving back to the community.”
      According to Dr. Sharon Bowers, Associate Director and Senior STEM Education Specialist for NIA-CISE, the project demonstrates what’s possible when regional partners come together to empower students and educators alike. “The financial support from COVA STEM Hub supported sustained educator professional learning within our STEM learning ecosystem. Work with the Norfolk Technical Center truly made this a real-world, problem-solving experience. This is just the beginning for more collaborative work that will bring the region together to engage educators and learners in authentic STEM learning experiences.”
      This collaboration wasn’t just about building boxes to house thermometers. It was about building bridges—between technical education and science, between high school students and their futures, and between local classrooms and global research. With each shelter they crafted, the students created something that will outlast them, reminding others—and themselves—of what’s possible when learning is hands-on, meaningful, and connected to the world beyond school walls.
      Thanks to Betsy McAllister, NIA’s Educator-in-Residence from Hampton City Schools, for her impactful contributions and for sharing this story. The NASA eClips project provides educators with standards-based videos, activities, and lessons to increase STEM literacy through the lens of NASA. It is supported by NASA under cooperative agreement award number NNX16AB91A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn
      Carpentry students from the Norfolk Technical Center install a digital, multi-day, minimum/maximum thermometer in the GLOBE instrument shelter. Share








      Details
      Last Updated Apr 17, 2025 Editor NASA Science Editorial Team Location NASA Langley Research Center Related Terms
      Science Activation Opportunities For Students to Get Involved Partner with NASA STEM Explore More
      3 min read Exploring the Universe Through Sight, Touch, and Sound


      Article


      3 days ago
      4 min read GLOBE Mission Earth Supports Career Technical Education


      Article


      6 days ago
      4 min read New York Math Teacher Measures Trees & Grows Scientists with GLOBE


      Article


      1 week ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      As an adventurous individual, Becky Brocato, Ph.D.,  has a deep curiosity for understanding the conditions of the human body, especially as it pertains to spaceflight. This passion directly translates to her role at NASA, where Brocato serves as the Element Scientist in the Human Health Countermeasures division and oversees research that seeks to reduce medical risks that astronauts face from spaceflight, ensuring the continual health and safety of current and future NASA astronauts.

      As part of the Human Research Program, the group strives to understand the physiological effects of spaceflight and develop strategies to mitigate any detrimental effects on human health and performance. For Brocato, her role presents the exciting opportunity to tangibly improve the lives of astronauts and actively contribute to the success of their missions.

      Becky Brocato, Human Health Countermeasures Element Scientist for NASA’s Human Research Program “The thrill of my job comes from the sheer audacity of what we are undertaking—enabling humans to conquer the challenges of deep space,” said Brocato. “I’m invested in ensuring our astronauts are not just prepared—but confident—as they tackle immense physical and mental demands.”

      Brocato attributes her early interest in flight and space research to her father and grandfather, who built a plane together when Brocato was younger. She recalls sitting in the plane’s fuselage, pretending she was traveling the world.

      “My dad was my childhood hero for opening my eyes to the skies,” said Brocato. Fueled by this passion, she began her career as an aerospace engineer at the U.S. Army’s Yuma Proving Ground in Arizona, where she tested parachutes for aerial delivery, including the parachute designed for NASA’s X-38 crew return vehicle.

      Now, having worked at NASA for four years, Brocato is excited to pass down her insight to younger generations, teaching them how her work ensures the sustainability of future space missions. Recently, after delivering a seminar on the methods to counter the risks humans face from spaceflight, Brocato spoke with college students eager to learn more about the complexities of the human body.

      Becky Brocato gives a presentation on the research strategy for NASA’s Human Research Program to the Food and Nutrition Risk at the International Space Life Sciences Working Group Plant Symposium, held in Liverpool, England in September 2024.Becky Brocato “I felt like I wasn’t just sharing knowledge; I was helping to inspire a new generation of potential researchers to tackle the challenges of space exploration that was a real bright spot,” said Brocato. “Seeing their enthusiasm reaffirmed exactly why I came to NASA.”

      This enthusiasm manifests in Brocato’s personal life: as a mother, she loves witnessing her child’s reaction to launches. “It was awesome to see the pure, unadulterated awe in my 7-year-old’s eyes when NASA’s SpaceX Crew-8 lifted off,” said Brocato. “Moments like that are a reminder that spaceflight can touch all generations, which fuels my passion both at work and at home.”

      For Brocato, prioritizing her personal time is crucial, and she enjoys spending it pursuing physical activities. She is an avid runner, whether she is jogging to work at NASA’s Johnson Space Center or competing in local adventure races. She has even been skydiving, which is where she met her husband.

      Brocato is excited to witness NASA continue to push boundaries in human exploration, returning to the Moon and onto Mars. As a dedicated worker known for her curiosity and enthusiasm, Brocato’s work is crucial to advancing NASA’s mission.

      NASA’s Space Operations Mission Directorate maintains a continuous human presence in space for the benefit of people on Earth. The programs within the directorate are the hub of NASA’s space exploration efforts, enabling Artemis, commercial space, science, and other agency missions through communication, launch services, research capabilities, and crew support.

      To learn more about NASA’s Space Operation Mission Directorate, visit:  
      https://www.nasa.gov/directorates/space-operations
      Share
      Details
      Last Updated Apr 17, 2025 EditorHeather Monaghan Related Terms
      Space Operations Mission Directorate Explore More
      3 min read Meet the Space Ops Team: Anum Ashraf
      Article 3 weeks ago 3 min read Meet the Space Ops Team: Diana Oglesby
      Article 5 months ago Keep Exploring Discover Related Topics
      Humans In Space
      International Space Station
      Commercial Space
      NASA Directorates
      View the full article
    • By Space Force
      The Space Force releases the Space Warfighting framework, outlining the service's vision for achieving and maintaining space superiority while ensuring the long-term safety and sustainability of the space domain.

      View the full article
  • Check out these Videos

×
×
  • Create New...