Jump to content

Trio of Galaxies Mix It Up


HubbleSite

Recommended Posts

low_STSCI-H-p0910a-k-1340x520.png

Though they are the largest and most widely scattered objects in the universe, galaxies do go bump in the night. The Hubble Space Telescope has photographed many pairs of galaxies colliding. Like snowflakes, no two examples look exactly alike. This is one of the most arresting galaxy smash-up images to date.

At first glance, it looks as if a smaller galaxy has been caught in a tug-of-war between a Sumo-wrestler pair of elliptical galaxies. The hapless, mangled galaxy may have once looked more like our Milky Way, a pinwheel-shaped galaxy. But now that it's caught in a cosmic Cuisinart, its dust lanes are being stretched and warped by the tug of gravity. Unlike the elliptical galaxies, the spiral is rich in dust and gas for the formation of new stars. It is the fate of the spiral galaxy to be pulled like taffy and then swallowed by the pair of elliptical galaxies. This will trigger a firestorm of new stellar creation. If there are astronomers on any planets in this galaxy group, they will have a ringside seat to seeing a flurry of starbirth unfolding over many millions of years to come. Eventually the ellipticals should merge too, creating one single super-galaxy many times larger than our Milky Way. This trio is part of a tight cluster of 16 galaxies, many of them being dwarf galaxies. The galaxy cluster is called the Hickson Compact Group 90 and lies about 100 million light-years away in the direction of the constellation Piscis Austrinus, the Southern Fish.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      The Roscosmos Soyuz MS-26 spacecraft will launch from the Baikonur Cosmodrome in Kazakhstan to the International Space Station with (pictured left to right) NASA astronaut Don Pettit and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner.Credit: Gagarin Cosmonaut Training Center NASA astronaut Don Pettit will launch aboard the Roscosmos Soyuz MS-26 spacecraft, accompanied by cosmonauts Alexey Ovchinin and Ivan Vagner, to the International Space Station where they will join the Expedition 71 crew in advancing scientific research.
      Pettit, Ovchinin, and Vagner will lift off at 12:23 p.m. EDT Wednesday, Sept. 11 (9:23 p.m. Baikonur time) from the Baikonur Cosmodrome in Kazakhstan.
      Coverage will stream on NASA+, the NASA app, and the agency’s website. Learn how to stream NASA content through a variety of platforms including social media.
      After a two-orbit, three-hour trajectory to the station, the spacecraft will automatically dock at 3:33 p.m. at the orbiting laboratory’s Rassvet module. Shortly after, hatches will open between the spacecraft and the station.
      Once aboard, the trio will join NASA astronauts Tracy C. Dyson, Mike Barratt, Matthew Dominick, Jeanette Epps, Butch Wilmore, and Suni Williams, as well as Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko.
      NASA’s coverage is as follows (all times Eastern and subject to change based on real-time operations):
      11:15 a.m. – Launch coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      12:23 p.m. – Launch
      2:30 p.m. – Rendezvous and docking coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      3:33 p.m. – Docking
      5:30 p.m. – Hatch opening and welcome remarks coverage begins on NASA+, the NASA app, YouTube, and the agency’s website.
      5:50 p.m. – Hatch opening
      The trio will spend approximately six months aboard the orbital laboratory as Expedition 71 and 72 crew members before returning to Earth in the spring of 2025. This will be the fourth spaceflight for Pettit and Ovchinin, and the second for Vagner.
      For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge, and making research breakthroughs that are not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA is focusing more resources on deep space missions to the Moon as part of Artemis in preparation for future human missions to Mars.
      Learn more about International Space Station research and operations at:
      https://www.nasa.gov/station
      -end-
      Joshua Finch / Claire O’Shea
      Headquarters, Washington
      202-358-1100
      joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov
      Sandra Jones
      Johnson Space Center, Houston
      281-483-5111
      sandra.p.jones@nasa.gov
      Share
      Details
      Last Updated Sep 06, 2024 LocationNASA Headquarters Related Terms
      International Space Station (ISS) Astronauts Donald R. Pettit Humans in Space ISS Research Johnson Space Center View the full article
    • By NASA
      5 Min Read Webb Finds Early Galaxies Weren’t Too Big for Their Britches After All
      This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. The full image appears below. Credits:
      NASA, ESA, CSA, S. Finkelstein (University of Texas) It got called the crisis in cosmology. But now astronomers can explain some surprising recent discoveries.
      When astronomers got their first glimpses of galaxies in the early universe from NASA’s James Webb Space Telescope, they were expecting to find galactic pipsqueaks, but instead they found what appeared to be a bevy of Olympic bodybuilders. Some galaxies appeared to have grown so massive, so quickly, that simulations couldn’t account for them. Some researchers suggested this meant that something might be wrong with the theory that explains what the universe is made of and how it has evolved since the big bang, known as the standard model of cosmology.
      According to a new study in the Astrophysical Journal led by University of Texas at Austin graduate student Katherine Chworowsky, some of those early galaxies are in fact much less massive than they first appeared. Black holes in some of these galaxies make them appear much brighter and bigger than they really are.
      “We are still seeing more galaxies than predicted, although none of them are so massive that they ‘break’ the universe,” Chworowsky said.
      The evidence was provided by Webb’s Cosmic Evolution Early Release Science (CEERS) Survey, led by Steven Finkelstein, a professor of astronomy at UT Austin and study co-author.
      Image A : CEERS Deep Field (NIRCam)
      This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. Some galaxies appear to have grown so massive, so quickly, that simulations couldn’t account for them. However, a new study finds that some of those early galaxies are in fact much less massive than they first appeared. Black holes in some of those galaxies make them appear much brighter and bigger than they really are. NASA, ESA, CSA, S. Finkelstein (University of Texas)
      View 8k pixel full resolution version of the image

      Black Holes Add to Brightness
      According to this latest study, the galaxies that appeared overly massive likely host black holes rapidly consuming gas. Friction in the fast-moving gas emits heat and light, making these galaxies much brighter than they would be if that light emanated just from stars. This extra light can make it appear that the galaxies contain many more stars, and hence are more massive, than we would otherwise estimate. When scientists remove these galaxies, dubbed “little red dots” (based on their red color and small size), from the analysis, the remaining early galaxies are not too massive to fit within predictions of the standard model.
      “So, the bottom line is there is no crisis in terms of the standard model of cosmology,” Finkelstein said. “Any time you have a theory that has stood the test of time for so long, you have to have overwhelming evidence to really throw it out. And that’s simply not the case.”
      Efficient Star Factories
      Although they’ve settled the main dilemma, a less thorny problem remains: There are still roughly twice as many massive galaxies in Webb’s data of the early universe than expected from the standard model. One possible reason might be that stars formed more quickly in the early universe than they do today.
      “Maybe in the early universe, galaxies were better at turning gas into stars,” Chworowsky said.
      Star formation happens when hot gas cools enough to succumb to gravity and condense into one or more stars. But as the gas contracts, it heats up, generating outward pressure. In our region of the universe, the balance of these opposing forces tends to make the star formation process very slow. But perhaps, according to some theories, because the early universe was denser than today, it was harder to blow gas out during star formation, allowing the process to go faster.
      More Evidence of Black Holes
      Concurrently, astronomers have been analyzing the spectra of “little red dots” discovered with Webb, with researchers in both the CEERS team and others finding evidence of fast-moving hydrogen gas, a signature of black hole accretion disks. This supports the idea that at least some of the light coming from these compact, red objects comes from gas swirling around black holes, rather than stars – reinforcing Chworowsky and their team’s conclusion that they are probably not as massive as astronomers initially thought.  However, further observations of these intriguing objects are incoming, and should help solve the puzzle about how much light comes from stars versus gas around black holes.
      Often in science, when you answer one question, that leads to new questions. While Chworowsky and their colleagues have shown that the standard model of cosmology likely isn’t broken, their work points to the need for new ideas in star formation.
      “And so there is still that sense of intrigue,” Chworowsky said. “Not everything is fully understood. That’s what makes doing this kind of science fun, because it’d be a terribly boring field if one paper figured everything out, or there were no more questions to answer.”The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
      Downloads
      Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
      View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
      View/Download the research results from the Astrophysical Journal .
      Media Contacts
      Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Marc Airhart – mairhart@austin.utexas.edu
      University of Texas at Austin
      Christine Pulliam – cpulliam@stsci.edu
      Space Telescope Science Institute, Baltimore, Md.
      Related Information
      VIDEO: CEERS Fly-through data visualization
      ARTICLE: Webb Science – Galaxies Through Time
      INFOGRAPHIC: Learn More about black holes
      VIDEO: Webb Science Snippets Video: “The Early Universe”
      INFOGRAPHIC: What is Cosmological Redshift?
      More Webb News
      More Webb Images
      Webb Science Themes
      Webb Mission Page
      Related For Kids
      What is a galaxy?
      What is the Webb Telescope?
      SpacePlace for Kids
      En Español
      Para Niños : Qué es una galaxia?
      Ciencia de la NASA
      NASA en español 
      Space Place para niños
      Keep Exploring Related Topics
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Exoplanets



      Exoplanet Stories



      Universe


      Share








      Details
      Last Updated Aug 26, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms
      Astrophysics Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research The Universe View the full article
    • By NASA
      Main Takeaways:
      New 66-foot-wide antenna dishes will be built, online, and operational in time to provide near-continuous communications services to Artemis astronauts at the Moon later this decade. Called LEGS, short for Lunar Exploration Ground Sites, the antennas represent critical infrastructure for NASA’s vision of supporting a sustained human presence at the Moon. The first three of six proposed LEGS are planned for sites in New Mexico, South Africa, and Australia. LEGS will become part of NASA’s Near Space Network, managed by the agency’s Space Communications and Navigation (SCaN) program and led out of Goddard Space Flight Center in Greenbelt, Maryland. Background:
      NASA’s LEGS can do more than help Earthlings move about the planet.
      Three Lunar Exploration Ground Sites, or LEGS, will enhance the Near Space Network’s communications services and support of NASA’s Artemis campaign.
      NASA’s Space Communications and Navigation (SCaN) program maintains the agency’s two primary communications networks — the Deep Space Network and the Near Space Network, which enable satellites in space to send data back to Earth for investigation and discovery.
      Using antennas around the globe, these networks capture signals from satellites, collecting data and enabling navigation engineers to track the mission. For the first Artemis mission, these networks worked in tandem to support the mission as it completed its 25-day journey around the Moon. They will do the same for the upcoming Artemis II mission.
      To support NASA’s Moon to Mars initiative, NASA is adding three new LEGS antennas to the Near Space Network. As NASA works toward sustaining a human presence on the Moon, communications and navigation support will be crucial to each mission’s success. The LEGS antennas will directly support the later Artemis missions, and accompanying missions like the human landing system, lunar terrain vehicle, and Gateway.
      The Gateway space station will be humanity’s first space station in lunar orbit as a vital component of the Artemis missions to return humans to the Moon for scientific discovery and chart a path for humans to Mars.NASA “One of the main goals of LEGS is to offload the Deep Space Network,” said TJ Crooks, LEGS project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The Near Space Network and its new LEGS antennas will focus on lunar missions while allowing the Deep Space Network to support missions farther out into the solar system — like the James Webb Space Telescope and the interstellar Voyager missions.”
      The Near Space Network provides communications and navigation services to missions anywhere from near Earth to 1.2 million miles away — this includes the Moon and Sun-Earth Lagrange points 1 and 2. The Moon and Lagrange points are a shared region with the Deep Space Network, which can provide services to missions there and farther out in the solar system.
      An artist’s rendering of a lunar terrain vehicle on the surface of the Moon.NASA The LEGS antennas, which are 66 feet in diameter, will be strategically placed across the globe. This global placement ensures that when the Moon is setting at one station, it is rising into another’s view. With the Moon constantly in sight, the Near Space Network will be able to provide continuous support for lunar operations.
      How it Works:
      As a satellite orbits the Moon, it encodes its data onto a radio frequency signal. When a LEGS antenna comes into view, that satellite (or rover, etc.) will downlink the signal to a LEGS antenna. This data is then routed to mission operators and scientists around the globe who can make decisions about spacecraft health and orbit or use the science data to make discoveries.
      The LEGS antennas are intended to be extremely flexible for users. For LEGS-1, LEGS-2, and LEGS-3, NASA is implementing a “dual-band approach” for the antennas that will allow missions to communicate using two different radio frequency bands — X-band and Ka-band. Typically, smaller data packets — like telemetry data — are sent over X-band, while high-resolution science data or imagery needs Ka-band. Due to its higher frequency, Ka-band allows significantly more information to be downlinked at once, such as real-time high-resolution video in support of crewed operations.
      LEGS will directly support the Artemis campaign, including the Lunar Gateway, human landing system (HLS), and lunar terrain vehicle (LTV).NASA Further LEGS capacity will be sought from commercial service providers and will include a “tri-band approach” for the antennas using S-band in addition to X- and Ka-band.
      The first LEGS ground station, or LEGS-1, is at NASA’s White Sands Complex in Las Cruces, New Mexico. NASA is improving land and facilities at the complex to receive the new LEGS-1 antenna.
      The LEGS-2 antenna will be in Matjiesfontein, South Africa, located near Cape Town. In partnership with SANSA, the South African National Space Agency, NASA chose this location to maximize coverage to the Moon. South Africa was home to a ground tracking station outside Johannesburg that played a role in NASA’s Apollo missions to the Moon in the 1960s. The agency plans to complete the LEGS-2 antenna in 2026. For LEGS-3, NASA is exploring locations in Western Australia.
      These stations will fully complement the existing capabilities of the Near and Deep Space Networks and allow for more robust communications services to the Artemis campaign.
      The LEGS antennas (similar in appearance to this 20.2-meter CPI Satcom antenna) will be placed in equidistant locations across the globe. This ensures that when the Moon is setting at one station, it will be rising into another’s view. With the Moon constantly in sight, NASA’s Near Space Network will be able to support approximately 24/7 operations with Moon-based missions.CPI Satcom CPI Satcom is building the Lunar Exploration Ground Site (LEGS) antennas for NASA. The antennas will look very similar to the 20-meter antenna pictured here. CPI Satcom The Near Space Network is funded by NASA’s Space Communications and Navigation (SCaN) program office at NASA Headquarters in Washington and operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      About the Author
      Kendall Murphy
      Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
      5 Min Read Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On
      An artist’s rendering of astronauts working near NASA’s Artemis base camp, complete with a rover and RV. Credits: NASA Share
      Details
      Last Updated Jul 22, 2024 EditorKatherine SchauerContactKendall MurphyLocationGoddard Space Flight Center Related Terms
      General Artemis Communicating and Navigating with Missions Space Communications & Navigation Program Space Communications Technology Explore More
      2 min read Working in Tandem: NASA’s Networks Empower Artemis I
      Article 2 years ago 3 min read NASA Laser Communications Terminal Delivered for Artemis II Moon Mission
      The laser communications system for NASA’s Artemis II mission arrived at NASA’s Kennedy Space Center…
      Article 1 year ago 4 min read NASA Search and Rescue Team Prepares for Safe Return of Artemis II Crew
      When Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space…
      Article 12 months ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By European Space Agency
      A duo of interacting galaxies known as Arp 142 commemorates the second science anniversary of the NASA/ESA/CSA James Webb Space Telescope. Their ongoing interaction was set in motion between 25 and 75 million years ago, when the Penguin (individually catalogued as NGC 2936) and the Egg (NGC 2937) completed their first pass. They will go on to shimmy and sway, completing several additional loops before merging into a single galaxy hundreds of millions of years from now.
      View the full article
  • Check out these Videos

×
×
  • Create New...