Jump to content

Clues to Psyche Asteroid’s Metallic Nature Found in SOFIA Data


Recommended Posts

  • Publishers
Posted

When the asteroid Psyche has its first close-up with a NASA spacecraft, scientists hypothesize they will find a metal-rich asteroid. It could be part or all of the iron-rich interior of a planetesimal, an early planetary building block, that was stripped of its outer rocky shell as it repeatedly collided with other large bodies during the early formation of the solar system.

New research from scientists at NASA’s Ames Research Center in California’s Silicon Valley suggests that is exactly what the agency’s Psyche mission will find.

An artist's concept of a large asteroid with two massive depressions and many other impact craters.
An artist’s concept depicting the metal-rich asteroid Psyche, which is located in the main asteroid belt between Mars and Jupiter.
NASA/JPL-Caltech/ASU

Led by Anicia Arredondo, the paper’s first author and a postdoctoral researcher at the Southwest Research Institute in San Antonio, Texas, and Maggie McAdam, Ames research scientist and principal investigator, the team observed Psyche in Feb. 2022 using NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA). The now-retired observatory was a Boeing 747SP aircraft modified to carry a reflecting telescope. As a flying telescope, SOFIA collected data that was not affected by Earth’s lower atmosphere and made observations from all over the world, including over the oceans.

For the first time, SOFIA was able to gather data from every part of Psyche’s surface. It also allowed the team to collect data about the materials that make up Psyche’s surface – information that could not be gathered from ground-based telescopes.

Psyche’s potential to answer many questions about planet formation is a key reason why it was selected for close observation by a spacecraft. Scientists believe that planets like Earth, Mars, and Mercury have metallic cores, but they are buried too far below the planets’ mantles and crusts to see or measure directly. If Psyche is confirmed to be a planetary core, it can help scientists understand what is inside the Earth and other large planetary bodies.

Psyche’s size is also important for advancing scientific understanding of Earth-like planets. It is the largest M-type (metallic) asteroid in our solar system and is long enough to cover the distance from New York City to Baltimore, Maryland. This means Psyche is more likely to show differentiation, which is when the materials inside a planet separate from one another, with the heaviest materials sinking to the middle and forming cores.

“Every time a new study of Psyche is published, it raises more questions,” said Arredondo, who was a postdoctoral researcher at Ames on the SOFIA mission when the Psyche observations were collected. “Our findings suggest the asteroid is very complex and likely holds many other surprises. The possibility of the unexpected is one of the most exciting parts of a mission to study an unexplored body, and we look forward to gaining a more detailed understanding of Psyche’s origins.”

Three people inspect a partially assembled spacecraft.
NASA’s Psyche spacecraft is shown in a clean room on June 26, 2023, at the Astrotech Space Operations facility near the agency’s Kennedy Space Center in Florida.
NASA/Frank Michaux
More about the Psyche and SOFIA missions:

Arizona State University leads the Psyche mission. A division of Caltech in Pasadena, JPL is responsible for the mission’s overall management, system engineering, integration and test, and mission operations. Maxar Technologies in Palo Alto, California, provided the high-power solar electric propulsion spacecraft chassis.

Psyche is the 14th mission selected as part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. NASA’s Launch Services Program, based at Kennedy, is managing the launch service.

SOFIA was a joint project of NASA and the German Space Agency at DLR. DLR provided the telescope, scheduled aircraft maintenance, and other support for the mission. NASA’s Ames Research Center in California’s Silicon Valley managed the SOFIA program, science, and mission operations in cooperation with the Universities Space Research Association, headquartered in Columbia, Maryland, and the German SOFIA Institute at the University of Stuttgart. The aircraft was maintained and operated by NASA’s Armstrong Flight Research Center Building 703, in Palmdale, California. SOFIA achieved full operational capability in 2014 and concluded its final science flight on Sept. 29, 2022.

For news media: 

Members of the news media interested in covering this topic should reach out to the Ames newsroom

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      3 min read
      NASA Open Data Turns Science Into Art
      Guests enjoy Beyond the Light, a digital art experience featuring open NASA data, at ARTECHOUSE in Washington, D.C. on September 19, 2023. NASA/Wade Sisler An art display powered by NASA science data topped the Salesforce Tower in San Francisco, CA throughout December 2024. Nightly visitors enjoyed “Synchronicity,” a 20-minute-long video art piece by Greg Niemeyer, which used a year’s worth of open data from NASA satellites and other sources to bring the rhythms of the Bay Area to life.
      Data for “Synchronicity” included atmospheric data from NASA and NOAA’s GOES (Geostationary Operational Environmental Satellites), vegetation health data from NASA’s Landsat program, and the Sun’s extreme ultraviolet wavelengths as captured by the NASA and ESA (European Space Agency) satellite SOHO (Solar and Heliospheric Observatory). Chelle Gentemann, the program scientist for the Office of the Chief Science Data Officer within NASA’s Science Mission Directorate, advised Niemeyer on incorporating data into the piece.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Greg Niemeyer’s “Synchronicity” was displayed on Salesforce Tower in San Francisco, CA, in December 2024. A recording of the piece on the tower’s display and the original animation are shown here. The video art piece was created using open NASA data, as well as buoy data from the National Oceanographic and Atmospheric Administration (NOAA). Greg Niemeyer/Emma Strebel “Artists have a lot to contribute to science,” Gentemann said. “Not only can they play a part in the actual scientific process, looking at things in a different way that will lead to new questions, but they’re also critical for getting more people involved in science.”
      NASA’s history of engaging with artists goes back to the 1962 launch of the NASA Art Program, which partnered with artists in bringing the agency’s achievements to a broader audience and telling the story of NASA in a different and unexpected way. Artists such as Andy Warhol, Norman Rockwell, and Annie Leibovitz created works inspired by NASA missions. The Art Program was relaunched in September 2024 with a pair of murals evoking the awe of space exploration for the Artemis Generation.
      The inaugural murals for the relaunched NASA Art Program appear side-by-side at 350 Hudson Street, Monday, Sept. 23, 2024, in New York City. The murals, titled “To the Moon, and Back,” were created by New York-based artist team Geraluz and WERC and use geometrical patterns to invite deeper reflection on the exploration, creativity, and connection with the cosmos. NASA/Joel Kowsky The use of NASA data in art pieces emerged a few decades after the NASA Art Program first launched. Several in-house agency programs, such as NASA’s Scientific Visualization Studio, create stunning animated works from science data. In the realm of audio, NASA’s Chandra X-ray Observatory runs the Universe of Sound project to convert astronomy data into “sonifications” for the public’s listening pleasure.
      Collaborations with external artists help bring NASA data to an even broader audience. NASA’s commitment to open science – making it as easy as possible for the public to access science data – greatly reduces the obstacles for creatives looking to fuse their art with cutting-edge science.
      Michelle Thaller, assistant director for science communication at Goddard, presents the “Pillars of Creation” in the Eagle nebula to the ARTECHOUSE team during a brainstorming session at Goddard. The left image is a view from the Hubble Space Telescope, and the right view is from the Webb telescope. NASA/Wade Sisler Another recent blend of NASA data and art came when digital art gallery ARTECHOUSE created “Beyond the Light,” a 26-minute immersive video experience featuring publicly available images from the James Webb Space Telescope and Hubble Space Telescope. The experience has been running at various ARTECHOUSE locations since September 2023. The massive potential for art to incorporate science data promises to fuel even more of these collaborations between NASA and artists in the future.
      “One of the integral values of open science is providing opportunities for more people to participate in science,” Gentemann said. “I think that by getting the public interested in how this art is done, they also are starting to play with scientific data, maybe for the first time. In that way, art has the power to create new scientists.”
      Learn more about open science at NASA at https://science.nasa.gov/open-science.
      By Lauren Leese 
      Web Content Strategist for the Office of the Chief Science Data Officer 
      Share








      Details
      Last Updated Feb 26, 2025 Related Terms
      Open Science Explore More
      4 min read NASA Open Science Reveals Sounds of Space


      Article


      2 months ago
      4 min read NASA AI, Open Science Advance Disaster Research and Recovery


      Article


      3 months ago
      4 min read Pioneer of Change: America Reyes Wang Makes NASA Space Biology More Open


      Article


      5 months ago
      Keep Exploring Discover More Topics From NASA
      Artificial Intelligence for Science


      NASA is creating artificial intelligence tools to help researchers use NASA’s science data more effectively.


      Open Science at NASA


      NASA’s commitment to open science fuels groundbreaking research while maximizing transparency, innovation, and collaboration.


      Mars Perseverance Rover


      The Mars Perseverance rover is the first leg the Mars Sample Return Campaign’s interplanetary relay team. Its job is to…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…

      View the full article
    • By NASA
      Lee esta historia en español aquí
      When Rose Ferreira first saw an image of a field of galaxies and galaxy clusters from NASA’s James Webb Space Telescope in July, she “went into the restroom and broke down a little,” she said. This “Deep Field” image showed galaxies not only sharper, but deeper into the universe than a similar image she loved from the Hubble Space Telescope.
      “Being able to contribute in any way to the efforts of the team within NASA that released this new Deep Field just felt like such a profound thing for me,” said Ferreira, a student at Arizona State University who interned with NASA this summer. “I was just a little bit in shock for, like, a week.”
      Rose Ferreira estudia ciencias planetarias y astronomía en la Universidad Estatal de Arizona.Credits: James Mayer Webb, the largest space science telescope ever, which launched in December 2021, played a big role in Ferreira’s internship at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. She also supported a series of live news interviews for Webb’s first images and multimedia tasks for NASA’s Spanish-language communications program.
      Growing up in the Dominican Republic, Ferreira said she didn’t have access to science education. She was taught skills like cooking and cleaning; she didn’t know NASA existed at that time.
      But during the frequent blackouts in her village, when the Moon provided the only light, Rose Ferreira often wondered – what is the Moon all about? “The moonlight is a lot of what I used to see, and I was always so curious about that,” she said. “That obsession is what made me start asking questions.”
      When she came to New York, she was placed in an underserved high school that sent her back multiple grades because they weren’t satisfied with her English language skills. She left and earned a GED diploma instead, hoping to go to college faster.
      At age 18, Ferreira became homeless in New York and lived in train stations. By working as a home health aide, she was able to earn enough to rent an apartment in Queens and, eventually, get an associate degree.
      Life threw other major challenges at her, including getting hit by a car and a cancer diagnosis.
      Ferreira ultimately enrolled in a planetary science and astronomy degree program at Arizona State University. She received a “great birthday present” in the spring of 2022: her official acceptance to NASA’s internship program.
      Among the highlights of her NASA experience was recording a voice-over in Spanish for a This Week at NASA video. She also served as a panelist at an event for the Minority University Research and Education Project, organized by NASA’s Office of STEM Engagement.
      Ferreira dreams of becoming an astronaut and has a shorter-term goal of earning a doctorate. But the internship also fueled her passion for sharing space science with the public. Chatting with Goddard astrophysicist Dr. Michelle Thaller, host of the Webb broadcasts, was especially meaningful to her.
      Rose Ferreira, foreground, in the broadcast control room at NASA’s Goddard Space Flight Center in July 2022.Credits: NASA She has this advice for young people who are also interested in pursuing space science: “Coming from a person who had it a bit harder to get there, I think: first, figure out if it is really what you love. And if it is really what you love, then literally find a way to do it no matter who says what.”
      Besides Webb, Ferreira is excited about NASA’s Artemis program, which connects with her passion for the Moon. Through Artemis, NASA will send astronauts to establish a long-term presence on and around the Moon. She’s looking forward to what Artemis will uncover about the Moon’s geology and history while the agency uses the Moon to get ready for human exploration of Mars.
      “Even when I was living on the streets, the Moon used to be the thing I looked at to calm myself. It’s my sense of comfort, even today when I’m overwhelmed by things,” she said. “It’s like a driving force.”
      Written by Elizabeth Landau
      NASA Headquarters
      View the full article
    • By NASA
      An image of a coastal marshland combines aerial and satellite views in a technique similar to hyperspectral imaging. Combining data from multiple sources gives scientists information that can support environmental management.John Moisan When it comes to making real-time decisions about unfamiliar data – say, choosing a path to hike up a mountain you’ve never scaled before – existing artificial intelligence and machine learning tech doesn’t come close to measuring up to human skill. That’s why NASA scientist John Moisan is developing an AI “eye.”
      Oceanographer John MoisanNASA Moisan, an oceanographer at NASA’s Wallops Flight Facility near Chincoteague, Virginia, said AI will direct his A-Eye, a movable sensor. After analyzing images his AI would not just find known patterns in new data, but also steer the sensor to observe and discover new features or biological processes. 
      “A truly intelligent machine needs to be able to recognize when it is faced with something truly new and worthy of further observation,” Moisan said. “Most AI applications are mapping applications trained with familiar data to recognize patterns in new data. How do you teach a machine to recognize something it doesn’t understand, stop and say ‘What was that? Let’s take a closer look.’ That’s discovery.”
      Finding and identifying new patterns in complex data is still the domain of human scientists, and how humans see plays a large part, said Goddard AI expert James MacKinnon. Scientists analyze large data sets by looking at visualizations that can help bring out relationships between different variables within the data.
      Infrared images like this one from a marsh area on the Maryland/Virginia Eastern Shore coastal barrier and back bay regions reveal clues to scientists about plant health, photosynthesis, and other conditions that affect vegetation and ecosystems.John Moisan It’s another story to train a computer to look at large data streams in real time to see those connections, MacKinnon said. Especially when looking for correlations and inter-relationships in the data that the computer hasn’t been trained to identify. 
      Moisan intends first to set his A-Eye on interpreting images from Earth’s complex aquatic and coastal regions. He expects to reach that goal this year, training the AI using observations from prior flights over the Delmarva Peninsula. Follow-up funding would help him complete the optical pointing goal.
      “How do you pick out things that matter in a scan?” Moisan asked. “I want to be able to quickly point the A-Eye at something swept up in the scan, so that from a remote area we can get whatever we need to understand the environmental scene.” 
      Moisan’s on-board AI would scan the collected data in real-time to search for significant features, then steer an optical sensor to collect more detailed data in infrared and other frequencies. 
      Thinking machines may be set to play a larger role in future exploration of our universe. Sophisticated computers taught to recognize chemical signatures that could indicate life processes, or landscape features like lava flows or craters, might offer to increase the value of science data returned from lunar or deep-space exploration. 
      Today’s state-of-the-art AI is not quite ready to make mission-critical decisions, MacKinnon said.
      “You need some way to take a perception of a scene and turn that into a decision and that’s really hard,” he said. “The scary thing, to a scientist, is to throw away data that could be valuable. An AI might prioritize what data to send first or have an algorithm that can call attention to anomalies, but at the end of the day, it’s going to be a scientist looking at that data that results in discoveries.” 
      Share
      Details
      Last Updated Feb 10, 2025 Related Terms
      Goddard Space Flight Center Artificial Intelligence (AI) Goddard Technology People of Goddard Technology Wallops Flight Facility Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      “Data visualization has recently exploded as a communication tool,” said Mark SubbaRao, information technology specialist and lead for NASA’s Scientific Visualization Studio. “As data becomes bigger and more complex, visualization becomes an even more important tool for understanding that data.”Rachel Connolly / Courtesy of Mark SubbaRao Name: Mark SubbaRao
      Title: Lead, Scientific Visualization Studio (SVS)
      Formal Job Classification: Information Technology Specialist
      Organization: SVS, Science Mission Directorate (Code 606.4)
      What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
      I have an amazing job. I get to work with all the most interesting NASA science and make it visual to help people can understand it. The Scientific Visualization Studio, the SVS, supports all of NASA and is located at Goddard.
      What is your educational background?
      I have B.S. in engineering physics, minor in astronomy, from Lehigh University in Bethlehem, Pennsylvania. I have a Ph.D. in astrophysics from Johns Hopkins University.
      What is data visualization? How is it different from animation?
      Data visualization is the graphical representation of actual data (in our case usually scientific data). At its most basic it takes the forms of charts, graphs, and maps. In contrast, conceptual animation, such as the work of our colleagues in the CI Lab, is the graphical representation of ideas. Conceptual animation and data visualization are both needed to communicate the full scientific process.
      How did your work for the University of Chicago develop your interest in visualization?
      I worked on software for the Sloan Digital Sky Survey, a project to create the biggest 3D map of the universe. Our goal was to map 3D positions of a million galaxies, which we did. My role was to develop the software to determine the distance to galaxies. To see the result we needed a way to see how the galaxies were distributed in 3D, which led to my interest in visualization.
      Viewing this map, I felt like we had revealed a new world which no one had yet seen altogether. The desire to share that with the public led me a position at the Adler Planetarium in Chicago.
      “Astrographics,” a video piece Mark SubbaRao produced for the Adler Planetarium, being projected on the Merchandise Mart on the Chicago riverfront.Michael SubbaRao / Courtesy of Mark SubbaRao How did planetariums evolve during your 18 years of working for the Adler Planetarium?
      I led their visualization efforts for their Space Visualization Laboratory, a laboratory that was on the museum floor and had multiple specialized displays. The local scientific community used our laboratory to present to the public including other scientists and students.
      I also produced planetarium shows and designed exhibits. My last project, “Astrographics” for Art on the Mart, was a 2.6-acre, outdoor projection onto a building near the Chicago River. We believe that this is the largest, permanent outdoor digital projection in the world.
      I began to see the power of the planetarium as a data visualization environment. Traditionally, a planetarium has been a place to project stars and tell stories about constellations. Planetariums have now evolved into a general-purpose visualization platform to communicate science.
      I got more involved with the planetarium community, which led to me becoming president of the International Planetarium Society. A major focus of my presidency was promoting planetariums in Africa.
      Why did you come to NASA’s SVS at Goddard?
      I came to Goddard in December 2020. I always admired NASA’s SVS and had used their products. I consider the SVS the preeminent group using scientific visualization for public communication.
      I wanted to work on visualizations for a broader variety of sciences, in particular, climate science. Our group created visualizations for the United Nations Climate Conference (COP26) in Glasgow, Scotland, the fall of 2021. In March 2022, I created a visualization called Climate Spiral, which went viral.
      This visualization shows monthly global temperature anomalies (changes from an average) between the years 1880 and 2021. Whites and blues indicate cooler temperatures, while oranges and reds show warmer temperatures.
      Credits: NASA’s Goddard Space Flight Center / NASA’s Scientific Visualization Studio
      Download high-resolution video and images from NASA’s Scientific Visualization Studio As the lead, how do you hope to inspire your group?
      Our group is very talented, experienced, and self-motivated. Data visualization has recently exploded as a communication tool. Our goal is to continue to stay on top of this rapidly evolving field. Coupled with this, there has been an explosion in scientific data from satellites and super computers. As data becomes bigger and more complex, visualization becomes an even more important tool for understanding that data.
      Karen St. Germain, NASA’s Director of Earth Science, presenting an SVS visualization of carbon dioxide to the 2021 United Nations Climate Change Conference in Glasgow, Scotland.
      Download high-resolution video and images from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/31168NASA’s Goddard Space Flight Center / NASA’s Scientific Visualization Studio Your work combines art and science. What are the benefits of combining art and science?
      One huge benefit is that you can reach people through an artistic visual presentation of science who may not be interested in simply reading an article. You can go beyond teaching people, you can move them emotionally through a good, artistic presentation.
      For example, in “Climate Spiral,” we did not want to just inform people that global average temperatures have increased, we wanted people to feel that the temperature has increased.
      Also, our universe is just beautiful. Why not let the beauty of the universe create something artistic for you? I sometimes feel like I cheat by letting the universe do my design for me.
      What do you do for fun?
      Since moving to Maryland, and living near the Chesapeake Bay, I have taken up stand up paddleboarding. I like to cook too. My father is Indian, so I cook a lot of Indian food.
      Who inspires you?
      Arthur C. Clarke, the science fiction writer, also wrote a lot of popular science. He played a big part in my decision to become a scientist.
      Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
      By Elizabeth M. Jarrell
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Explore More
      8 min read John Moisan Studies the Ocean Through the ‘Eyes’ of AI
      Article 14 mins ago 5 min read NASA Scientists & Historian Named AAAS 2022 Fellows
      Article 14 mins ago 6 min read Phathom Donald Brings Space Closer as a Hubble Mission Engineer
      Article 14 mins ago Share
      Details
      Last Updated Feb 10, 2025 EditorJessica EvansContactRob Garnerrob.garner@nasa.gov Related Terms
      Goddard Space Flight Center People of Goddard View the full article
    • By Space Force
      Department of the Air Force releases the memorandum DAF Initial Return to In-Person Work Data for the DoD Implementation Plan.
      View the full article
  • Check out these Videos

×
×
  • Create New...