Members Can Post Anonymously On This Site
Know Python? Or have a DSLR Camera? The Eclipse Megamovie needs your help!
-
Similar Topics
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Sunlight gleams off NASA’s Lunar Trailblazer as the dishwasher-size spacecraft orbits the Moon in this artist’s concept. The mission will discover where the Moon’s water is, what form it is in, and how it changes over time, producing the best-yet maps of water on the lunar surface.Lockheed Martin Space The small satellite mission will map the Moon to help scientists better understand where its water is, what form it’s in, how much is there, and how it changes over time.
Launching no earlier than Wednesday, Feb. 26, NASA’s Lunar Trailblazer will help resolve an enduring mystery: Where is the Moon’s water? After sharing a ride on a SpaceX Falcon 9 rocket with Intuitive Machines’ IM-2 launch — part of NASA’s CLPS (Commercial Lunar Payload Services) initiative — the small satellite will take several months to arrive in lunar orbit.
Here are six things to know about the mission.
1. Lunar Trailblazer will produce high-resolution maps of water on the lunar surface.
One of the biggest lunar discoveries in recent decades is that the Moon’s surface has quantities of water, but little about its nature is known. To investigate, Lunar Trailblazer will decipher where the water is, what form it is in, how much is there, and how it changes over time. The small satellite will produce the best-yet maps of water on the lunar surface. Observations gathered during the two-year prime mission will also contribute to the understanding of water cycles on airless bodies throughout the solar system.
2. The small satellite will use two state-of-the-art science instruments.
Key to achieving these goals are the spacecraft’s two science instruments: the High-resolution Volatiles and Minerals Moon Mapper (HVM3) infrared spectrometer and the Lunar Thermal Mapper (LTM) infrared multispectral imager. NASA’s Jet Propulsion Laboratory in Southern California provided the HVM3 instrument, while LTM was built by the University of Oxford and funded by the UK Space Agency.
HVM3 will detect and map the spectral fingerprints, or wavelengths of reflected sunlight, of minerals and the different forms of water on the lunar surface. The LTM instrument will map the minerals and thermal properties of the same landscape. Together they will create a picture of the abundance, location, and form of water while also tracking how its distribution changes over time and temperature.
Fueled and attached to an adaptor used for secondary payloads, NASA’s Lunar Trailblazer is seen at SpaceX’s payload processing facility within NASA’s Kennedy Space Center in Florida in early February 2025. The small satellite is riding along on Intuitive Machines’ IM-2 launch.SpaceX 3. Lunar Trailblazer will take a long and winding road to the Moon.
Weighing only 440 pounds (200 kilograms) and measuring 11.5 feet (3.5 meters) wide with its solar panels fully deployed, Lunar Trailblazer is about the size of a dishwasher and relies on a relatively small propulsion system. To make the spacecraft’s four-to-seven-month trip to the Moon (depending on the launch date) as efficient as possible, the mission’s design and navigation team has planned a looping trajectory that will use the gravity of the Sun, Earth, and Moon to guide Lunar Trailblazer to its final science orbit — a technique called low-energy transfer.
4. The spacecraft will peer into the darkest parts of the Moon’s South Pole.
Lunar Trailblazer’s science orbit positions it to peer into the craters at the Moon’s South Pole using the HVM3 instrument. What makes these craters so intriguing is that they harbor cold traps that may not have seen direct sunlight for billions of years, which means they’re a potential hideout for frozen water. The HVM3 spectrometer is designed to use faint reflected light from the walls of craters to see the floor of even permanently shadowed regions. If Lunar Trailblazer finds significant quantities of ice at the base of the craters, those locations could be pinpointed as a resource for future lunar explorers.
5. Lunar Trailblazer is a high-risk, low-cost mission.
Lunar Trailblazer was a 2019 selection of NASA’s SIMPLEx (Small Innovative Missions for Planetary Exploration), which provides opportunities for low-cost science spacecraft to ride-share with selected primary missions. To maintain a lower overall cost, SIMPLEx missions have a higher risk posture and lighter requirements for oversight and management. This higher risk acceptance allows NASA to enable science missions that could not otherwise be done.
6. Future missions will benefit from Lunar Trailblazer’s data.
Mapping the Moon’s water supports future human and robotic lunar missions. With knowledge from Lunar Trailblazer of where water is located, astronauts could process lunar ice to create water for human use, breathable oxygen, or fuel. And they could conduct science by sampling the ice for later study to determine the water’s origins.
More About Lunar Trailblazer
Lunar Trailblazer is led by Principal Investigator Bethany Ehlmann of Caltech in Pasadena, California. Caltech also leads the mission’s science investigation, and Caltech’s IPAC leads mission operations, which includes planning, scheduling, and sequencing of all spacecraft activities. NASA JPL manages Lunar Trailblazer and provides system engineering, mission assurance, the HVM3 instrument, and mission design and navigation. JPL is managed by Caltech for NASA. Lockheed Martin Space provided the spacecraft, integrated the flight system, and supports operations under contract with Caltech. The University of Oxford developed and provided the LTM instrument, funded by the UK Space Agency. Lunar Trailblazer, part of NASA’s Lunar Discovery Exploration Program, is managed by NASA’s Planetary Mission Program Office at Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
News Media Contact
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
Ian J. O’Neill
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-2649
ian.j.oneill@jpl.nasa.gov
Isabel Swafford
Caltech IPAC
626-216-4257
iswafford@ipac.caltech.edu
2025-027
Share
Details
Last Updated Feb 26, 2025 Related Terms
Lunar Trailblazer Commercial Lunar Payload Services (CLPS) Earth's Moon Lunar Science Explore More
1 min read Intuitive Machines’ IM-2 Mission
Article 1 day ago 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon
Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the…
Article 1 day ago 4 min read Five Facts About NASA’s Moon Bound Technology
Article 2 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
The Red Planet’s iconic rusty dust has a much wetter history than previously assumed, find scientists combining European Space Agency (ESA) and NASA spacecraft data with new laboratory experiments on replica Mars dust. The results suggest that Mars rusted early in the planet’s ancient past, when liquid water was more widespread.
View the full article
-
By NASA
Explore This Section Science Science Activation Eclipses to Auroras: Eclipse… Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read
Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
In 2023 and 2024, two eclipses crossed the United States, and the NASA Science Activation program’s Eclipse Ambassadors Off the Path project invited undergraduate students and amateur astronomers to join them as “NASA Partner Eclipse Ambassadors”. This opportunity to partner with NASA, provide solar viewing glasses, and share eclipse knowledge with underserved communities off the central paths involved:
Partnering with an undergraduate/amateur astronomer Taking a 3-week cooperative course (~12 hours coursework) Engaging their communities with eclipse resources by reaching 200+ people These Eclipse Ambassador partnerships allowed participants to grow together as they learned new tools and techniques for explaining eclipses and engaging with the public, and Eclipse Ambassadors are recognized for their commitment to public engagement.
In January 2025, the Eclipse Ambassadors Off the Path project held a week-long Heliophysics Winter Field School (WFS), a culminating Heliophysics Big Year experience for nine undergraduate and graduate Eclipse Ambassadors. The WFS exposed participants to career opportunities and field experience in heliophysics, citizen science, and space physics. The program included expert lectures on space physics, aurora, citizen science, and instrumentation, as well as hands-on learning opportunities with Poker Flat Rocket Range, the Museum of the North, aurora chases, and more. Students not only learned about heliophysics, they also actively participated in citizen science data collection using a variety of instruments, as well as the Aurorasaurus citizen science project app. Interactive panels on career paths helped prepare them to pursue relevant careers.
One participant, Sophia, said, “This experience has only deepened my passion for heliophysics, science communication, and community engagement.” Another participant, Feras, reflected, “Nine brilliant students from across the country joined a week-long program at the University of Alaska Fairbanks’ (UAF) Geophysical Institute, where we attended multiple panels on solar and space physics, spoke to Athabaskan elders on their connection to the auroras, and visited the Poker Flat Research Range to observe the stunning northern lights.”
This undertaking would not have been possible without the coordination, planning, leadership of many. Principal Investigators included Vivian White (Eclipse Ambassadors, Astronomical Society of the Pacific, ASP) and Dr. Elizabeth McDonald (Aurorasaurus, NASA GSFC). Other partners included Lynda McGilvary (Geophysical Institute at UAF), Jen Arseneau (UAF), Shanil Virani (ASP), Andréa Hughes (NASA), and Lindsay Glesener (University of Minnesota), as well as knowledge holders, students, and scientists.
The Eclipse Ambassadors Off the Path project is supported by NASA under cooperative agreement award number 80NSS22M0007 and is part of NASA’s Science Activation Portfolio. To learn more, visit: www.eclipseambassadors.org.
Winter Field School Participants standing under the aurora. Andy Witteman Share
Details
Last Updated Feb 18, 2025 Editor NASA Science Editorial Team Related Terms
Science Activation 2023 Solar Eclipse 2024 Solar Eclipse Auroras Opportunities For Students to Get Involved Explore More
2 min read An Afternoon of Family Science and Rocket Exploration in Alaska
Article
4 days ago
3 min read Tribal Library Co-Design STEM Space Workshop
Article
5 days ago
5 min read NASA Rockets to Fly Through Flickering, Vanishing Auroras
Article
4 weeks ago
Keep Exploring Discover More Topics From NASA
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Perseverance Rover
This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…
Parker Solar Probe
On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…
Juno
NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…
View the full article
-
By NASA
An image of a coastal marshland combines aerial and satellite views in a technique similar to hyperspectral imaging. Combining data from multiple sources gives scientists information that can support environmental management.John Moisan When it comes to making real-time decisions about unfamiliar data – say, choosing a path to hike up a mountain you’ve never scaled before – existing artificial intelligence and machine learning tech doesn’t come close to measuring up to human skill. That’s why NASA scientist John Moisan is developing an AI “eye.”
Oceanographer John MoisanNASA Moisan, an oceanographer at NASA’s Wallops Flight Facility near Chincoteague, Virginia, said AI will direct his A-Eye, a movable sensor. After analyzing images his AI would not just find known patterns in new data, but also steer the sensor to observe and discover new features or biological processes.
“A truly intelligent machine needs to be able to recognize when it is faced with something truly new and worthy of further observation,” Moisan said. “Most AI applications are mapping applications trained with familiar data to recognize patterns in new data. How do you teach a machine to recognize something it doesn’t understand, stop and say ‘What was that? Let’s take a closer look.’ That’s discovery.”
Finding and identifying new patterns in complex data is still the domain of human scientists, and how humans see plays a large part, said Goddard AI expert James MacKinnon. Scientists analyze large data sets by looking at visualizations that can help bring out relationships between different variables within the data.
Infrared images like this one from a marsh area on the Maryland/Virginia Eastern Shore coastal barrier and back bay regions reveal clues to scientists about plant health, photosynthesis, and other conditions that affect vegetation and ecosystems.John Moisan It’s another story to train a computer to look at large data streams in real time to see those connections, MacKinnon said. Especially when looking for correlations and inter-relationships in the data that the computer hasn’t been trained to identify.
Moisan intends first to set his A-Eye on interpreting images from Earth’s complex aquatic and coastal regions. He expects to reach that goal this year, training the AI using observations from prior flights over the Delmarva Peninsula. Follow-up funding would help him complete the optical pointing goal.
“How do you pick out things that matter in a scan?” Moisan asked. “I want to be able to quickly point the A-Eye at something swept up in the scan, so that from a remote area we can get whatever we need to understand the environmental scene.”
Moisan’s on-board AI would scan the collected data in real-time to search for significant features, then steer an optical sensor to collect more detailed data in infrared and other frequencies.
Thinking machines may be set to play a larger role in future exploration of our universe. Sophisticated computers taught to recognize chemical signatures that could indicate life processes, or landscape features like lava flows or craters, might offer to increase the value of science data returned from lunar or deep-space exploration.
Today’s state-of-the-art AI is not quite ready to make mission-critical decisions, MacKinnon said.
“You need some way to take a perception of a scene and turn that into a decision and that’s really hard,” he said. “The scary thing, to a scientist, is to throw away data that could be valuable. An AI might prioritize what data to send first or have an algorithm that can call attention to anomalies, but at the end of the day, it’s going to be a scientist looking at that data that results in discoveries.”
Share
Details
Last Updated Feb 10, 2025 Related Terms
Goddard Space Flight Center Artificial Intelligence (AI) Goddard Technology People of Goddard Technology Wallops Flight Facility Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.