Members Can Post Anonymously On This Site
Media briefing: Findings of the Independent Enquiry Commission on Vega-C test
-
Similar Topics
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s Stennis Space Center near Bay St. Louis, Mississippi, is helping the Artemis Generation learn how to power space dreams with an interactive exhibit at INFINITY Science Center.
The engine test simulator exhibit at the official visitor center of NASA Stennis provides the chance to experience the thrill of being a NASA test engineer by guiding an RS-25 engine through a simulated hot fire test.
“It is an exhilarating opportunity to feel what it is like to be a NASA engineer, responsible for making sure the engine is safely tested for launch,” said Chris Barnett-Woods, a NASA engineer that helped develop the software for the exhibit.
Sitting at a console mirroring the actual NASA Stennis Test Control Center, users are immersed in the complex process of engine testing. The exhibit uses cutting-edge software and visual displays to teach participants how to manage liquid oxygen and liquid hydrogen propellants, and other essential elements during a hot fire.
A pair of young visitors to INFINITY Science Center carry out the steps of a simulated RS-25 engine hot fire on Dec. 19. The updated engine test simulator exhibit provided by NASA’s Stennis Space Center takes users through the hot fire process just as real engineers do at NASA Stennis.NASA/Danny Nowlin INFINITY Science Center, the official visitor center for NASA’s Stennis Space Center, has unveiled a new interactive simulator exhibit that allows visitors to become the test conductor for an RS-25 engine hot fire. NASA/Danny Nowlin Users follow step-by-step instructions that include pressing buttons, managing propellant tanks, and even closing the flare stack, just as real engineers do at NASA Stennis. Once the test is complete, they are congratulated for successfully conducting their own rocket engine hot fire.
The interactive exhibit is not just about pushing buttons. It is packed with interesting facts about the RS-25 engine, which helps power NASA’s Artemis missions as the agency explores secrets of the universe for the benefit of all. Visitors also can view real hot fires conducted at NASA Stennis from multiple angles, deepening their understanding of rocket propulsion testing and NASA’s journey back to the Moon and beyond.
NASA is currently preparing for the Artemis II mission, the first crewed flight test of the agency’s powerful SLS (Space Launch System) rocket and the Orion spacecraft around the Moon.
The first four Artemis missions are using modified space shuttle main engines tested at NASA Stennis. The center also achieved a testing milestone last April for engines to power future Artemis missions. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power NASA’s SLS rocket, producing more than 8.8 million pounds of total combined thrust at liftoff.
The revitalized exhibit, previously used when the visitor center was located onsite, represents a collaborative effort. It started as an intern project in the summer of 2023 before evolving into a full-scale experience. Engineers built on the initial concept, integrating carpentry, audio, and video to create the seamless experience to educate and inspire.
The best part might be that visitors to INFINITY Science Center can repeat the simulation as many times as they like, gaining confidence and learning more with each attempt.
“This exhibit was a favorite in the past, and with its new upgrades, the engine test simulator is poised to capture the imaginations of the Artemis Generation at INFINITY Science Center,” said NASA Public Affairs Specialist Samone Wilson. “This is one exhibit you will not want to miss.” INFINITY Science Center is located at 1 Discovery Circle, Pearlington, Mississippi. For hours of operation and admission information, please visit www.visitinfinity.com.
Share
Details
Last Updated Dec 20, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
Stennis Space Center View the full article
-
By European Space Agency
Video: 00:00:00 Watch the replay of the media information session in which ESA Director General Josef Aschbacher and ESA Council Chair Renato Krpoun (CH) update journalists on the key decisions taken at the ESA Council meeting, held at ESA Headquarters in Paris on 17 and 18 December 2024.
View the full article
-
By NASA
NASA’s Ames Research Center in California’s Silicon Valley, is celebrating 85 years of cutting-edge research and development in space, life sciences, supercomputing, aeronautics, and more for the benefit of humanity. Ames was founded as an aeronautical laboratory in December 1939, and has since contributed to many of NASA’s flagship missions from Apollo to Artemis.
NASA Ames experts are available for interviews Thursday, Dec. 19, and Friday, Dec. 20. To request an interview about the center’s legacy in space, science, technology, and aeronautics, email the Ames newsroom at: arc-dl-newsroom@mail.nasa.gov.
NASA Ames experts include:
James Anderson, NASA Ames historian; Lynn Harper, lead of integrative studies in the NASA Space Portal, working to propel U.S. industry toward the development of a sustainable, scalable, and profitable non-NASA demand for services and products manufactured in the microgravity environment of low Earth orbit; Shivanjli Sharma, aerospace research engineer, working to enable advanced aviation technologies for new methods of air cargo and passenger transportation in urban, suburban, rural, and regional communities; Dave Alfano, chief of the Ames Intelligent Systems Division, working to produce ground and flight software systems and data architectures for data mining, analysis, integration, and management; integrated health management, and more for missions across the agency. Ames has established itself as a leader in the aeronautics industry, developing foundational technologies for advanced air vehicles, including air taxis and remotely piloted aircraft. On the International Space Station, Ames researchers have tested a method to develop nutrients off-Earth and on-demand. Cube-shaped robots have been delivered to the station to assist astronauts with routine duties. Ames engineers have developed and are testing a heat shield for the Orion crew capsule that will safely return astronauts home to Earth as part of the agency’s Artemis missions to the Moon.
For more information on Ames’ history and contributions, visit:
https://www.nasa.gov/reference/ames-history
-end-
Rachel Hoover
Ames Research Center, Silicon Valley, Calif.
650-604-4789
rachel.l.hoover@nasa.gov
View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA/Steve Parcel The most effective way to prove a new idea is to start small, test, learn, and test again. A team of researchers developing an atmospheric probe at NASA’s Armstrong Flight Research Center in Edwards, California, are taking that approach. The concept could offer future scientists a potentially better and more economical way to collect data on other planets.
The latest iteration of the atmospheric probe flew after release from a quad-rotor remotely piloted aircraft on Oct. 22 above Rogers Dry Lake, a flight area adjacent to NASA Armstrong. The probe benefits from NASA 1960s research on lifting body aircraft, which use the aircraft’s shape for lift instead of wings. Testing demonstrated the shape of the probe works.
“I’m ecstatic,” said John Bodylski, atmospheric probe principal investigator at NASA Armstrong. “It was completely stable in flight. We will be looking at releasing it from a higher altitude to keep it flying longer and demonstrate more maneuvers.”
An atmospheric probe model attached upside down to a quad rotor remotely piloted aircraft ascends with the Moon visible on Oct. 22, 2024. The quad rotor aircraft released the probe above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman Starting with a Center Innovation Fund award in 2023, Bodylski worked closely with the center’s Dale Reed Subscale Flight Research Laboratory to design and build three atmospheric probe models, each vehicle 28 inches long from nose to tail. One model is a visual to show what the concept looks like, while two additional prototypes improved the technology’s readiness.
The road to the successful flight wasn’t smooth, which is expected with any new flight idea. The first flight on Aug. 1 didn’t go as planned. The release mechanism didn’t work as expected and air movement from the quad rotor aircraft was greater than anticipated. It was that failure that inspired the research team to take another look at everything about the vehicle, leading to many improvements, said Justin Hall, NASA Armstrong chief pilot of small, unmanned aircraft systems.
Fast forward to Oct. 22, where the redesign of the release mechanism, in addition to an upside-down release and modified flight control surfaces, led to a stable and level flight. “Everything we learned from the first vehicle failing and integrating what we learned into this one seemed to work well,” Hall said. “This is a win for us. We have a good place to go from here and there’s some more changes we can make to improve it.”
Justin Link, left, small unmanned aircraft systems pilot; John Bodylski, atmospheric probe principal investigator; and Justin Hall, chief pilot of small unmanned aircraft systems, discuss details of the atmospheric probe flight plan on Oct. 22, 2024. A quad rotor remotely piloted aircraft released the probe above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman Bodylski added, “We are going to focus on getting the aircraft to pull up sooner to give us more flight time to learn more about the prototype. We will go to a higher altitude [this flight started at 560 feet altitude] on the next flight because we are not worried about the aircraft’s stability.”
When the team reviewed flight photos and video from the Oct. 22 flight they identified additional areas for improvement. Another atmospheric probe will be built with enhancements and flown. Following another successful flight, the team plans to instrument a future atmospheric probe that will gather data and improve computer models. Data gathering is the main goal for the current flights to give scientists confidence in additional probe shapes for atmospheric missions on other planets.
If this concept is eventually chosen for a mission, it would ride on a satellite to its destination. From there, the probe would separate as the parent satellite orbits around a planet, then enter and dive through the atmosphere as it gathers information for clues of how the solar system formed.
Justin Hall, chief pilot of small unmanned aircraft systems, prepares the atmospheric probe for flight above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California. At right, Justin Link, small unmanned aircraft systems pilot, assists. The probe, designed and built at the center, flew after release from a quad rotor remotely piloted aircraft on Oct. 22, 2024.NASA/Steve Freeman Derek Abramson, left, chief engineer for the Dale Reed Subscale Flight Research Laboratory, and Justin Link, small unmanned aircraft system pilot, carry the atmospheric probe model and a quad rotor remotely piloted aircraft to position it for flight on Oct. 24, 2024. John Bodylski, probe principal investigator, right, and videographer Jacob Shaw watch the preparations. Once at altitude, the quad rotor aircraft released the probe above Rogers Dry Lake, a flight area adjacent to NASA’s Armstrong Flight Research Center in Edwards, California. The probe was designed and built at the center.NASA/Steve Freeman A quad rotor remotely piloted aircraft releases the atmospheric probe model above Rogers Dry Lake, a flight area adjacent NASA’s Armstrong Flight Research Center in Edwards, California, on Oct. 22, 2024. The probe was designed and built at the center.NASA/Carla Thomas Share
Details
Last Updated Dec 11, 2024 Related Terms
Armstrong Flight Research Center Aeronautics Center Innovation Fund Flight Innovation Space Technology Mission Directorate Explore More
3 min read NASA Moves Drone Package Delivery Industry Closer to Reality
Article 24 hours ago 1 min read NASA TechLeap Prize: Space Technology Payload Challenge
Article 1 day ago 1 min read 3D Printable Bioreactor for Deep Space Food Production
Article 1 day ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Armstrong Capabilities & Facilities
Armstrong Technologies
Armstrong Flight Research Center History
View the full article
-
By NASA
Panama and Austria are expected to sign the Artemis Accords to reach 50 signatories on Wednesday, Dec. 11, 2024. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space.Credit: NASA Lee esta nota de prensa en español aquí.
On Wednesday, Dec. 11, Panama and Austria will sign the Artemis Accords at NASA Headquarters in Washington. Following the signing ceremonies, NASA Administrator Bill Nelson will hold an in-person media availability to highlight progress on the accords, including reaching 50 signatories.
Events will start at the following times:
11 a.m. – Nelson hosts José Miguel Alemán Healy, ambassador of the Republic of Panama to the United States, and officials of the U.S. Department of State for Panama’s signing ceremony. 2 p.m. – Nelson hosts Petra Schneebauer, ambassador of the Republic of Austria to the United States, and State Department officials for Austria’s signing ceremony. 2:30 p.m. – Artemis Accords media availability with Nelson. All events are in-person only. Media interested in attending the events must RSVP no later than 5 p.m. on Tuesday, Dec. 10 to: hq-media@mail.nasa.gov. NASA’s media accreditation policy is online.
The United States, led by NASA with the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords in 2020, identifying a set of principles promoting the beneficial use of space for humanity. As of today, 48 nations will have signed the Artemis Accords, including 39 under the Biden-Harris Administration and 15 in 2024 alone.
The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data.
The ceremonies will take place at the agency’s James E. Webb Auditorium in the West Lobby at NASA Headquarters in the Mary W. Jackson building, 300 E St. SW in Washington.
Learn more about the Artemis Accords at:
https://www.nasa.gov/artemis-accords
-end-
Meira Bernstein / Elizabeth Shaw
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
Share
Details
Last Updated Dec 09, 2024 LocationNASA Headquarters Related Terms
Artemis Accords NASA Headquarters Office of International and Interagency Relations (OIIR) View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.