Jump to content

Living on the Edge: Supernova Bubble Expands in New Hubble Time-Lapse Movie


NASA

Recommended Posts

  • Publishers

4 min read

Living on the Edge: Supernova Bubble Expands in New Hubble Time-Lapse Movie

A long, thin, twisted ribbon of orange gas and dust stretches from left to right across the image. Bright-white stars dot the black background. One bright, blue-white star at bottom left. A small swath of blue gas stretches below the orange ribbon on the right side.
NASA’s Hubble Space Telescope, ESA, Ravi Sankrit (STScI)

Though a doomed star exploded some 20,000 years ago, its tattered remnants continue racing into space at breakneck speeds – and NASA’s Hubble Space Telescope has caught the action.

The nebula, called the Cygnus Loop, forms a bubble-like shape that is about 120 light-years in diameter. The distance to its center is approximately 2,600 light-years. The entire nebula has a width of six full Moons as seen on the sky.

Astronomers used Hubble to zoom into a very small slice of the leading edge of this expanding supernova bubble, where the supernova blast wave plows into surrounding material in space. Hubble images taken from 2001 to 2020 clearly demonstrate how the remnant’s shock front has expanded over time, and they used the crisp images to clock its speed.

By analyzing the shock’s location, astronomers found that the shock hasn’t slowed down at all in the last 20 years, and is speeding into interstellar space at over half a million miles per hour – fast enough to travel from Earth to the Moon in less than half an hour. While this seems incredibly fast, it’s actually on the slow end for the speed of a supernova shock wave. Researchers were able to assemble a “movie” from Hubble images for a close-up look at how the tattered star is slamming into interstellar space.

“Hubble is the only way that we can actually watch what’s happening at the edge of the bubble with such clarity,” said Ravi Sankrit, an astronomer at the Space Telescope Science Institute in Baltimore, Maryland. “The Hubble images are spectacular when you look at them in detail. They’re telling us about the density differences encountered by the supernova shocks as they propagate through space, and the turbulence in the regions behind these shocks.”

A very close-up look at a nearly two-light-year-long section of the filaments of glowing hydrogen and ionized oxygen shows that they look like a wrinkled sheet seen from the side. “You’re seeing ripples in the sheet that is being seen edge-on, so it looks like twisted ribbons of light,” said William Blair of the Johns Hopkins University, Baltimore, Maryland. “Those wiggles arise as the shock wave encounters more or less dense material in the interstellar medium.” The time-lapse movie over nearly two decades shows the filaments moving against the background stars but keeping their shape.


Video Credit: NASA's Hubble Space Telescope, ESA, STScI; Acknowledgment:
NSF's NOIRLab, Akira Fujii , Jeff Hester , Davide De Martin , Travis A. Rector , Ravi Sankrit (STScI), DSS

“When we pointed Hubble at the Cygnus Loop we knew that this was the leading edge of a shock front, which we wanted to study. When we got the initial picture and saw this incredible, delicate ribbon of light, well, that was a bonus. We didn’t know it was going to resolve that kind of structure,” said Blair.

Blair explained that the shock is moving outward from the explosion site and then it starts to encounter the interstellar medium, the tenuous regions of gas and dust in interstellar space. This is a very transitory phase in the expansion of the supernova bubble where invisible neutral hydrogen is heated to one million degrees Fahrenheit or more by the shock wave’s passage. The gas then begins to glow as electrons are excited to higher energy states and emit photons as they cascade back to low energy states. Further behind the shock front, ionized oxygen atoms begin to cool, emitting a characteristic glow shown in blue.

The Cygnus Loop was discovered in 1784 by William Herschel, using a simple 18-inch reflecting telescope. He could have never imagined that a little over two centuries later we’d have a telescope powerful enough to zoom in on a very tiny slice of the nebula for this spectacular view.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.


Video Credits: NASA's Hubble Space Telescope, ESA, STScI; Acknowledgment:
NSF's NOIRLab, Akira Fujii , Jeff Hester , Davide De Martin , Travis A. Rector , Ravi Sankrit (STScI), DSS

Share

Details

Last Updated
Sep 29, 2023
Editor
Andrea Gianopoulos
Contact

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      The panel discussed the development and realignment of the department’s commands during an era of Great Power Competition.

      View the full article
    • By NASA
      Hubble Space Telescope Home Hubble Lights the Way with New… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   2 min read
      Hubble Lights the Way with New Multiwavelength Galaxy View
      This image from the NASA/ESA Hubble Space Telescope features the galaxy NGC 1559. ESA/Hubble & NASA, F. Belfiore, W. Yuan, J. Lee and the PHANGS-HST Team, A. Riess, K. Takáts, D. de Martin & M. Zamani (ESA/Hubble) The magnificent galaxy featured in this NASA/ESA Hubble Space Telescope image is NGC 1559. It is a barred spiral galaxy located in the constellation Reticulum, approximately 35 million light-years from Earth. The brilliant light captured in the current image offers a wealth of information.
      This picture is composed of a whopping ten different Hubble images, each filtered to collect light from a specific wavelength or range of wavelengths. It spans Hubble’s sensitivity to light, from ultraviolet through visible light and into the near-infrared spectrum. Capturing such a wide range of wavelengths allows astronomers to study information about many different astrophysical processes in the galaxy: one notable example is the red 656-nanometer filter used here. Ionized hydrogen atoms emit light at this particular wavelength, called H-alpha emission. New stars forming in a molecular cloud, made mostly of hydrogen gas, emit copious amounts of ultraviolet light that the cloud absorbs, ionizing the hydrogen gas causing it to glow with H-alpha light. Using Hubble’s filters to detect only H-alpha light provides a reliable way to detect areas of star formation (called H II regions). These regions are visible in this image as bright red and pink patches filling NGC 1559’s spiral arms.
      These ten images come from six different Hubble observing programs, spanning from 2009 all the way up to 2024. Teams of astronomers from around the world proposed these programs with a variety of scientific goals, ranging from studying ionized gas and star formation, to following up on a supernova, to tracking variable stars as a contribution to calculating the Hubble constant. The data from all of these observations lives in the Hubble archive, available for anyone to use. This archive is regularly used to generate new science, but also to create spectacular images like this one! This new image of NGC 1559 is a reminder of the incredible opportunities that Hubble provided and continues to provide.
      Along with Hubble’s observations, astronomers are using the NASA/ESA/CSA James Webb Space Telescope to continue researching this galaxy. This Webb image from February showcases the galaxy in near- and mid-infrared light.

      Download this image

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Share








      Details
      Last Updated Sep 19, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Science Behind the Discoveries



      Hubble’s Galaxies



      Hubble Posters


      View the full article
    • By European Space Agency
      XRISM revealed the structure, motion and temperature of the material around a supermassive black hole and in a supernova remnant in unprecedented detail. Astronomers presented the first scientific results of the new X-ray telescope today, less than a year after the telescope’s launch.
      View the full article
    • By Space Force
      Army Lt. Gen. Mark Simerly, Defense Logistics Agency Director and Lt. Gen. DeAnna Burt, Space Force Chief Operations Officer signed an agreement to optimize logistics support Sept 18. at the Air, Space and Cyber Conference in National Harbor, Maryland.

      View the full article
    • By NASA
      ESA/Hubble & NASA, M. Koss, A, Barth This NASA/ESA Hubble Space Telescope image features the spiral galaxy IC 4709 located around 240 million light-years away in the southern constellation Telescopium. Hubble beautifully captures its faint halo and swirling disk filled with stars and dust bands. The compact region at its core might be the most remarkable sight. It holds an active galactic nucleus (AGN).
      If IC 4709’s core just held stars, it wouldn’t be nearly as bright. Instead, it hosts a gargantuan black hole, 65 million times more massive than our Sun. A disk of gas spirals around and eventually into this black hole, crashing together and heating up as it spins. It reaches such high temperatures that it emits vast quantities of electromagnetic radiation, from infrared to visible to ultraviolet light and X-rays. A lane of dark dust, just visible at the center of the galaxy in the image above, obscures the AGN in IC 4709. The dust lane blocks any visible light emission from the nucleus itself. Hubble’s spectacular resolution, however, gives astronomers a detailed view of the interaction between the quite small AGN and its host galaxy. This is essential to understanding supermassive black holes in galaxies much more distant than IC 4709, where resolving such fine details is not possible.
      This image incorporates data from two Hubble surveys of nearby AGNs originally identified by NASA’s Swift telescope. There are plans for Swift to collect new data on these galaxies. Swift houses three multiwavelength telescopes, collecting data in visible, ultraviolet, X-ray, and gamma-ray light. Its X-ray component will allow SWIFT to directly see the X-rays from IC 4709’s AGN breaking through the obscuring dust. ESA’s Euclid telescope — currently surveying the dark universe in optical and infrared light — will also image IC 4709 and other local AGNs. Their data, along with Hubble’s, provides astronomers with complementary views across the electromagnetic spectrum. Such views are key to fully research and better understand black holes and their influence on their host galaxies.
      View the full article
  • Check out these Videos

×
×
  • Create New...