Jump to content

Hubble Celebrates the International Year of Astronomy with the Galaxy Triplet Arp 274


Recommended Posts

Posted
low_STSCI-H-p0914a-k-1340x520.png

On April 1-2, the Hubble Space Telescope photographed the winning target in the Space Telescope Science Institute's "You Decide" competition in celebration of the International Year of Astronomy (IYA). The winner is a group of galaxies called Arp 274. The striking object received 67,021 votes out of the nearly 140,000 votes cast for the six candidate targets.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Amazing Space
      LIVE NOW: Stunning LIVE Video Of The Sun = 10th April - Backyard Astronomy
    • By NASA
      Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 3 Min Read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
      These images from the NASA/ESA Hubble Space Telescope showcase the dynamic aurora on Uranus in October 2022. Credits:
      ESA/Hubble, NASA, L. Lamy, L. Sromovsky An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements of Uranus’ interior rotation rate with a novel technique, achieving a level of accuracy 1,000 times greater than previous estimates. By analyzing more than a decade of Hubble observations of Uranus’ aurorae, researchers have refined the planet’s rotation period and established a crucial new reference point for future planetary research.
      These images from the NASA/ESA Hubble Space Telescope showcase the dynamic aurora on Uranus in October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analyzing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research. ESA/Hubble, NASA, L. Lamy, L. Sromovsky Determining a planet’s interior rotation rate is challenging, particularly for a world like Uranus, where direct measurements are not possible. A team led by Laurent Lamy (of LIRA, Observatoire de Paris-PSL and LAM, Aix-Marseille Univ., France), developed an innovative method to track the rotational motion of Uranus’ aurorae: spectacular light displays generated in the upper atmosphere by the influx of energetic particles near the planet’s magnetic poles. This technique revealed that Uranus completes a full rotation in 17 hours, 14 minutes, and 52 seconds — 28 seconds longer than the estimate obtained by NASA’s Voyager 2 during its 1986 flyby.
      “Our measurement not only provides an essential reference for the planetary science community but also resolves a long-standing issue: previous coordinate systems based on outdated rotation periods quickly became inaccurate, making it impossible to track Uranus’ magnetic poles over time,” explains Lamy. “With this new longitude system, we can now compare auroral observations spanning nearly 40 years and even plan for the upcoming Uranus mission.”
      This image of Uranus’ aurorae was taken by the NASA/ESA Hubble Space Telescope on 10 October 2022. These observations were made by the Space Telescope Imaging Spectrograph (STIS) and includes both visible and ultraviolet data. An international team of astronomers used Hubble to make new measurements of Uranus’ interior rotation rate by analyzing more than a decade of the telescope’s observations of Uranus’ aurorae. This refinement of the planet’s rotation period achieved a level of accuracy 1000 times greater than previous estimates and serves as a crucial new reference point for future planetary research. ESA/Hubble, NASA, L. Lamy, L. Sromovsky This breakthrough was possible thanks to Hubble’s long-term monitoring of Uranus. Over more than a decade, Hubble has regularly observed its ultraviolet auroral emissions, enabling researchers to produce magnetic field models that successfully match the changing position of the magnetic poles with time.
      “The continuous observations from Hubble were crucial,” says Lamy. “Without this wealth of data, it would have been impossible to detect the periodic signal with the level of accuracy we achieved.”
      Unlike the aurorae of Earth, Jupiter, or Saturn, Uranus’ aurorae behave in a unique and unpredictable manner. This is due to the planet’s highly tilted magnetic field, which is significantly offset from its rotational axis. The findings not only help astronomers understand Uranus’ magnetosphere but also provide vital information for future missions.
      These findings set the stage for further studies that will deepen our understanding of one of the most mysterious planets in the Solar System. With its ability to monitor celestial bodies over decades, the Hubble Space Telescope continues to be an indispensable tool for planetary science, paving the way for the next era of exploration at Uranus.
      These results are based on observations acquired with Hubble programs GO #12601, 13012, 14036, 16313 and DDT #15380 (PI: L. Lamy). The team’s paper was published in Nature Astronomy.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Related Images & Videos
      Uranus Aurorae Image Trio (October 2022)



      Close-up: Uranus Aurorae (October 2022)





      Share








      Details
      Last Updated Apr 09, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Contact Media Claire Andreoli
      Astrophysics Communications Manager
      NASA’s Goddard Space Flight Center
      Greenbelt, Maryland
      claire.andreoli@nasa.gov
      Bethany Downer
      ESA/Hubble Chief Science Communications Officer
      Bethany.Downer@esahubble.org
      Related Terms
      Hubble Space Telescope Astrophysics Division Goddard Space Flight Center Planetary Science Planets The Solar System Uranus
      Related Links and Downloads
      Science Paper Release ESA’s Website

      Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Studying the Planets and Moons



      Reshaping Our Cosmic View: Hubble Science Highlights



      Hubble’s Beautiful Universe


      View the full article
    • By Amazing Space
      LIVE Stream Of The Moon - Backyard Astronomy 9th April
    • By NASA
      NASA/Joel Kowsky A Soyuz rocket launches to the International Space Station with Expedition 73 crew members including NASA astronaut Jonny Kim on Tuesday, April 8, 2025, at the Baikonur Cosmodrome in Kazakhstan.
      The crew arrived at the space station the same day, bringing the number of residents to 10 for the next two weeks. Expedition 73 will begin on Saturday, April 19, following the departure of NASA astronaut Don Pettit and Roscosmos cosmonauts Alexey Ovchinin and Ivan Vagner, as they conclude a seven-month science mission aboard the orbiting laboratory.
      Throughout his eight-month stay aboard the orbital outpost, Kim will conduct scientific research in technology development, Earth science, biology, and human research.
      Follow space station activities on the International Space Station blog.
      Image credit: NASA/Joel Kowsky
      View the full article
    • By NASA
      Deputy Integration and Testing Manager – Goddard Space Flight Center
      Mike Drury began at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, as a temporary technician — a contractor hired for six weeks to set up High Capacity Centrifuge tests. Six weeks then turned into three months and, eventually, over 40 years.
      Mike Drury, the deputy integration and testing manager for NASA’s Nancy Grace Roman Space Telescope, stands inside a clean room in front of Roman’s primary support structure and propulsion system. The “bunny suit” that he’s wearing protects the telescope from contaminants like dust, hair, and skin.NASA/Chris Gunn Now, Mike is the deputy integration and testing manager for NASA’s Nancy Grace Roman Space Telescope. In this role, Mike oversees both Roman’s assembly and the many verification processes that ensure it is ready for launch.
      “It’s a privilege to work here. There’s really no regrets,” Mike says. “This is a big place, and it is what you make it. You can really spread your wings and go into a lot of different areas and do different things.”
      When Mike first began at Goddard, only government-employed technicians could work on space flight hardware. However, times were changing. The “old-timers,” as Mike affectionately calls them, soon began training a small group of contractors, including Mike, for flight hardware work. Mike credits these “old-timers” for the mindset he still carries decades later.
      “They taught me how to approach things and execute, and that helped me through my entire career,” Mike says. “It’s that approach — making sure things are done right, without cutting any corners — that I always liked about working here.”
      Not everyone can say that they worked on space missions while in college, but Mike can. Mike took advantage of a program through his contract that paid for classes. For 10 years, Mike studied at Anne Arundel Community College while continuing full-time work at Goddard, eventually earning an associate’s degree in mathematics. 
      While in community college, Mike also stocked up on several physics and calculus credits which helped prepare him to study thermal engineering at Johns Hopkins University. After seven more years of night classes, Mike completed a bachelor’s degree in mechanical engineering. 
      “Night school was really difficult between full-time work and traveling because I was working on several missions,” Mike says. “You needed that perseverance to just keep going and working away at it. So I just hung in there.”
      In this 1989 picture, Mike works on NASA’s BBXRT (Broad Band X-ray Telescope) at NASA’s Kennedy Space Center in Florida. BBXRT flew on the space shuttle Columbia in 1990.NASA In his 17 years of night school, Mike worked on seven missions, expanding his skill set from test set-up, to clean room tech work, to training astronauts. While working on the Hubble Space Telescope, Mike helped to train astronauts for their in-orbit tech work to install various instruments. 
      “Every mission I’ve worked on I’ve learned something,” Mike says. “Every test you learn more and more about other disciplines.”
      After graduating from Johns Hopkins, Mike worked for a short time as an engineer before becoming an integration supervisor. In 2006, Mike took on the position of James Webb Space Telescope ISIM (Integrated Science Instrument Module) integration and test manager. After Webb’s ISIM was integrated with the Optical Telescope Element, Mike became the OTIS (Optical Telescope Element and Integrated Science Instrument Module) integration and testing manager.
      “It was a tough eight to 10 years of work,” Mike says. “Loading the OTIS into the shipping container to be sent to NASA’s Johnson Space Center in Houston for further testing was a great accomplishment.” 
      To ensure that Webb’s ISIM would thrive in space, Mike was involved in more than three months of round-the-clock thermal vacuum testing. During this time, a blizzard stranded Mike and others on-site at Goddard for three days. Mike spent his nights overseeing thermal vacuum tests and his days driving test directors and operators to their nearby hotel rooms with his four-wheel-drive truck — a winter storm savior in short supply.
      In this 1992 picture, Mike works alongside another technician on DXS (Diffuse X-Ray Spectrometer) in the shuttle bay at NASA’s Kennedy Space Center in Florida. DXS was a University of Wisconsin-Madison experiment flown during the January 1993 flight of NASA’s Space Shuttle Endeavor.NASA For Mike, the hard work behind space missions is well worth it.
      “As humans, we want to discover new things and see things. That’s what keeps me coming back — the thought of discovery and space flight,” Mike says. “I get excited talking to some of the Hubble or Webb scientists about the discoveries they’ve made. They answer questions but they also find themselves asking new ones.”
      Some of these new questions opened by Hubble and Webb will be addressed by Mike’s current project — Roman.
      “This team I would say is the best I’ve ever worked with. I say that because it’s the Goddard family. Everyone here on Roman has the same agenda, and that’s a successful, on-time launch,” Mike says. “My ultimate goal is to be staying on the beach in Florida after watching Roman blast off. That would be all the icing on the cake.”
      Mike is also focusing on laying the groundwork for the next era at Goddard. He works hard to instill a sense of import, intention, and precision in his successors, just as the “old-timers” instilled in him 40 years ago.
      “I talk to a lot of my colleagues that I’ve worked with for years, and we’re all excited to hand it off to the next generation,” Mike says. “It’s so exciting to see. I’m the old guy now.”
      By Laine Havens
      NASA’s Goddard Space Flight Center
      View the full article
  • Check out these Videos

×
×
  • Create New...