Members Can Post Anonymously On This Site
Marshall Bids Farewell to Former Center Director with Retirement Ceremony
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA’s C-130, now under new ownership, sits ready for its final departure from NASA’s Wallops Flight Facility in Virginia, on Friday, April 18, 2025. NASA/Garon Clark NASA’s C-130 Hercules, fondly known as the Herc, went wheels up at 9:45 a.m., Friday, April 18, as it departed from its decade-long home at NASA’s Wallops Flight Facility in Virginia, for the final time. The aircraft is embarking on a new adventure to serve and protect in the state of California where it is now under the ownership of the California Department of Forestry and Fire Protection (CAL FIRE).
The transition of the C-130 to CAL FIRE is part of a long-running, NASA-wide aircraft enterprise-management activity to consolidate the aircraft fleet and achieve greater operational efficiencies while reducing the agency’s infrastructure footprint.
The C-130 Hercules takes off for the final time from NASA’s Wallops Flight Facility in Virginia.NASA/Garon Clark “Our C-130 and the team behind it has served with great distinction over the past decade,” said David L. Pierce, Wallops Flight Facility director. “While our time with this amazing airframe has come to a close, I’m happy to see it continue serving the nation in this new capacity with CAL FIRE.”
The research and cargo aircraft, built in 1986, was acquired by NASA in 2015. Over the past decade, the C-130 supported the agency’s airborne scientific research, provided logistics support and movement of agency cargo, and supported technology demonstration missions. The aircraft logged approximately 1,820 flight hours in support of missions across the world during its time with the agency.
Additional aircraft housed at NASA Wallops will be relocated to NASA’s Langley Research Center in Hampton, Virginia, in the coming months.
For more information on NASA’s Wallops Flight Facility, visit: www.nasa.gov/wallops.
By Olivia Littleton
NASA’s Wallops Flight Facility, Wallops Island, Va.
Share
Details
Last Updated Apr 18, 2025 EditorOlivia F. LittletonLocationWallops Flight Facility Related Terms
Wallops Flight Facility Explore More
4 min read NASA to Launch Three Rockets from Alaska in Single Aurora Experiment
UPDATE March 31, 2025: The third and final rocket of the AWESOME mission launched on Saturday,…
Article 4 weeks ago 5 min read NASA Super Pressure Balloons Return to New Zealand for Test Flights
Article 1 month ago 2 min read NASA Wallops Breaks Ground on New Causeway Bridge
Article 4 days ago View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
From left, Ramon Pedoto, Nathan Walkenhorst, and Tyrell Jemison review information at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The three team members developed new automation tools at Marshall for flight controllers working with the International Space Station (Credit: NASA/Tyrell Jemison Two new automation tools developed at NASA’s Marshall Space Flight Center in Huntsville, Alabama, are geared toward improving operations for flight controllers working with the International Space Station from the Huntsville Operations Support Center.
The tools, called AutoDump and Permanently Missing Intervals Checker, will free the flight control team to focus on situational awareness, anomaly response, and real-time coordination.
The space station experiences routine loss-of-signal periods based on communication coverage as the space station orbits the Earth. When signal is lost, an onboard buffer records data that could not be downlinked during that period. Following acquisition of signal, flight controllers previously had to send a command to downlink, or “dump,” the stored data.
The AutoDump tool streamlines a repetitive data downlinking command from flight controllers by detecting a routine loss-of-signal, and then autonomously sending the command to downlink data stored in the onboard buffer when the signal is acquired again. Once the data has been downlinked, the tool will automatically make an entry in the console log to confirm the downlink took place.
“Reliably and quickly sending these dump commands is important to ensure that space station payload developers can operate from the most current data,” said Michael Zekoff, manager of Space Systems Operations at Marshall.
As a direct result of this tool, we have eliminated the need to manually perform routine data dump commands by as much as 40% for normal operations.
Michael Zekoff
Space Systems Operations Manager
AutoDump was successfully deployed on Feb. 4 in support of the orbiting laboratory.
The other tool, known as the Permanently Missing Intervals Checker, is another automated process coming online that will improve team efficiency.
Permanently missing intervals are gaps in the data stream where data can be lost due to a variety of reasons, including network fluctuations. The missing intervals are generally short but are documented so the scientific community and other users have confirmation that the missing data is unable to be recovered.
“The process of checking for and documenting permanently missing intervals is challenging and incredibly time-consuming to make sure we capture all the payload impacts,” said Nathan Walkenhorst, a NASA contractor with Bailey Collaborative Solutions who serves as a flight controller specialist.
The checker will allow NASA to quickly gather and assess payload impacts, reduce disruptions to operations, and allow researchers to get better returns on their science investigations. It is expected to be deployed later this year.
In addition to Walkenhorst, Zekoff also credited Ramon Pedoto, a software architect, and Tyrell Jemison, a NASA contractor and data management coordinator with Teledyne Brown Engineering Inc, for their work in developing the automation tools. The development of the tools also requires coordination between flight control and software teams at Marshall, followed by extensive testing in both simulated and flight environments, including spacecraft operations, communications coverage, onboard anomalies, and other unexpected conditions.
“The team solicited broad review to ensure that the tool would integrate correctly with other station systems,” Zekoff said. “Automated tools are evaluated carefully to prevent unintended commanding or other consequences. Analysis of the tools included thorough characterization of the impacts, risk mitigation strategies, and approval by stakeholders across the International Space Station program.”
The Huntsville Operations Support Center provides payload, engineering, and mission operations support to the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within the Huntsville Operations Support Center operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day.
For more information on the International Space Station, visit:
www.nasa.gov/international-space-station/
Share
Details
Last Updated Apr 11, 2025 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
Marshall Space Flight Center Explore More
3 min read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF
Article 4 hours ago 7 min read NASA’s First Flight With Crew Important Step on Long-term Return to the Moon, Missions to Mars
Article 3 days ago 3 min read NASA Selects Finalist Teams for Student Human Lander Challenge
Article 1 week ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
3 Min Read NASA’s IMAP Arrives at NASA Marshall For Testing in XRCF
On March 18, NASA’s IMAP (Interstellar Mapping and Acceleration Probe) arrived at NASA’s Marshall Space Flight Center in Huntsville, Alabama, for thermal vacuum testing at the X-ray and Cryogenic Facility, which simulates the harsh conditions of space.
The IMAP mission is a modern-day celestial cartographer that will map the solar system by studying the heliosphere, a giant bubble created by the Sun’s solar wind that surrounds our solar system and protects it from harmful interstellar radiation.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA’s IMAP mission being loaded into the thermal vacuum chamber of NASA Marshall Space Flight Center’s X-Ray and Cryogenic Facility (XRCF) in Huntsville, Alabama. IMAP arrived at Marshall March 18 and was loaded into the chamber March 19.Credit: NASA/Johns Hopkins APL/Princeton/Ed Whitman Testing performed in the X-ray and Cryogenic Facility will help to assess the spacecraft before its journey toward the Sun. The IMAP mission will orbit the Sun at a location called Lagrange Point 1 (L1), which is about one million miles from Earth towards the Sun. From this location, IMAP can measure the local solar wind and scan the distant heliosphere without background from planets and their magnetic fields. The mission will use its suite of ten instruments to map the boundary of the heliosphere, analyze the composition of interstellar particles that make it through, and investigate how particles change as they move through the solar system.
Furthermore, IMAP will maintain a continuous broadcast of near real-time space weather data from five instruments aboard IMAP that will be used to test new space weather prediction models and improve our understanding of effects impacting our human exploration of space.
Team members from Marshall Space Flight Center in Huntsville, Alabama, install IMAP into the XRCF’s chamber dome before the start of the thermal vacuum test. NASA/Johns Hopkins APL/Princeton/Ed Whitman While inside the Marshall facility, the spacecraft will undergo dramatic temperature changes to simulate the environment during launch, on the journey toward the Sun, and at its final orbiting point. The testing facility has multiple capabilities including a large thermal vacuum chamber which simulates the harsh conditions of space such as extreme temperatures and the near-total absence of an atmosphere. Simulating these conditions before launch allow scientists and engineers to identify successes and potential failures in the design of the spacecraft.
Team members from Marshall Space Flight Center in Huntsville, Alabama work to close the chamber door of the XRCF for IMAP testing. The chamber is 20 feet in diameter and 60 feet long making it one of the largest across NASA. NASA/Johns Hopkins APL/Princeton/Ed Whitman “The X-ray and Cryogenic Facility was an ideal testing location for IMAP given the chamber’s size, availability, and ability to meet or exceed the required test parameters including strict contamination control, shroud temperature, and vacuum level,” said Jeff Kegley, chief of Marshall’s Science Test Branch.
The facility’s main chamber is 20 feet in diameter and 60 feet long, making it the 5th largest thermal vacuum chamber at NASA. It’s the only chamber that is adjoined to an ISO 6 cleanroom — a controlled environment that limits the number and size of airborne particles to minimize contamination.
The IMAP mission will launch on a SpaceX Falcon 9 rocket from NASA’s Kennedy Space Center in Florida, no earlier than September.
NASA’s IMAP mission was loaded into NASA Marshall’s XRCF thermal vacuum chamber where the spacecraft will undergo testing such as dramatic temperature changes to simulate the harsh environment of space. NASA/Johns Hopkins APL/Princeton/Ed Whitman Learn More about IMAP Media Contact:
Lane Figueroa
Marshall Space Flight Center
Huntsville, Alabama
256.544.0034
lane.e.figueroa@nasa.gov
Share
Details
Last Updated Apr 11, 2025 Related Terms
Marshall Space Flight Center Goddard Space Flight Center Heliophysics Marshall Heliophysics & Planetary Science Marshall Science Research & Projects Marshall X-Ray & Cryogenic Facility The Sun The Sun & Solar Physics Explore More
2 min read Hubble Captures a Star’s Swan Song
The swirling, paint-like clouds in the darkness of space in this stunning image seem surreal,…
Article 4 hours ago 6 min read NASA Webb’s Autopsy of Planet Swallowed by Star Yields Surprise
Observations from NASA’s James Webb Space Telescope have provided a surprising twist in the narrative…
Article 1 day ago 3 min read Hubble Helps Determine Uranus’ Rotation Rate with Unprecedented Precision
An international team of astronomers using the NASA/ESA Hubble Space Telescope has made new measurements…
Article 2 days ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
The European Space Agency (ESA) has powered down its Gaia spacecraft after more than a decade spent gathering data that are now being used to unravel the secrets of our home galaxy.
On 27 March 2025, Gaia’s control team at ESA’s European Space Operations Centre carefully switched off the spacecraft’s subsystems and sent it into a ‘retirement orbit’ around the Sun.
Though the spacecraft’s operations are now over, the scientific exploitation of Gaia’s data has just begun.
View the full article
-
By NASA
Rotor Optimization for the Advancement of Mars eXploration (ROAMX) team members and test stand at NASA Ames Research Center.NASA During 2024-2025, helicopter blades optimized for Mars were tested in the Planetary Aeolian Laboratory (PAL) at NASA Ames Research Center as part of the Rotor Optimization for the Advancement of Mars eXploration (ROAMX) project. The experimental test-chamber of the PAL can be depressurized to create atmospheric air pressures of different planetary bodies such as Mars. The full-scale ROAMX blades were spun in hover configuration up to 4000 RPM at an atmospheric density of Mars (approximately 0.015 kilograms per cubic meter). The Ingenuity blades were also tested in the PAL to compare the performance of the optimized blades against the Ingenuity Mars Helicopter Technology Demonstrator. The test was conducted to validate computational models of the performance of the optimized blades. Simulations show that the optimized ROAMX blades perform significantly better than the Ingenuity blades, allowing helicopters on Mars to fly farther, faster, and carry a science payload. The next phase of testing will occur with higher RPMs and additional collective angles.
Rotor Optimization for the Advancement of Mars eXploration (ROAMX) hover test stand with ROAMX blades installed in the Planetary Aeolian Laboratory (PAL) low-pressure chamber at NASA Ames Research Center.NASAView the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.