Jump to content

Commercial Law Resources


NASA

Recommended Posts

  • Publishers

The following resources relevant to the Commercial Law Practice Group are available on this site.
Note: the information below is updated annually, and users of this web page will need to verify the accuracy of the citations and the information contained in the web links:

1. Statutes
A. Commercial

Commercial Space Competitiveness Act:
Definitions — 51 U.S.C. § 50501
Anchor Tenancy and Termination Liability — 51 U.S.C. § 50503
Title 51 Chapter 509, formerly the Commercial Space Launch Act of 1984– Commercial Space Act of 1998, Title II — P.L. 105-303
Commercial Use of Government Facilities –15 U.S.C. § 5807
Cross-Waiver/Indemnification Authority (user of space vehicle) — 42 U.S.C.§ 2458b
Cross-Waiver/Indemnification Authority (developer of experimental aerospace vehicle) — 42 U.S.C. § 2458c
Launch Voucher Demonstration Program — 15 U.S.C. § 5803
Shuttle Pricing Policy — 42 U.S.C. § 2466
Space Shuttle Use Policy — 51 U.S.C. § 70102

B. Miscellaneous

Acquisition of Space Science Data — 51 U.S.C. § 50113
Charges for Use of Government Services — 31 U.S.C.§ 9701
Disclosure of Confidential Information — 18 U.S.C. § 1905
Joint Development of NASA Wind Tunnels – 50 U.S.C. Chapter 20
Landsat — 51 U.S.C. § § 60111-113
Special Maritime & Territorial Jurisdiction of US — 18 U.S.C. § 7
Sources of Earth Science Data — 51 USC § 50115
Stevenson Wydler Act — 15 U.S.C. § 3701 et seq. V2

2. Presidential Directives

Convergence of U.S. Polar-Orbiting Operational Environmental Satellite Systems (PDDNSTC-2)
Landsat Remote Sensing Strategy
U.S. National Space Policy (NSPD-49)(PDF)
U.S. Space Transportation Policy (NSPD-40)(PDF)
National Space Policy of the United States (June 28, 2010)(PDF)

3. Relevant Regulations

Cross-Waiver of Liability — 14 CFR Part 1266 (PDF)
Cooperative Agreements with Commercial Firms — 14 CFR Part 1274 (PDF)
Duty-Free Entry of Space Articles — 14 CFR Part 1217 (PDF)
Space Flight — 14 CFR Part 1214 (PDF)

4. Relevant NASA Policies and Management Instructions

Authority to Enter into Space Act Agreements (NPD 1050)

5. Relevant NASA Web Sites

NASA Export Control Program (ECP)
Office of International and Interagency Relations (OIIR)

6. Relevant Federal and Other Web Sites

FAA Office of Commercial Space Transportation
Department of Commerce Bureau of Industry and Security (BIS) Export Enforcement
Department of Justice Office of Information Policy (OIP) FOIA

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA astronaut Tracy C. Dyson displays from JAXA (Japan Aerospace Exploration Agency) food packets in the International Space Station galley.Credits: NASA NASA recently welcomed more than 50 commercial food and commercial space companies to learn about the evolving space food system supporting NASA missions, including unique requirements for spaceflight, menu development, and food provisioning – essential elements for human spaceflight and sustainable living in space.

      The event, held at the agency’s Johnson Space Center in Houston, brought together private industry leaders, NASA astronauts, and NASA’s space food team to discuss creative solutions for nourishing government and private astronauts on future commercial space stations.

      “The commercial food industry is the leader in how to produce safe and nutritious food for the consumer, and with knowledge passed on from NASA regarding the unique needs for space food safety and human health, this community is poised to support this new market of commercial low Earth orbit consumers,” said Kimberlee Prokhorov, deputy chief for the Human Systems Engineering and Integration Division at Johnson, which encompasses food systems work.

      Experts from NASA’s Space Food Systems Laboratory shared the unique requirements and conditions surrounding the formulation, production, packaging, and logistics of space food for enabling the success of commercial low Earth orbit missions. Attendees heard astronaut perspectives on the importance of space food, challenges they encounter, and potential areas of improvement. They also tasted real space food and learned about the nutritional requirements critical for maintaining human health and performance in space.

      “By bringing together key players in the commercial food and space industries, we were able to provide a collaborative opportunity to share fresh ideas and explore future collaborations,” said Angela Hart, manager for NASA’s Commercial Low Earth Orbit Development Program at Johnson. “Space food is a unique challenge, and it is one that NASA is excited to bring commercial companies into. Working with our commercial partners allows us to advance in ways that benefit not only astronauts but also food systems on Earth.”

      As NASA expands opportunities in low Earth orbit, it’s essential for the commercial sector to take on the support of space food production, allowing the agency to focus its resources on developing food systems for longer duration human space exploration missions.

      NASA will continue providing best practices and offer additional opportunities  to interested commercial partners to share knowledge that will enable a successful commercial space ecosystem.

      The agency’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars, while also continuing to use low Earth orbit as a training and proving ground for those deep space missions.

      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/humans-in-space/commercial-space/
      View the full article
    • By European Space Agency
      The Space Resources Challenge was launched last week, an opportunity for innovators to pioneer the technologies that will help humankind live and work sustainably on the Moon.
      View the full article
    • By NASA
      NASA researchers developed a Quiet Space Fan to reduce the noise inside crewed spacecraft, sharing the results with industry for potential use on future commercial space stations.
      Controlling noise inside spacecraft helps humans talk to each other, hear alarms clearer, get restful sleep, and minimizes the risk of hearing loss. It is best to control the noise at the source, and in spacecraft the noise often comes from cabin ventilation and equipment cooling fans.
      Since the earliest days of human spaceflight, there has been noise from the Environmental Control and Life Support System ventilation. NASA is working to design highly efficient and quiet fans by building on technology initially developed at the agency’s Glenn Research Center in Cleveland and sharing it with companies that are developing new spacecraft and space stations.
      The Quiet Space Fan prototype, initially developed at Glenn, to reduce noise inside spacecraft.Credits: NASA “As NASA continues to support the design and development of multiple commercial space stations, we have intentional and focused efforts to share technical expertise, technologies, and data with industry,” said Angela Hart, manager of NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center in Houston. “The Quiet Space Fan research is one more example of how we are actively working with private companies to foster the development of future destinations.”
      The initial fan prototype was designed at Glenn in 2009 using tools developed for aircraft turbofan engines. The fan design size, flow rate – how much air the fan moves – and pressure rise – the increase in pressure across the fan – were designed similarly to the original Orion cabin fan design point (150 cubic feet per minute, 3.64 inches of water column). Acoustic measurements showed that the new design was approximately 10 decibels quieter than a similar-sized commercial off-the-shelf fan.
      To take the research a step further, a larger fan was recently designed with almost twice the flow rate and pressure rise capability (250 cubic feet per minute, 7 inches of water column) compared to the initial prototype. For example, the original fan could provide enough airflow for a large car or van, and the larger fan could provide enough airflow for a house.
      NASA’s quiet fan design aims to maintain high performance standards while significantly reducing everyday noise levels and can potentially be used on the International Space Station and future commercial destinations.
      The Quiet Space Fan helps to control noise that often comes from cabin ventilation and equipment cooling fans, and the research is being shared with industry. Credits: NASA “This work will lead to significant benefits including volume and mass savings from noise controls that are no longer as large or needed at all, reduced system pressure loss from mufflers and silencers that don’t need to be as restrictive, reduced power draw because of the reduced system pressure loss and the highly efficient fan design, and satisfying spaceflight vehicle acoustic requirements to provide a safe and habitable acoustic environment for astronauts,” said Chris Allen, Acoustics Office manager at NASA Johnson.
      Developing quieter fans is one of many efforts NASA is making to improve human spaceflight and make space exploration more innovative and comfortable for future missions to low Earth orbit. Helping private companies provide reliable and safe services at a lower cost will allow the agency to focus on Artemis missions to the Moon while continuing to use low Earth orbit as a training and proving ground for deep space missions.
      Learn more about NASA’s commercial space strategy at:
      https://www.nasa.gov/humans-in-space/commercial-space
      View the full article
    • By NASA
      4 Min Read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 
      An artist's concept of commercial and NASA space relays. Credits: NASA/Morgan Johnson NASA is one step closer on its transition to using commercially owned and operated satellite communications services to provide future near-Earth space missions with increased service coverage, availability, and accelerated science and data delivery.     
      As of Friday, Nov. 8, the agency’s legacy TDRS (Tracking and Data Relay Satellite) system, as part of the Near Space Network, will support only existing missions while new missions will be supported by future commercial services.    
      “There have been tremendous advancements in commercial innovation since NASA launched its first TDRS satellite more than 40 years ago,” said Kevin Coggins, deputy associate administrator of NASA’s SCaN (Space Communications and Navigation) program. “TDRS will continue to provide critical support for at least the next decade, but now is the time to embrace commercial services that could enhance science objectives, expand experimentation, and ultimately provide greater opportunities for discovery.”    
      TDRS will continue to provide critical support for at least the next decade, but now is the time to embrace commercial services."
      Kevin Coggins
      Deputy Associate Administrator for NASA’s SCaN
      Just as NASA has adopted commercial crew, commercial landers, and commercial transport services, the Near Space Network, managed by NASA’s SCaN, will leverage private industry’s vast investment in the Earth-based satellite communications market, which includes communications on airplanes, ships, satellite dish television, and more. Now, industry is developing a new space-based market for these services, where NASA plans to become one of many customers, bolstering the domestic space industry.    
      NASA’s Communications Services Project is working with industry through funded Space Act Agreements to develop and demonstrate commercial satellite communications services that meet the agency’s mission needs, and the needs of other potential users.   
      In 2022, NASA provided $278.5 million in funding to six domestic partners so they could develop and demonstrate space relay communication capabilities.  
      Inmarsat Government Inc.   Kuiper Government Solutions (KGS) LLC    SES Government Solutions   Space Exploration Technologies (SpaceX)   Telesat U.S. Services LLC   Viasat Incorporated   Read More About the CSP Partners An artist’s concept of commercial relay satellites. NASA/Morgan Johnson A successful space-based commercial service demonstration would encompass end-to-end testing with a user spacecraft for one or more of the following use cases: launch support, launch and early operations phase, low and high data rate routine missions, terrestrial support, and contingency services. Once a demonstration has been completed, it is expected that the commercial company would be able to offer their services to government and commercial users.    
      NASA also is formulating non-reimbursable Space Act Agreements with members of industry to exchange capability information as a means of growing the domestic satellite communications market. The Communications Services Project currently is partnered with Kepler Communications US Inc. through a non-reimbursable Space Act Agreement.    
      As the agency and the aerospace community expand their exploration efforts and increase mission complexity, the ability to communicate science, tracking, and telemetry data to and from space quickly and securely will become more critical than ever before. The goal is to validate and deliver space-based commercial communications services to the Near Space Network by 2031, to support future NASA missions.   
      NASA’s Tracking and Data Relay System  
      While TDRS will not be accepting new missions, it won’t be retiring immediately. Current TDRS users, like the International Space Station, Hubble Space Telescope, and many other Earth- and universe-observing missions, will still rely on TDRS until the mid-2030s. Each TDRS spacecraft’s retirement will be driven by individual health factors, as the seven active TDRS satellites are expected to decline at variable rates.     
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      An artist's concept of the International Space Station using NASA’s Tracking and Data Relay Satellite (TDRS) fleet to transmit data to Earth. NASA The TDRS fleet began in 1983 and consists of three generations of satellites, launching over the course of 40 years. Each successive generation of TDRS improved upon the previous model, with additional radio frequency band support and increased automation.    
      The first TDRS was designed for a mission life of 10 years, but lasted 26 years before it was decommissioned in 2009. The last in the third generation – TDRS-13 –was launched Aug. 18, 2017.   
      The TDRS constellation has been a workhorse for the agency, enabling significant data transfer and discoveries.”   
      DAve Israel
      Near Space Network Chief Architect
      “Each astronaut conversation from the International Space Station, every picture you’ve seen from Hubble Space Telescope, Nobel Prize-winning science data from the COBE satellite, and much more has flowed through TDRS,” said Dave Israel, Near Space Network chief architect. “The TDRS constellation has been a workhorse for the agency, enabling significant data transfer and discoveries.”   
      NASA’s Tracking and Data Relay Satellite 13 (TDRS-13) atop an Atlas V rocket at NASA’s Kennedy Space Center in Florida before launch. NASA/Tony Gray and Sandra Joseph The Near Space Network and the Communications Services Project are funded by NASA’s SCaN (Space Communications and Navigation) program office at NASA Headquarters in Washington. The network is operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and the Communications Services Project is managed out of NASA’s Glenn Research Center in Cleveland. 
      Share
      Details
      Last Updated Oct 16, 2024 EditorGoddard Digital TeamContactKatherine Schauerkatherine.s.schauer@nasa.govMolly KearnsLocationGoddard Space Flight Center Related Terms
      Communicating and Navigating with Missions Glenn Research Center Goddard Space Flight Center Space Communications & Navigation Program The Future of Commercial Space Tracking and Data Relay Satellite (TDRS) Explore More
      4 min read Communications Services Project
      Article 7 months ago 5 min read Wideband Technology
      Article 9 months ago 3 min read NASA Seeks Commercial Near Space Network Services
      NASA is seeking commercial communication and navigation service providers for the Near Space Network.
      Article 2 years ago View the full article
    • By NASA
      NASA canvases the areas impacted by Hurricane Milton using cloud-penetrating L-band radar providing responders insight into flooding across Florida.NASA In the wake of Hurricane Milton, NASA is deploying resources to support Federal Emergency Management Agency (FEMA) and state emergency management agencies to aid their response effort including satellite and aerial data collection.

      The agency’s Disasters Response Coordination System and Airborne Science Program are began conducting flights Friday to provide emergency responders with better insight into flooding, damage in Florida, and debris.

      “After the devastating impact from hurricanes Helene and Milton, NASA immediately sprang into action,” said Karen St. Germain, director, Earth Sciences Division at NASA Headquarters in Washington. “Whether it is through observations from space or from airplanes, NASA is ready to assist communities affected by severe storms. We are working together with our federal and state partners to provide a better understanding of what is happening on the ground, in real time. NASA’s Disasters Response Coordination System was designed with the goal of delivering trusted, actionable Earth science information, where and when people need it, to enable effective response when these events strike.”

      NASA’s Uninhabited Aerial Synthetic Aperture Radar Vehicle (UAVSAR) instrument is gathering rapid wide area L-Band synthetic aperture radar data shared directly with FEMA and other organizations. Flights are coordinated directly with FEMA to augment their existing satellite and aerial data collection.

      Since Hurricane Milton struck, persistent cloud cover over the State of Florida has made it challenging to obtain optical satellite observations of conditions in the region. Synthetic aperture radar instruments, such as those aboard UAVSAR, can see through the clouds to observe changes on the ground. This provides much-needed observations of flood inundation across communities in Florida, as well as the extent of inland river flooding and resource deployment.

      The Disaster Response Coordination System has been working closely with FEMA and state emergency management agencies to aid response efforts as Hurricane Milton approached and impacted Florida. The team is actively sharing resources with other agency partners, the state of Florida, and disaster response non-profit organizations.  

      NASA continues to determine the needs of its partners and is sharing maps and data on the NASA Disasters Mapping Portal as they become available.

      Hurricane Milton caused significant wind, flooding, power outages, and damage across central Florida, from Sarasota and Tampa to Palm Springs and the Space Coast. Impacts are currently being assessed alongside lifesaving operations and emergency repairs. The Disasters Response Coordination System is collaborating directly with FEMA, the State of Florida Geospatial Information Office, U.S. Geological Survey, NOAA (National Oceanic and Atmospheric Administration), and the American Red Cross. The Disasters Response Coordination System is also sharing any available Earth observation data with NASA’s Kennedy Space Center emergency managers to support their damage assessment process.

      By using tools like NASA’s Black Marble, and updating daily with differential analysis done to highlight areas with extended power outages, the agency provides FEMA, states, and non-profits the opportunity to distribute temporary generators, life-sustaining resources, and damage assessments.

      The UAVSAR flights are being conducted with support from NASA’s Disasters Program, NASA’s Earth Action Program, and NASA’s Research and Analysis Program, and are being managed by NASA’s Armstrong Flight Research Center in Edwards, California,  a NASA’s Jet Propulsion Laboratory in Southern and California, and the California Institute of Technology.

      To learn more about NASA’s Disaster Response Coordination System, visit:

      https://disastersresponsecoordinationsystem.gov
      View the full article
  • Check out these Videos

×
×
  • Create New...