Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      4 Min Read NASA 3D-Printed Antenna Takes Additive Manufacturing to New Heights
      The 3D-printed antenna mounted to a ladder prior to testing at NASA's Columbia Scientific Balloon Facility in Palestine, Texas. Credits: NASA/Peter Moschetti In fall 2024, NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth. The antenna, tested in flight using an atmospheric weather balloon, could open the door for using 3D printing as a cost-effective development solution for the ever-increasing number of science and exploration missions.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      NASA developed and tested a 3D-printed antenna to demonstrate a low-cost capability to communicate science data to Earth.NASA/Kasey Dillahay Printing
      For this technology demonstration, engineers from NASA’s Near Space Network designed and built a 3D-printed antenna, tested it with the network’s relay satellites, and then flew it on a weather balloon.
      The 3D printing process, also known as additive manufacturing, creates a physical object from a digital model by adding multiple layers of material on top of each other, usually as a liquid, powder, or filament. The bulk of the 3D-printed antenna uses a low electrical resistance, tunable, ceramic-filled polymer material.
      Using a printer supplied by Fortify, the team had full control over several of the electromagnetic and mechanical properties that standard 3D printing processes do not. Once NASA acquired the printer, this technology enabled the team to design and print an antenna for the balloon in a matter of hours. Teams printed the conductive part of the antenna with one of several different conductive ink printers used during the experiment.
      For this technology demonstration, the network team designed and built a 3D-printed magneto-electric dipole antenna and flew it on a weather balloon. [JF1]  A dipole antenna is commonly used in radio and telecommunications. The antenna has two “poles,” creating a radiation pattern similar to a donut shape.
      Testing
      The antenna, a collaboration between engineers within NASA’s Scientific Balloon Program and the agency’s Space Communications and Navigation (SCaN) program, was created to showcase the capabilities of low-cost design and manufacturing.
      Following manufacturing, the antenna was assembled and tested at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, in the center’s electromagnetic anechoic chamber.
      The anechoic chamber is the quietest room at Goddard — a shielded space designed and constructed to both resist intrusive electromagnetic waves and suppress their emission to the outside world. This chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space.
      To prepare for testing, NASA intern Alex Moricette installed the antenna onto the mast of the anechoic chamber. The antenna development team used the chamber to test its performance in a space-like environment and ensure it functioned as intended.
      NASA Goddard’s anechoic chamber eliminates echoes and reflections of electromagnetic waves to simulate the relative “quiet” of space. Here, the antenna is installed on the mast of the anechoic chamber.NASA/Peter Moschetti Once completed, NASA antenna engineers conducted final field testing at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, before liftoff.
      The team coordinated links with the Near Space Network’s relay fleet to test the 3D-printed antenna’s ability to send and receive data.
      The team monitored performance by sending signals to and from the 3D-printed antenna and the balloon’s planned communications system, a standard satellite antenna. Both antennas were tested at various angles and elevations. By comparing the 3D-printed antenna with the standard antenna, they established a baseline for optimal performance.
      Field testing was performed at NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, prior to liftoff. To do this, the 3D-printed antenna was mounted to a ladder.NASA/Peter Moschetti In the Air
      During flight, the weather balloon and hosted 3D-printed antenna were tested for environmental survivability at 100,000 feet and were safely recovered.
      For decades, NASA’s Scientific Balloon Program, managed by NASA’s Wallops Flight Facility in Virginia, has used balloons to carry science payloads into the atmosphere. Weather balloons carry instruments that measure atmospheric pressure, temperature, humidity, wind speed, and direction. The information gathered is transmitted back to a ground station for mission use.
      The demonstration revealed the team’s anticipated results: that with rapid prototyping and production capabilities of 3D printing technology, NASA can create high-performance communication antennas tailored to mission specifications faster than ever before.
      Implementing these modern technological advancements is vital for NASA, not only to reduce costs for legacy platforms but also to enable future missions.
      The Near Space Network is funded by NASA’s SCaN (Space Communications and Navigation) program office at NASA Headquarters in Washington. The network is operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
      By Kendall Murphy
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      About the Author
      Kendall Murphy
      Technical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology.
      Share
      Details
      Last Updated Jan 22, 2025 EditorGoddard Digital TeamContactKendall Murphykendall.t.murphy@nasa.govLocationGoddard Space Flight Center Related Terms
      Manufacturing, Materials, 3-D Printing Goddard Space Flight Center Scientific Balloons Space Communications & Navigation Program Space Communications Technology Technology Explore More
      4 min read NASA to Embrace Commercial Sector, Fly Out Legacy Relay Fleet 
      Article 3 months ago 3 min read NASA Enables Future of Science Observation through Tri-band Antennas
      Article 2 years ago 4 min read NASA’s Near Space Network Enables PACE Climate Mission to ‘Phone Home’
      Article 9 months ago View the full article
    • By European Space Agency
      Image: Hera asteroid mission in your house View the full article
    • By NASA
      NASA/Steve Freeman On Oct. 22, 2024, the latest iteration of an atmospheric probe developed by researchers at NASA’s Armstrong Flight Research Center in Edwards, California, successfully completed a test flight. Building on NASA 1960s research on lifting body aircraft, which use the aircraft’s shape for lift instead of wings, the concept could offer future scientists a potentially better and more economical way to collect data on other planets. Testing demonstrated the shape of the probe works.
      The atmospheric probe flew after release from a quad-rotor remotely piloted aircraft above Rogers Dry Lake, a flight area adjacent to NASA Armstrong. “I’m ecstatic,” said John Bodylski, atmospheric probe principal investigator at NASA Armstrong. “It was completely stable in flight. We will be looking at releasing it from a higher altitude to keep it flying longer and demonstrate more maneuvers.”
      See more photos from the test flight.
      Image credit: Steve Freeman
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Takes the… Hubble Space Telescope Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Online Activities Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More 35th Anniversary   4 Min Read NASA’s Hubble Takes the Closest-Ever Look at a Quasar
      A NASA Hubble Space Telescope image of the core of quasar 3C 273. Credits:
      NASA, ESA, Bin Ren (Université Côte d’Azur/CNRS); Acknowledgment: John Bahcall (IAS); Image Processing: Joseph DePasquale (STScI) Astronomers have used the unique capabilities of NASA’s Hubble Space Telescope to peer closer than ever into the throat of an energetic monster black hole powering a quasar. A quasar is a galactic center that glows brightly as the black hole consumes material in its immediate surroundings.
      The new Hubble views of the environment around the quasar show a lot of “weird things,” according to Bin Ren of the Côte d’Azur Observatory and Université Côte d’Azur in Nice, France. “We’ve got a few blobs of different sizes, and a mysterious L-shaped filamentary structure. This is all within 16,000 light-years of the black hole.”
      Some of the objects could be small satellite galaxies falling into the black hole, and so they could offer the materials that will accrete onto the central supermassive black hole, powering the bright lighthouse. “Thanks to Hubble’s observing power, we’re opening a new gateway into understanding quasars,” said Ren. “My colleagues are excited because they’ve never seen this much detail before.”
      Quasars look starlike as point sources of light in the sky (hence the name quasi-stellar object). The quasar in the new study, 3C 273, was identified in 1963 by astronomer Maarten Schmidt as the first quasar. At a distance of 2.5 billion light-years it was too far away for a star. It must have been more energetic than ever imagined, with a luminosity over 10 times brighter than the brightest giant elliptical galaxies. This opened the door to an unexpected new puzzle in cosmology: What is powering this massive energy production? The likely culprit was material accreting onto a black hole.
      A Hubble Space Telescope image of the core of quasar 3C 273. A coronagraph on Hubble blocks out the glare coming from the supermassive black hole at the heart of the quasar. This allows astronomers to see unprecedented details near the black hole such as weird filaments, lobes, and a mysterious L-shaped structure, probably caused by small galaxies being devoured by the black hole. Located 2.5 billion light-years away, 3C 273 is the first quasar (quasi-stellar object) ever discovered, in 1963. NASA, ESA, Bin Ren (Université Côte d’Azur/CNRS); Acknowledgment: John Bahcall (IAS); Image Processing: Joseph DePasquale (STScI) In 1994 Hubble’s new sharp view revealed that the environment surrounding quasars is far more complex than first suspected. The images suggested galactic collisions and mergers between quasars and companion galaxies, where debris cascades down onto supermassive black holes. This reignites the giant black holes that drive quasars.
      For Hubble, staring into the quasar 3C 273 is like looking directly into a blinding car headlight and trying to see an ant crawling on the rim around it. The quasar pours out thousands of times the entire energy of stars in a galaxy. One of closest quasars to Earth, 3C 273 is 2.5 billion light-years away. (If it was very nearby, a few tens of light-years from Earth, it would appear as bright as the Sun in the sky!) Hubble’s Space Telescope Imaging Spectrograph (STIS) can serve as a coronagraph to block light from central sources, not unlike how the Moon blocks the Sun’s glare during a total solar eclipse. Astronomers have used STIS to unveil dusty disks around stars to understand the formation of planetary systems, and now they can use STIS to better understand quasars’ host galaxies. The Hubble coronograph allowed astronomers to look eight times closer to the black hole than ever before.
      Scientists got rare insight into the quasar’s 300,000-light-year-long extragalactic jet of material blazing across space at nearly the speed of light. By comparing the STIS coronagraphic data with archival STIS images with a 22-year separation, the team led by Ren concluded that the jet is moving faster when it is farther away from the monster black hole.
      “With the fine spatial structures and jet motion, Hubble bridged a gap between the small-scale radio interferometry and large-scale optical imaging observations, and thus we can take an observational step towards a more complete understanding of quasar host morphology. Our previous view was very limited, but Hubble is allowing us to understand the complicated quasar morphology and galactic interactions in detail. In the future, looking further at 3C 273 in infrared light with the James Webb Space Telescope might give us more clues,” said Ren.
      At least 1 million quasars are scattered across the sky. They are useful background “spotlights” for a variety of astronomical observations. Quasars were most abundant about 3 billion years after the big bang, when galaxy collisions were more common.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, also supports mission operations at Goddard. The Space Telescope Science Institute (STScI) in Baltimore, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Explore More

      Science Behind the Discoveries: Quasars


      Science Behind the Discoveries: Black Holes


      Monster Black Holes are Everywhere

      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli (claire.andreoli@nasa.gov)
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Bin Ren
      Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, France
      Share








      Details
      Last Updated Dec 05, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Quasars Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble’s Night Sky Challenge



      Hubble Gravitational Lenses



      Hubble Lithographs


      View the full article
    • By NASA
      3 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      NASA/Quincy Eggert Upside down can be right side up. That’s what NASA researchers determined for tests of an efficient wing concept that could be part of the agency’s answer to making future aircraft sustainable.
      Research from NASA’s Advanced Air Transport Technology project involving a 10-foot model could help NASA engineers validate the concept of the Transonic Truss-Braced Wing (TTBW),  an aircraft using long, thin wings stabilized by diagonal struts. The TTBW concept’s efficient wings add lift and could result in reduced fuel use and emissions for future commercial single-aisle aircraft. A team at the Flight Loads Laboratory at NASA’s Armstrong Flight Research Center in Edwards, California, are using the model, called the Mock Truss-Braced Wing, to verify the concept and their testing methods.
      The model wing and the strut have instruments installed to measure strain, then attached to a rigid vertical test frame. Wire hanging from an overhead portion of the frame stabilizes the model wing for tests. For these tests, researchers chose to mount the 10-foot-long aluminum wing upside down, adding weights to apply stress. The upside-down orientation allows gravity to simulate the lift a wing would experience in flight.
      Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. A view from above shows the test structure, the wing, and the strut. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman “A strut reduces the structure needed on the main wing, and the result is less structural weight, and a thinner wing,” said Frank Pena, NASA mock wing test director. “In this case, the test measured the reaction forces at the base of the main wing and at the base of the strut. There is a certain amount of load sharing between the wing and the strut, and we are trying to measure how much of the load stays in the main wing and how much is transferred to the strut.”
      To collect those measurements, the team added weights one at a time to the wing and the truss. In another series of tests, engineers tapped the wing structure with an instrumented hammer in key locations, monitoring the results with sensors.
      “The structure has natural frequencies it wants to vibrate at depending on its stiffness and mass,” said Ben Park, NASA mock wing ground vibration test director. “Understanding the wing’s frequencies, where they are and how they respond, are key to being able to predict how the wing will respond in flight.”
      Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Charlie Eloff, left, and Lucas Oramas add weight to the test wing to apply stress used to determine its limits. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Adding weights to the wingtip, tapping the structure with a hammer, and collecting the vibration response is an unusual testing method because it adds complexity, Park said.  The process is worth it, he said, if it provides the data engineers are seeking. The tests are also unique because NASA Armstrong designed, built, and assembled the wing, strut, and test fixture, and conducted the tests.
      With the successful loads calibration and vibration tests nearly complete on the 10-foot wing, the NASA Armstrong Flight Loads Laboratory team is working on designing a system and hardware for testing a 15-foot model made from graphite-epoxy composite. The Advanced Air Transport Technology TTBW team at NASA’s Langley Research Center in Hampton, Virginia, is designing and constructing the model, which is called the Structural Wing Experiment Evaluating Truss-bracing.
      The larger wing model will be built with a structural design that will more closely resembles what could potentially fly on a future commercial aircraft. The goals of these tests are to calibrate predictions with measured strain data and learn how to test novel aircraft structures such as the TTBW concept.
      NASA’s Advanced Air Transport Technology project falls under NASA’s Advanced Air Vehicles Program, which evaluates and develops technologies for new aircraft systems and explores promising air travel concepts.
      Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Frank Pena, test director, checks the mock wing. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Samson Truong, from left, and Ben Park, NASA mock wing ground vibration test director, prepare for a vibration test. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Researchers test a 10-foot Mock Truss-Braced Wing at NASA’s Armstrong Flight Research Center in Edwards, California. Ben Park, NASA mock wing ground vibration test director, taps the wing structure with an instrumented hammer in key locations and sensors monitor the results. The aircraft concept involves a wing braced on an aircraft using diagonal struts that also add lift and could result in significantly improved aerodynamics.NASA/Steve Freeman Share
      Details
      Last Updated Dec 04, 2024 EditorDede DiniusContactJay Levinejay.levine-1@nasa.govLocationArmstrong Flight Research Center Related Terms
      Armstrong Flight Research Center Advanced Air Transport Technology Advanced Air Vehicles Program Aeronautics Aeronautics Research Mission Directorate Flight Innovation Green Aviation Tech Sustainable Aviation Explore More
      4 min read NASA’s C-20A Studies Extreme Weather Events
      Article 6 hours ago 3 min read NASA Experts Share Inspiring Stories of Perseverance to Students
      Article 2 days ago 3 min read An Electronic Traffic Monitor for Airports 
      Ground traffic management program saves passengers and airlines time while cutting fuel costs
      Article 1 week ago Keep Exploring Discover More Topics From NASA
      Armstrong Flight Research Center
      Armstrong Programs & Projects
      Armstrong Aeronautics Projects
      Armstrong Capabilities & Facilities
      View the full article
  • Check out these Videos

×
×
  • Create New...