Jump to content

Record-Setting NASA Astronaut, Crewmates Return from Space Mission


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Continuing his engagement to deepen international collaboration and promote the peaceful use of space, NASA Administrator Bill Nelson will travel to Lima on Wednesday.
      Nelson will meet with Maj. Gen. Roberto Melgar Sheen, director of Peru’s National Commission for Aerospace Research and Development (CONIDA) Thursday, Nov. 14, and sign a non-binding memorandum of understanding to enhance space cooperation. The memorandum of understanding between NASA and CONIDA will include safety training, a joint feasibility study for a potential sounding rockets campaign, and technical assistance for CONIDA on sounding rocket launches. 
      Nelson will discuss the importance of international partnerships and collaboration in space and celebrate Peru’s signing of the Artemis Accords earlier this year.
      For more information about NASA’s international partnerships, visit:
      https://www.nasa.gov/oiir
      -end-
      Meira Bernstein
      Headquarters, Washington
      202-615-1747
      meira.b.bernstein@nasa.gov
      Share
      Details
      Last Updated Nov 13, 2024 LocationNASA Headquarters Related Terms
      Office of International and Interagency Relations (OIIR) Bill Nelson View the full article
    • By NASA
      1 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Shauntina Lilly, a NASA Glenn public affairs officer, speaks to students about NASA’s available internships and educational resources during the STEM Goes Red for Girls event at Great Lakes Science Center, home of the NASA Glenn Visitor Center, on Oct. 21.Credit: NASA/Debbie Welch NASA’s Glenn Research Center in Cleveland supported this year’s STEM Goes Red for Girls event at Great Lakes Science Center on Oct. 21. The program provides seventh and eighth grade students exposure to some of Greater Cleveland’s leading STEM companies. The event also featured a hands-on exhibitor fair, speed mentoring, and educational classes. 
      Hosted by the American Heart Association, this year’s event welcomed its largest audience to date with 352 students and educators from 32 schools within Northeast Ohio. NASA Glenn’s presence focused heavily on internships and career advice, but also highlighted the center’s work with the Space Communications and Navigation program’s Deep Space Network. Glenn’s Julie Sufka also served as a mentor, speaking to young girls about STEM opportunities in mathematics.  
      Return to Newsletter Explore More
      1 min read NASA Glenn Chief Counsel Named to CSU Law Hall of Fame 
      Article 2 mins ago 5 min read NASA Funds New Studies Looking at Future of Sustainable Aircraft
      Article 20 hours ago 4 min read X-59 Fires Up its Engine for First Time on its Way to Takeoff
      Article 7 days ago View the full article
    • By NASA
      Credit: NASA Following a signing ceremony Wednesday in Denmark’s capital city, Copenhagen, NASA embraced Denmark as the 48th nation to commit to the safe and responsible exploration of space that benefits humanity.
      “We welcome Denmark’s signing of the Artemis Accords today,” said NASA Administrator Bill Nelson. “Denmark, as a founding member of the European Space Agency (ESA), has contributed to space exploration for decades, including collaborating with NASA on Mars exploration. Denmark’s signing of the Artemis Accords will further international cooperation and the peaceful exploration of space.”
      Christina Egelund, minister of higher education and science, signed the Artemis Accords on behalf of Denmark. Alan Leventhal, U.S. ambassador to the Kingdom of Denmark also participated in the ceremony, and Nelson contributed recorded remarks.
      “With the Artemis program, the United States is leading the way back to the moon, and Denmark wants to strengthen the strategic partnership with the United States and other partners for the benefit of both science and industry,” said Egelund. “The signing of the Accords is in line with the Danish government’s upcoming strategy for space research and innovation. As part of the strategy, Denmark seeks to strengthen ties with our allies such as the United States. Space holds great potential, and we want – in cooperation with other countries – to advance scientific breakthroughs and influence the development and use of the space sector in the future.”
      In 2020, the United States, led by NASA and the U.S. Department of State, and seven other initial signatory nations established the Artemis Accords, identifying a set of principles promoting the beneficial use of space for humanity. The Artemis Accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. 
      The commitments to the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space.
      Learn more about the Artemis Accords at:
      https://www.nasa.gov/artemis-accords
      -end-
      Meira Bernstein / Elizabeth Shaw
      Headquarters, Washington
      202-358-1600
      meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov
      Share
      Details
      Last Updated Nov 13, 2024 LocationNASA Headquarters Related Terms
      Artemis Accords Office of International and Interagency Relations (OIIR) View the full article
    • By NASA
      5 Min Read Wearable Tech for Space Station Research
      A wearable monitoring device is visible on the left wrist of NASA astronaut Jeanette Epps. Credits: NASA Science in Space Nov 2024
      Many of us wear devices that count our steps, measure our heart rate, track sleep patterns, and more. This information can help us make healthy decisions – research shows the devices encourage people to move more, for example – and could flag possible problems, such as an irregular heartbeat.
      Wearable monitors also have become common tools for research on human health, including studies on the International Space Station. Astronauts have worn special watches, headbands, vests, and other devices to help scientists examine sleep quality, effectiveness of exercise, heart health, and more.
      Warm to the core
      Spaceflight can affect body temperature regulation and daily rhythms due to factors such as the absence of convection (a natural process that transfers heat away from the body) and changes in the cardiovascular and metabolic systems.
      A current investigation from ESA (European Space Agency), Thermo-Mini or T-Mini examines how the body regulates its core temperature during spaceflight. The study uses a non-invasive headband monitor that astronauts can wear for hours at a time. Data from the monitor allow researchers to determine the effect on body temperature from environmental and physiological factors such as room temperature and humidity, time of day, and physical stress. The same type of sensor already is used on Earth for research in clinical environments, such as improving incubators, and studies of how hotter environments affect human health.
      Thermolab, an earlier ESA investigation, examined thermoregulatory and cardiovascular adaptations during rest and exercise in microgravity. Researchers found that core body temperature rises higher and faster during exercise in space than on Earth and that the increase was sustained during rest, a phenomenon that could affect the health of crew members on long-term spaceflight. The finding also raises questions about the thermoregulatory set point humans are assumed to have as well as our ability to adapt to climate change on Earth.
      NASA astronaut Nick Hague wears the T-mini device while exercising.NASA To sleep, perchance to dream
      Spaceflight is known to disrupt sleep-wake patterns. Actiwatch Spectrum, a device worn on the wrist, contains an accelerometer to measure motion and photodetectors to monitor ambient lighting. It is an upgrade of previous technology used on the space station to monitor the length and quality of crew member sleep. Data from earlier missions show that crew members slept significantly less during spaceflight than before and after. The Actiwatch Sleep-Long investigation used an earlier version of the device to examine how ambient light affects the sleep-wake cycle and found an association between sleep deficiency and changes during spaceflight in circadian patterns, or the body’s response to a normal 24-hour light and dark cycle. Follow up studies are testing lighting systems to address these effects and help astronauts maintain healthy circadian rhythms.
      NASA astronaut Sunita Williams wears an Actiwatch as she conducts research.NASA Wearable Monitoring tested a lightweight vest with embedded sensors to monitor heart rate and breathing patterns during sleep and help determine whether changes in heart activity affect sleep quality. The technology offers a significant advantage by monitoring heart activity without waking the test subject and could help patients on Earth with sleep disorders. Researchers reported positive performance and good quality of recorded signals, suggesting that the vest can contribute to comprehensive monitoring of individual health on future spaceflight and in some settings on Earth as well.
      These and other studies support development of countermeasures to improve sleep for crew members, helping to maintain alertness and lessen fatigue during missions.
      (Not) waiting to exhale
      Humans exhale carbon dioxide and too much of it can build up in closed environments, causing headaches, dizziness, and other symptoms. Spacecraft have systems to remove this substance from cabin air, but pockets of carbon dioxide can form and be difficult to detect and remove. Personal CO2 Monitor tested specially designed sensors attached to clothing to monitor the wearer’s immediate surroundings. Researchers reported that the devices functioned adequately as either crew-worn or static monitors, an important step toward using them to determine how carbon dioxide behaves in enclosed systems like spacecraft.
      One of the wearable carbon dioxide monitors clipped to the wall near a crew sleeping compartment. Radiation in real time
      EVARM, an investigation from CSA (Canadian Space Agency), used small wireless dosimeters carried in a pocket to measure radiation exposure during spacewalks. The data showed that this method is a feasible way to measure radiation exposure, which could help focus routine dosage monitoring where it is most needed. Any shielding and countermeasures developed also could help protect people who work in high-radiation areas on Earth.
      ESA’s Active Dosimeter tested a radiation dosimeter worn by crew members to measure changes in their exposure over time based on the space station’s orbit and altitude, the solar cycle, and solar flares. Measurements from the device allowed researchers to analyze radiation dosage across an entire space mission.
      ESA astronaut Thomas Pesquet holds one of the mobile units for the Active Dosimeter study.NASA The Active Dosimeter also was among the instruments used to measure radiation on NASA’s Orion spacecraft during its 25.5-day uncrewed Artemis I mission around the Moon and back in 2022.
      Another device tested on the space station and then on Artemis I, AstroRad Vest is designed to protect astronauts from solar particle events. Researchers used these and other radiation measuring devices to show that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions.
      The International Space Station serves as an important testbed for these technologies and many others being developed for future missions to the Moon and beyond.
      Melissa Gaskill
      International Space Station Research Communications Team
      Johnson Space Center
      Keep Exploring Discover More Topics From NASA
      Humans In Space
      Space Station Technology Demonstration
      Space Station Research and Technology
      Station Science 101: Human Research
      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Note: The following article is part of a series highlighting propulsion testing at NASA’s Stennis Space Center. To access the entire series, please visit: https://www.nasa.gov/feature/propulsion-powering-space-dreams/.
      NASA engineers conduct a test of the liquid oxygen/liquid methane Morpheus lander engine HD4B on the E-3 Test Stand at NASA’s Stennis Space Center during the week of Sept. 9, 2013. The fourth-generation Project Morpheus engine was a prototype vertical takeoff and landing vehicle designed to advance innovative technologies into flight-proven systems that may be incorporated into future human exploration missions. NASA/Stennis The work of NASA has fueled commercial spaceflight for takeoff – and for many aerospace companies, the road to launch begins at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. 
      Already the nation’s largest propulsion test site and a leader in working with aerospace companies to support their testing needs, NASA Stennis aims to continue growing its commercial market even further.  
      “The aerospace industry is expanding rapidly, and we are here to support it,” said NASA Stennis Director John Bailey. “NASA Stennis has proven for more than two decades that we have the versatile infrastructure and reliable propulsion test experts to meet testing needs and accelerate space goals for a whole range of customers.” 
      The central hub for meeting those needs at the south Mississippi center is the E Test Complex. It features four stands with 12 test cells capable of supporting a range of component and engine test activities. NASA operates the E-1 Test Stand with four cell positions and the E-3 Test Stand with two cells. Relativity Space, based in Long Beach, California, leases the E-2 and E-4 stands to support some of its test operations. 
      Operators conduct a hot fire for Relativity Space’s Aeon R thrust chamber assembly on the E-1 Test Stand at NASA’s Stennis Space Center in 2024.  NASA/Stennis Virgin Orbit, a satellite-launch company, conducts a Thrust Chamber Assembly test on the E-1 Test Stand at NASA’s Stennis Space Center in 2021. The company partnered with NASA Stennis to conduct hot fire tests totaling a cumulative 974.391 seconds.NASA/Stennis Launcher’s 3D-printed Engine-2 rocket engine completes a 5-second hot fire of its thrust chamber assembly on Aug. 20, 2021, at NASA’s Stennis Space Center. The company was just one of several conducting test projects on site in 2021. Launcher, Virgin Orbit, Relativity Space, and L3Harris (formerly known as Aerojet Rocketdyne) made significant strides toward their space-project goals while utilizing NASA Stennis infrastructure.Launcher/John Kraus Photography An image from November 2021 shows a subscale center body diffuser hot fire on the E-3 Test Stand during an ongoing advanced diffuser test series at NASA’s Stennis Space Center.  NASA/Stennis A team of engineers from NASA, Orbital Sciences Corporation and L3Harris (formerly known as Aerojet Rocketdyne) conduct an engine acceptance test on the E-1 Test Stand at NASA’s Stennis Space Center on Jan. 18, 2013. The successful test of AJ26 Engine E12 continued support of Orbital Sciences Corporation as the company prepared to provide commercial cargo missions to the International Space Station.  NASA/Stennis Developed during the 1990s and early 2000s, the E Test Complex can deliver various propellants and gases at high and low pressures and flow rates not available elsewhere. The versatility of the complex infrastructure and test team allows it to support projects for commercial aerospace companies, large and small. NASA Stennis also provides welding, machining, calibration, precision cleaning, and other support services required to conduct testing.  
      “NASA Stennis delivers exceptional results in a timely manner with our capabilities and services,” said Duane Armstrong, manager of the NASA Stennis Strategic Business Development Office. “Our commercial partnerships and agreements have proven to be true win-win arrangements. NASA Stennis is where customers have access to unique NASA test support infrastructure and expertise, making it the go-to place for commercial propulsion testing.”  
      Companies come to the south Mississippi site with various needs. Some test for a short time and collect essential data. Others stay for an extended period. The stage of development and the particular test article, whether a component or full engine, determine where testing takes place within the E Complex. 
      NASA Stennis also offers a variety of test agreements. Companies may lease a stand or area and perform its own test campaign. They also may team with NASA Stennis engineers and operators to form a blended test team. And in some cases, companies will turn over the entirety of test work to the NASA Stennis team. Current companies conducting work at NASA Stennis include: Blue Origin; Boeing; Evolution Space; Launcher, a Vast company; Relativity Space; and Rolls-Royce. They join a growing list who conducted earlier test projects in the complex, including SpaceX, Stratolaunch, Virgin Orbit, and Orbital Sciences Corporation. 
      In addition, three companies – Relativity Space, Rocket Lab, and Evolution Space – are establishing production and/or test operations onsite. 
      “We may work with a customer brand new to the field, so we help them figure out how to build their engine,” said Chris Barnett-Woods, E-1 electrical lead and instrumentation engineer. “Another customer may know exactly what they want, and we support them to make it happen. We focus on customer need. Given our expertise, we know how testing needs to be conducted or can figure it out quickly together, which can help our customer save money toward a successful outcome.” 
      NASA engineers conduct a test of a methane-fueled 2K thruster on the E-3 Test Stand at NASA’s Stennis Space Center during a four-day span in May 2015. NASA/Stennis NASA records a historic week Nov. 5-9, 2012, conducting 27 tests on three different rocket engines/components across three stands in the E Test Complex at NASA’s Stennis Space Center. Inset images show the types of tests conducted on the E-1 Test Stand (right), the E-2 Test Stand (left) and the E-3 Test Stand (center). The E-1 image is from an October 2012 test and is provided courtesy of Blue Origin. Other images are from tests conducted the week of Nov. 5, 2012. NASA/Stennis Operators at the E-2 Test Stand at NASA’s Stennis Space Center conduct a test of the oxygen preburner component developed by SpaceX for its Raptor rocket engine on June 9, 2015. NASA/Stennis Operators conduct a hot fire on the E-3 Test Stand during ongoing advanced diffuser test series in October 2015 at NASA’s Stennis Space Center. Subscale testing was conducted at NASA Stennis to validate innovative new diffuser designs to help test rocket engines at simulated high altitudes, helping to ensure the engines will fire and operate on deep space missions as needed.  NASA/Stennis NASA’s Stennis Space Center and  L3Harris (formerly known as Aerojet Rocketdyne) complete a successful round of AR1 preburner tests on Cell 2 of the E-1 Test Stand during the last week of June 2016. The tests successfully verified key preburner injector design parameters for the company’s AR1 engine being designed to end use of Russian engines for national security space launches. NASA/Stennis Capabilities to benefit NASA and the aerospace industry have grown since the center entered its first commercial partnership in the late 1990s. The test team also has grown in understanding the commercial approach, and the center has committed itself to adapting and streamlining its business processes. 
      “Time-to-market is key for commercial companies,” said Joe Schuyler, director of the NASA Stennis Engineering and Test Directorate. “They want to test as efficiently and economically as possible. Our goal is to meet them where they are and deliver what they need. And that is exactly what we focus our efforts on.”
      As stated in the site’s latest strategic plan, the goal is to operate as “a multi-user propulsion testing enterprise that accelerates the development of aerospace systems and services by government and industry.” To that end, the site is innovating its operations, modernizing its services, and demonstrating it is the best choice for propulsion testing. 
      “NASA Stennis is open for business as the preferred propulsion provider for aerospace companies,” Bailey said. “Companies across the board are realizing they can achieve their desired results at NASA Stennis.”  
      For information about NASA’s Stennis Space Center, visit: 
      Stennis Space Center – NASA 
      Share
      Details
      Last Updated Nov 13, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related Terms
      Stennis Space Center Explore More
      4 min read NASA Stennis Propulsion Testing Contributes to Artemis Missions
      Article 14 mins ago 5 min read NASA Stennis Test Team Supports Space Dreams with Proven Expertise
      Article 14 mins ago 5 min read NASA Stennis Adapts with Purpose to Power Nation’s Space Dreams
      Article 14 mins ago Keep Exploring Discover Related Stennis Topics
      Propulsion Test Engineering
      NASA Stennis Front Door
      Multi-User Test Complex
      Doing Business with NASA Stennis
      View the full article
  • Check out these Videos

×
×
  • Create New...