Members Can Post Anonymously On This Site
Seeking Euclid's hidden stars: commissioning looks up
-
Similar Topics
-
By NASA
6 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
This enhanced-color mosaic was taken on Sept. 27 by the Perseverance rover while climbing the western wall of Jezero Crater. Many of the landmarks visited by the rover during its 3½-year exploration of Mars can be seen.NASA/JPL-Caltech/ASU/MSSS On its way up the side of Jezero Crater, the agency’s latest Red Planet off-roader peers all the way back to its landing site and scopes the path ahead.
NASA’s Perseverance Mars rover is negotiating a steeply sloping route up Jezero Crater’s western wall with the aim of cresting the rim in early December. During the climb, the rover snapped not only a sweeping view of Jezero Crater’s interior, but also imagery of the tracks it left after some wheel slippage along the way.
An annotated version of the mosaic captured by Perseverance highlights nearly 50 labeled points of interest across Jezero Crater, including the rover’s landing site. The 44 images that make up the mosaic were taken Sept. 27.NASA/JPL-Caltech/ASU/MSSS Stitched together from 44 frames acquired on Sept. 27, the 1,282nd Martian day of Perseverance’s mission, the image mosaic features many landmarks and Martian firsts that have made the rover’s 3½-year exploration of Jezero so memorable, including the rover’s landing site, the spot where it first found sedimentary rocks, the location of the first sample depot on another planet, and the final airfield for NASA’s Ingenuity Mars Helicopter. The rover captured the view near a location the team calls “Faraway Rock,” at about the halfway point in its climb up the crater wall.
“The image not only shows our past and present, but also shows the biggest challenge to getting where we want to be in the future,” said Perseverance’s deputy project manager, Rick Welch of NASA’s Jet Propulsion Laboratory in Southern California. “If you look at the right side of the mosaic, you begin to get an idea what we’re dealing with. Mars didn’t want to make it easy for anyone to get to the top of this ridge.”
Visible on the right side of the mosaic is a slope of about 20 degrees. While Perseverance has climbed 20-degree inclines before (both NASA’s Curiosity and Opportunity rovers had crested hills at least 10 degrees steeper), this is the first time it’s traveled that steep a grade on such a slippery surface.
This animated orbital-map view shows the route NASA’s Perseverance Mars rover has taken since its February 2021 landing at Jezero Crater to July 2024, when it took its “Cheyava Falls” sample. As of October 2024, the rover has driven over 30 kilometers (18.65 miles), and has collected 24 samples of rock and regolith as well as one air sample. NASA/JPL-Caltech Soft, Fluffy
During much of the climb, the rover has been driving over loosely packed dust and sand with a thin, brittle crust. On several days, Perseverance covered only about 50% of the distance it would have on a less slippery surface, and on one occasion, it covered just 20% of the planned route.
“Mars rovers have driven over steeper terrain, and they’ve driven over more slippery terrain, but this is the first time one had to handle both — and on this scale,” said JPL’s Camden Miller, who was a rover planner, or “driver,” for Curiosity and now serves the same role on the Perseverance mission. “For every two steps forward Perseverance takes, we were taking at least one step back. The rover planners saw this was trending toward a long, hard slog, so we got together to think up some options.”
On Oct. 3, they sent commands for Perseverance to test strategies to reduce slippage. First, they had it drive backward up the slope (testing on Earth has shown that under certain conditions the rover’s “rocker-bogie” suspension system maintains better traction during backward driving). Then they tried cross-slope driving (switchbacking) and driving closer to the northern edge of “Summerland Trail,” the name the mission has given to the rover’s route up the crater rim.
To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
NASA’s Perseverance drives first backward then forward as it negotiates some slippery terrain found along a route up to the rim of Jezero Crater on Oct. 15. The Mars rover used one of its navigation cameras to capture the 31 images that make up this short video.NASA/JPL-Caltech Data from those efforts showed that while all three approaches enhanced traction, sticking close to the slope’s northern edge proved the most beneficial. The rover planners believe the presence of larger rocks closer to the surface made the difference.
“That’s the plan right now, but we may have to change things up the road,” said Miller. “No Mars rover mission has tried to climb up a mountain this big this fast. The science team wants to get to the top of the crater rim as soon as possible because of the scientific opportunities up there. It’s up to us rover planners to figure out a way to get them there.”
Tube Status
In a few weeks, Perseverance is expected to crest the crater rim at a location the science team calls “Lookout Hill.” From there, it will drive about another quarter-mile (450 meters) to “Witch Hazel Hill.” Orbital data shows that Witch Hazel Hill contains light-toned, layered bedrock. The team is looking forward to comparing this new site to “Bright Angel,” the area where Perseverance recently discovered and sampled the “Cheyava Falls” rock.
Tracks shown in this image indicate the slipperiness of the terrain Perseverance has encountered during its climb up the rim of Jezero Crater. The image was taken by one of rover’s navigation cameras on Oct. 11. NASA/JPL-Caltech The rover landed on Mars carrying 43 tubes for collecting samples from the Martian surface. So far, Perseverance has sealed and cached 24 samples of rock and regolith (broken rock and dust), plus one atmospheric sample and three witness tubes. Early in the mission’s development, NASA set the requirement for the rover to be capable of caching at least 31 samples of rock, regolith, and witness tubes over the course of Perseverance’s mission at Jezero. The project added 12 tubes, bringing the total to 43. The extras were included in anticipation of the challenging conditions found at Mars that could result in some tubes not functioning as designed.
NASA decidedto retire two of the spare empty tubes because accessing them would pose a risk to the rover’s small internal robotic sample-handling arm needed for the task: A wire harness connected to the arm could catch on a fastener on the rover’s frame when reaching for the two empty sample tubes.
With those spares now retired, Perseverance currently has 11 empty tubes for sampling rock and two empty witness tubes.
More About Perseverance
A key objective of Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will characterize the planet’s geology and past climate, to help pave the way for human exploration of the Red Planet and as the first mission to collect and cache Martian rock and regolith.
NASA’s Mars Sample Return Program, in cooperation with ESA (European Space Agency), is designed to send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.
The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help prepare for human exploration of the Red Planet.
NASA’s Jet Propulsion Laboratory, which is managed for the agency by Caltech, built and manages operations of the Perseverance rover.
For more about Perseverance:
https://science.nasa.gov/mission/mars-2020-perseverance
News Media Contacts
Karen Fox / Molly Wasser
NASA Headquarters, Washington
202-358-1600
karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
2024-144
Share
Details
Last Updated Oct 28, 2024 Related Terms
Perseverance (Rover) Jet Propulsion Laboratory Mars Explore More
6 min read NASA Successfully Integrates Coronagraph for Roman Space Telescope
Article 2 hours ago 4 min read Could Life Exist Below Mars Ice? NASA Study Proposes Possibilities
Article 2 weeks ago 4 min read New Team to Assess NASA’s Mars Sample Return Architecture Proposals
NASA announced Wednesday a new strategy review team will assess potential architecture adjustments for the…
Article 2 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) America Reyes Wang, Sepideh Khajehei, Julie Nottage, and Ryan Felton. Their commitment to the NASA mission represents the talent, camaraderie, and vision needed to explore this world and beyond.
Space Biosciences Star: America Reyes Wang
America Reyes Wang serves as the Space Biology Biospecimen Sharing Program (BSP) Lead in the Space Biosciences Research Branch, where she guides a team of support scientists and a logistics coordinator in planning and performing detailed, collaborative dissections to maximize the scientific return from biological investigations. Under her leadership, the BSP team has contributed over 5,000 samples to the NASA Biological Institutional Scientific Collection (NBISC), approximately half of which were collected in the last 10 months.
Earth Science Star: Sepideh Khajehei
Sepideh Khajehei is a NASA Earth eXchange (NEX) Data and Research Scientist in the Biospheric Science Branch, for the Bay Area Environmental Research Institute. She is recognized for her dedicated support of the NASA Administrator’s Earth Information Center, and recently for her outstanding support for an urgent request to revise climate indices just days before the October 7, 2024, opening of NASA’s Hometown Climate Dashboard at the Smithsonian Institute in Washington, D.C.
Space Science & Astrobiology Star: Julie Nottage
Julie Nottage continuously goes above and beyond in her role as the Space and Earth Sciences Facilities Service Manager. She keeps a multi-use interdisciplinary science building running across all aspects of operations and is the go-to person for any problem. Her can-do approach and wealth of knowledge ensures the facility’s high-quality operation that enables scientists and engineers to focus on their research and instrument work. Her quality work and extensive coordination of the Voluntary Protection Program allowed these month-long inspections to run smoothly with an improved safety outcome.
Space Science & Astrobiology Star: Ryan Felton
Ryan Felton, a NASA Postdoctoral Management Fellow with the Exobiology Branch, is recognized for his successful coordination of an engaging community-wide seminar series focused on Artificial Intelligence/Machine Learning (AI/ML). This seminar series featured four speakers so far over six months on a variety of exciting topics to advance AI/ML knowledge and use in the branch’s research.
View the full article
-
By NASA
The study of X-ray emission from astronomical objects reveals secrets about the Universe at the largest and smallest spatial scales. Celestial X-rays are produced by black holes consuming nearby stars, emitted by the million-degree gas that traces the structure between galaxies, and can be used to predict whether stars may be able to host planets hospitable to life. X-ray observations have shown that most of the visible matter in the universe exists as hot gas between galaxies and have conclusively demonstrated that the presence of “dark matter” is needed to explain galaxy cluster dynamics, that dark matter dominates the mass of galaxy clusters, and that it governs the expansion of the cosmos.
X-ray observations also enable us to probe mysteries of the Universe on the smallest scales. X-ray observations of compact objects such as white dwarfs, neutron stars, and black holes allow us to use the Universe as a physics laboratory to study conditions that are orders of magnitude more extreme in terms of density, pressure, temperature, and magnetic field strength than anything that can be produced on Earth. In this astrophysical laboratory, researchers expect to reveal new physics at the subatomic scale by conducting investigations such as probing the neutron star equation of state and testing quantum electrodynamics with observations of neutron star atmospheres. At NASA’s Marshall Space Flight Center, a team of scientists and engineers is building, testing, and flying innovative optics that bring the Universe’s X-ray mysteries into sharper focus.
A composite X-ray/Optical/Infrared image of the Crab Pulsar. The X-ray image from the Chandra X-ray Observatory (blue and white), reveals exquisite details in the central ring structures and gas flowing out of the polar jets. Optical light from the Hubble Space Telescope (purple) shows foreground and background stars as pinpoints of light. Infrared light from the Spitzer Space Telescope (pink) traces cooler gas in the nebula. Finally, magnetic field direction derived from X-ray polarization observed by the Imaging X-ray Polarimetry Explorer is shown as orange lines. Magnetic field lines: NASA/Bucciantini et al; X-ray: NASA/CXC/SAO; Optical: NASA/STScI; Infrared: NASA-JPL-Caltech Unlike optical telescopes that create images by reflecting or refracting light at near-90-degree angles (normal incidence), focusing X-ray optics must be designed to reflect light at very small angles (grazing incidence). At normal incidence, X-rays are either absorbed by the surface of a mirror or penetrate it entirely. However, at grazing angles of incidence, X-rays reflect very efficiently due to an effect called total external reflection. In grazing incidence, X-rays reflect off the surface of a mirror like rocks skipping on the surface of a pond.
A classic design for astronomical grazing incidence optics is the Wolter-I prescription, which consists of two reflecting surfaces, a parabola and hyperbola (see figure below). This optical prescription is revolved around the optical axis to produce a full-shell mirror (i.e., the mirror spans the full circumference) that resembles a gently tapered cone. To increase the light collecting area, multiple mirror shells with incrementally larger diameters and a common focus are fabricated and nested concentrically to comprise a mirror module assembly (MMA).
Focusing optics are critical to studying the X-ray universe because, in contrast to other optical systems like collimators or coded masks, they produce high signal-to-noise images with low background noise. Two key metrics that characterize the performance of X-ray optics are angular resolution, which is the ability of an optical system to discriminate between closely spaced objects, and effective area, which is the light collecting area of the telescope, typically quoted in units of cm2. Angular resolution is typically measured as the half-power diameter (HPD) of a focused spot in units of arcseconds. The HPD encircles half of the incident photons in a focused spot and measures the sharpness of the final image; a smaller number is better.
Schematic of a full-shell Wolter-I X-ray optic mirror module assembly with five concentrically nested mirror shells. Parallel rays of light enter from the left, reflect twice off the reflective inside surface of the shell (first off the parabolic segment and then off the hyperbolic segment), and converge at the focal plane. NASA MSFC NASA Marshall Space Flight Center (MSFC) has been building and flying lightweight, full-shell, focusing X-ray optics for over three decades, always meeting or exceeding angular resolution and effective area requirements. MSFC utilizes an electroformed nickel replication (ENR) technique to make these thin full-shell X-ray optics from nickel alloy.
X-ray optics development at MSFC began in the early 1990s with the fabrication of optics to support NASA’s Advanced X-ray Astrophysics Facility (AXAF-S) and then continued via the Constellation-X technology development programs. In 2001, MSFC launched a balloon payload that included two modules each with three mirrors, which produced the first focused hard X-ray (>10 keV) images of an astrophysical source by imaging Cygnus X-1, GRS 1915, and the Crab Nebula. This initial effort resulted in several follow-up missions over the next 12 years, and became known as the High Energy Replicated Optics (HERO) balloon program.
In 2012, the first of four sounding rocket flights of the Focusing Optics X-ray Solar Imager (FOXSI) flew with MSFC optics onboard, producing the first focused images of the Sun at energies greater than 5 keV. In 2019 the Astronomical Roentgen Telescope X-ray Concentrator (ART-XC) instrument on the Spectr-Roentgen-Gamma Mission launched with seven MSFC-fabricated X-ray MMAs, each containing 28 mirror shells. ART-XC is currently mapping the sky in the 4-30 keV hard X-ray energy range, studying exotic objects like neutron stars in our own galaxy as well as active galactic nuclei, which are spread across the visible universe. In 2021, the Imaging X-ray Polarimetry Explorer (IXPE), flew and is now performing extraordinary science with an MSFC-led team using three, 24-shell MMAs that were fabricated and calibrated in-house.
Most recently, in 2024, the fourth FOXSI sounding rocket campaign launched with a high-resolution MSFC MMA. The optics achieved 9.5 arcsecond HPD angular resolution during pre-flight test with an expected 7 arcsecond HPD in gravity-free flight, making this the highest angular resolution flight observation made with a nickel-replicated X-ray optic. Currently MSFC is fabricating an MMA for the Rocket Experiment Demonstration of a Soft X-ray (REDSoX) polarimeter, a sounding rocket mission that will fly a novel soft X-ray polarimeter instrument to observe active galactic nuclei. The REDSoX MMA optic will be 444 mm in diameter, which will make it the largest MMA ever produced by MSFC and the second largest replicated nickel X-ray optic in the world.
Scientists Wayne Baumgartner (left, crouched) and Nick Thomas (left, standing) calibrate an IXPE MMA in the MSFC 100 m Beamline. Scientist Stephen Bongiorno (right) applies epoxy to an IXPE shell during MMA assembly. NASA MSFC The ultimate performance of an X-ray optic is determined by errors in the shape, position, and roughness of the optical surface. To push the performance of X-ray optics toward even higher angular resolution and achieve more ambitious science goals, MSFC is currently engaged in a fundamental research and development effort to improve all aspects of full-shell optics fabrication.
Given that these optics are made with the Electroformed Nickel Replication technique, the fabrication process begins with creation of a replication master, called the mandrel, which is a negative of the desired optical surface. First, the mandrel is figured and polished to specification, then a thin layer of nickel alloy is electroformed onto the mandrel surface. Next, the nickel alloy layer is removed to produce a replicated optical shell, and finally the thin shell is attached to a stiff holding structure for use.
Each step in this process imparts some degree of error into the final replicated shell. Research and development efforts at MSFC are currently concentrating on reducing distortion induced during the electroforming metal deposition and release steps. Electroforming-induced distortion is caused by material stress built into the electroformed material as it deposits onto the mandrel. Decreasing release-induced distortion is a matter of reducing adhesion strength between the shell and mandrel, increasing strength of the shell material to prevent yielding, and reducing point defects in the release layer.
Additionally, verifying the performance of these advanced optics requires world-class test facilities. The basic premise of testing an optic designed for X-ray astrophysics is to place a small, bright X-ray source far away from the optic. If the angular size of the source, as viewed from the optic, is smaller than the angular resolution of the optic, the source is effectively simulating X-ray starlight. Due to the absorption of X-rays by air, the entire test facility light path must be placed inside a vacuum chamber.
At MSFC, a group of scientists and engineers operate the Marshall 100-meter X-ray beamline, a world-class end-to-end test facility for flight and laboratory X-ray optics, instruments, and telescopes. As per the name, it consists of a 100-meter-long vacuum tube with an 8-meter-long, 3-meter-diameter instrument chamber and a variety of X-ray sources ranging from 0.25 – 114 keV. Across the street sits the X-Ray and Cryogenic Facility (XRCF), a 527-meter-long beamline with an 18-meter-long, 6-meter-diameter instrument chamber. These facilities are available for the scientific community to use and highlight the comprehensive optics development and test capability that Marshall is known for.
Within the X-ray astrophysics community there exist a variety of angular resolution and effective area needs for focusing optics. Given its storied history in X-ray optics, MSFC is uniquely poised to fulfill requirements for large or small, medium- or high-angular-resolution X-ray optics. To help guide technology development, the astrophysics community convenes once per decade to produce a decadal survey. The need for high-angular-resolution and high-throughput X-ray optics is strongly endorsed by the National Academies of Sciences, Engineering, and Medicine report, Pathways to Discovery in Astronomy and Astrophysics for the 2020s.In pursuit of this goal, MSFC is continuing to advance the state of the art in full-shell optics. This work will enable the extraordinary mysteries of the X-ray universe to be revealed.
Project Leads
Dr. Jessica Gaskin and Dr. Stephen Bongiorno, NASA Marshall Space Flight Center (MSFC)
Sponsoring Organizations
The NASA Astrophysics Division supports this work primarily through the Internal Scientist Funding Model Direct Work Package and competed solicitations. This work is also supported by the Heliophysics Division through competed solicitations, as well as by directed work from other government entities.
Share
Details
Last Updated Oct 15, 2024 Related Terms
Astrophysics Astrophysics Division Marshall Astrophysics Marshall Space Flight Center Science-enabling Technology Technology Highlights Explore More
2 min read Hubble Spots a Grand Spiral of Starbursts
Article
4 days ago
6 min read NASA’s Hubble, New Horizons Team Up for a Simultaneous Look at Uranus
Article
6 days ago
4 min read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball
Article
6 days ago
View the full article
-
By NASA
A preview image of the Minecraft world inspired by NASA’s James Webb Space Telescope. Credit: Minecraft NASA invites gamers, educators, and students to grab their pickaxe and check out its latest collaboration with Minecraft exploring a new world inspired by the agency’s James Webb Space Telescope. The partnership allows creators to experience NASA’s discoveries with interactive modules on star formation, planets, and galaxy types, modeled using real Webb images.
The James Webb Space Telescope Challenges were developed to inspire the next generation of scientists, engineers, and technicians. Through the game, students can immerse themselves in the science and technology behind Webb, deepening their understanding of NASA’s mission and sparking an interest in the real-world applications of science, technology, engineering, and math (STEM).
“We’re thrilled to bring the wonders and science of NASA’s James Webb Space Telescope into the hands of the Artemis Generation through this exciting Minecraft collaboration,” said NASA Deputy Administrator Pam Melroy. “This collaboration is yet another way anyone can join NASA as we explore the secrets of the universe and solve the world’s most complex problems, making space exploration engaging for learners of all ages.”
NASA’s James Webb Space Telescope launched to space Dec. 25, 2021, and has gone on to make detailed observations of the planets within our own solar system, peer into the atmospheres of planets orbiting other stars outside our solar system, and capture images and spectra of the most distant galaxies ever detected.
“NASA’s collaboration with Minecraft allows players to experience the excitement of one of the most ambitious space missions ever,” said Mike Davis, Webb project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “No matter where Webb looks, it sees something intriguing, setting the stage for amazing discoveries yet to come. As people explore the Minecraft world of Webb, we hope they will be inspired to carry that interest further and maybe someday help NASA build future space telescopes.”
Webb is the world’s premier space science observatory. The space telescope is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
NASA’s Office of STEM Engagement provides unique opportunities for students to learn about STEM. In 2023, NASA partnered with Minecraft on an Artemis Challenge where users could build and launch a rocket, guide their Orion spacecraft, and even establish a lunar base alongside their team. Through collaboration with partners such as Microsoft, NASA can share the excitement of space exploration with even more students who are part of the Artemis Generation.
Learn more about how NASA’s Office of STEM Engagement is inspiring the next generation of explorers at:
https://www.nasa.gov/stem
View the full article
-
By NASA
4 Min Read In Odd Galaxy, NASA’s Webb Finds Potential Missing Link to First Stars
What appears as a faint dot in this James Webb Space Telescope image may actually be a groundbreaking discovery. Full image and details below. Credits:
NASA, ESA, CSA, STScI, Alex Cameron (Oxford) Looking deep into the early universe with NASA’s James Webb Space Telescope, astronomers have found something unprecedented: a galaxy with an odd light signature, which they attribute to its gas outshining its stars. Found approximately one billion years after the big bang, galaxy GS-NDG-9422 (9422) may be a missing-link phase of galactic evolution between the universe’s first stars and familiar, well-established galaxies.
Image A: Galaxy GS-NDG-9422 (NIRCam Image)
What appears as a faint dot in this James Webb Space Telescope image may actually be a groundbreaking discovery. Detailed information on galaxy GS-NDG-9422, captured by Webb’s NIRSpec (Near-Infrared Spectrograph) instrument, indicates that the light we see in this image is coming from the galaxy’s hot gas, rather than its stars. Astronomers think that the galaxy’s stars are so extremely hot (more than 140,000 degrees Fahrenheit, or 80,000 degrees Celsius) that they are heating up the nebular gas, allowing it to shine even brighter than the stars themselves. NASA, ESA, CSA, STScI, Alex Cameron (Oxford) “My first thought in looking at the galaxy’s spectrum was, ‘that’s weird,’ which is exactly what the Webb telescope was designed to reveal: totally new phenomena in the early universe that will help us understand how the cosmic story began,” said lead researcher Alex Cameron of the University of Oxford.
Cameron reached out to colleague Harley Katz, a theorist, to discuss the strange data. Working together, their team found that computer models of cosmic gas clouds heated by very hot, massive stars, to an extent that the gas shone brighter than the stars, was nearly a perfect match to Webb’s observations.
“It looks like these stars must be much hotter and more massive than what we see in the local universe, which makes sense because the early universe was a very different environment,” said Katz, of Oxford and the University of Chicago.
In the local universe, typical hot, massive stars have a temperature ranging between 70,000 to 90,000 degrees Fahrenheit (40,000 to 50,000 degrees Celsius). According to the team, galaxy 9422 has stars hotter than 140,000 degrees Fahrenheit (80,000 degrees Celsius).
The research team suspects that the galaxy is in the midst of a brief phase of intense star formation inside a cloud of dense gas that is producing a large number of massive, hot stars. The gas cloud is being hit with so many photons of light from the stars that it is shining extremely brightly.
Image B: Galaxy GS-NDG-9422 Spectrum (NIRSpec)
This comparison of the data collected by the James Webb Space Telescope with a computer model prediction highlights the same sloping feature that first caught the eye of astronomer Alex Cameron, lead researcher of a new study published in Monthly Notices of the Royal Astronomical Society. The bottom graphic compares what astronomers would expect to see in a “typical” galaxy, with its light coming predominantly from stars (white line), with a theoretical model of light coming from hot nebular gas, outshining stars (yellow line). The model comes from Cameron’s collaborator, theoretical astronomer Harley Katz, and together they realized the similarities between the model and Cameron’s Webb observations of galaxy GS-NDG-9422 (top). The unusual downturn of the galaxy’s spectrum, leading to an exaggerated spike in neutral hydrogen, is nearly a perfect match to Katz’s model of a spectrum dominated by super-heated gas.
While this is still only one example, Cameron, Katz, and their fellow researchers think the conclusion that galaxy GS-NDG-9422 is dominated by nebular light, rather than starlight, is their strongest jumping-off point for future investigation. They are looking for more galaxies around the same one-billion-year mark in the universe’s history, hoping to find more examples of a new type of galaxy, a missing link in the history of galactic evolution.
NASA, ESA, CSA, Leah Hustak (STScI) In addition to its novelty, nebular gas outshining stars is intriguing because it is something predicted in the environments of the universe’s first generation of stars, which astronomers classify as Population III stars.
“We know that this galaxy does not have Population III stars, because the Webb data shows too much chemical complexity. However, its stars are different than what we are familiar with – the exotic stars in this galaxy could be a guide for understanding how galaxies transitioned from primordial stars to the types of galaxies we already know,” said Katz.
At this point, galaxy 9422 is one example of this phase of galaxy development, so there are still many questions to be answered. Are these conditions common in galaxies at this time period, or a rare occurrence? What more can they tell us about even earlier phases of galaxy evolution? Cameron, Katz, and their research colleagues are actively identifying more galaxies to add to this population to better understand what was happening in the universe within the first billion years after the big bang.
“It’s a very exciting time, to be able to use the Webb telescope to explore this time in the universe that was once inaccessible,” Cameron said. “We are just at the beginning of new discoveries and understanding.”
The research paper is published in Monthly Notices of the Royal Astronomical Society.
The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency).
Downloads
Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu.
View/Download all image products at all resolutions for this article from the Space Telescope Science Institute.
View/Download the research results from the Monthly Notices of the Royal Astronomical Society.
Media Contacts
Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Christine Pulliam – cpulliam@stsci.edu, Leah Ramsay – lramsay@stsci.edu
Space Telescope Science Institute, Baltimore, Md.
Related Information
Read more: “What Were the First Stars Like?”
Watch: “Massive Stars: Engines of Creation”
Learn about spectroscopy: “Spectroscopy 101 – Introduction”
Star Lifecycle
More Webb News
More Webb Images
Webb Science Themes
Webb Mission Page
Related For Kids
What is a galaxy?
What is the Webb Telescope?
SpacePlace for Kids
En Español
Ciencia de la NASA
NASA en español
Space Place para niños
Keep Exploring Related Topics
James Webb Space Telescope
Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…
Stars
Stars Stories
Galaxies
Share
Details
Last Updated Sep 24, 2024 Editor Marty McCoy Contact Laura Betz laura.e.betz@nasa.gov Related Terms
Astrophysics Galaxies Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research Stars The Universe View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.