Members Can Post Anonymously On This Site
Firefoxes and whale spouts light up Earth's shield
-
Similar Topics
-
By NASA
Explore Hubble Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts e-Books Online Activities Lithographs Fact Sheets Posters Hubble on the NASA App Glossary More 35th Anniversary Online Activities 2 min read
Hubble Spots a Squid in the Whale
This NASA/ESA Hubble Space Telescope image features the spiral galaxy Messier 77, also known as the Squid Galaxy. ESA/Hubble & NASA, L. C. Ho, D. Thilker Today’s rather aquatic-themed NASA/ESA Hubble Space Telescope image features the spiral galaxy Messier 77, also known as the Squid Galaxy, which sits 45 million light-years away in the constellation Cetus (The Whale).
The designation Messier 77 comes from the galaxy’s place in the famous catalog compiled by the French astronomer Charles Messier. Another French astronomer, Pierre Méchain, discovered the galaxy in 1780. Both Messier and Méchain were comet hunters who cataloged nebulous objects that could be mistaken for comets.
Messier, Méchain, and other astronomers of their time mistook the Squid Galaxy for either a spiral nebula or a star cluster. This mischaracterization isn’t surprising. More than a century would pass between the discovery of the Squid Galaxy and the realization that the ‘spiral nebulae’ scattered across the sky were not part of our galaxy but were in fact separate galaxies millions of light-years away. The Squid Galaxy’s appearance through a small telescope — an intensely bright center surrounded by a fuzzy cloud — closely resembles one or more stars wreathed in a nebula.
The name ‘Squid Galaxy’ is recent, and stems from the extended, filamentary structure that curls around the galaxy’s disk like the tentacles of a squid. The Squid Galaxy is a great example of how advances in technology and scientific understanding can completely change our perception of an astronomical object — and even what we call it!
Hubble previously released an image of M77 in 2013. This new image incorporates recent observations made with different filters and updated image processing techniques which allow astronomers to see the galaxy in more detail.
Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight Center, Greenbelt, MD
Share
Details
Last Updated Apr 17, 2025 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
Hubble Space Telescope Astrophysics Astrophysics Pioneers Galaxies Goddard Space Flight Center Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA
Hubble Space Telescope
Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.
Hubble’s Galaxies
Reshaping Our Cosmic View: Hubble Science Highlights
Science Behind the Discoveries
View the full article
-
By NASA
NASA’s Electrodynamic Dust Shield (EDS) successfully demonstrated its ability to remove regolith, or lunar dust and dirt, from its various surfaces on the Moon during Firefly Aerospace’s Blue Ghost Mission 1, which concluded on March 16. Lunar dust is extremely abrasive and electrostatic, which means it clings to anything that carries a charge. It can damage everything from spacesuits and hardware to human lungs, making lunar dust one of the most challenging features of living and working on the lunar surface. The EDS technology uses electrodynamic forces to lift and remove the lunar dust from its surfaces. The first image showcases the glass and thermal radiator surfaces, coated in a layer of regolith. As you slide to the left, the photo reveals the results after EDS activation. Dust was removed from both surfaces, proving the technology’s effectiveness in mitigating dust accumulation.
This milestone marks a significant step toward sustaining long-term lunar and interplanetary operations by reducing dust-related hazards to a variety of surfaces for space applications ranging from thermal radiators, solar panels, and camera lenses to spacesuits, boots, and helmet visors. The EDS technology is paving the way for future dust mitigation solutions, supporting NASA’s Artemis campaign and beyond. NASA’s Electrodynamic Dust Shield was developed at Kennedy Space Center in Florida with funding from NASA’s Game Changing Development Program, managed by the agency’s Space Technology Mission Directorate.
Image Credit: NASA
View the full article
-
By NASA
NASA/Brandon Torres Navarrete Engineers at NASA’s Ames Research Center in California’s Silicon Valley, Bohdan Wesely, right, and Eli Hiss, left, complete a fit check of the two halves of a space capsule that will study the clouds of Venus for signs of life.
Led by Rocket Lab of Long Beach, California, and their partners at the Massachusetts Institute of Technology in Cambridge, Rocket Lab’s Venus mission will be the first private mission to the planet.
NASA’s role is to help the commercial space endeavor succeed by providing expertise in thermal protection of small spacecraft. Invented at Ames, NASA’s Heatshield for Extreme Entry Environment Technology (HEEET) – the brown, textured material covering the bottom of the capsule in this photo – is a woven heat shield designed to protect spacecraft from temperatures up to 4,500 degrees Fahrenheit. The probe will deploy from Rocket Lab’s Photon spacecraft bus, taking measurements as it descends through the planet’s atmosphere.
Teams at Ames work with private companies, like Rocket Lab, to turn NASA materials into solutions such as the heat shield tailor-made for this spacecraft destined for Venus, supporting growth of the new space economy. NASA’s Small Spacecraft Technology program, part of the agency’s Space Technology Mission Directorate, supported development of the heat shield for Rocket Lab’s Venus mission.
View the full article
-
By NASA
5 min read
February’s Night Sky Notes: How Can You Help Curb Light Pollution?
Light pollution has long troubled astronomers, who generally shy away from deep sky observing under full Moon skies. The natural light from a bright Moon floods the sky and hides views of the Milky Way, dim galaxies and nebula, and shooting stars. In recent years, human-made light pollution has dramatically surpassed the interference of even a bright full Moon, and its effects are now noticeable to a great many people outside of the astronomical community. Harsh, bright white LED streetlights, while often more efficient and long-lasting, often create unexpected problems for communities replacing their old street lamps. Some notable concerns are increased glare and light trespass, less restful sleep, and disturbed nocturnal wildlife patterns. There is increasing awareness of just how much light is too much light at night. You don’t need to give in to despair over encroaching light pollution; you can join efforts to measure it, educate others, and even help stop or reduce the effects of light pollution in your community.
Before and after pictures of replacement lighting at the 6th Street Bridge over the Los Angeles River. The second picture shows improvements in some aspects of light pollution, as light is not directed to the sides and upwards from the upgraded fixtures, reducing skyglow. However, it also shows the use of brighter, whiter LEDs, which is not generally ideal, along with increased light bounce back from the road. City of Los Angeles Amateur astronomers and potential citizen scientists around the globe are invited to participate in the Globe at Night (GaN) program to measure light pollution. Measurements are taken by volunteers on a few scheduled days every month and submitted to their database to help create a comprehensive map of light pollution and its change over time. GaN volunteers can take and submit measurements using multiple methods ranging from low-tech naked-eye observations to high-tech sensors and smartphone apps.
Globe at Night citizen scientists can use the following methods to measure light pollution and submit their results:
Their own smartphone camera and dedicated app Manually measure light pollution using their own eyes and detailed charts of the constellations A dedicated light pollution measurement device called a Sky Quality Meter (SQM). The free GaN web app from any internet-connected device (which can also be used to submit their measurements from an SQM or printed-out star charts) Night Sky Network members joined a telecon with Connie Walker of Globe at Night in 2014 and had a lively discussion about the program’s history and how they can participate. The audio of the telecon, transcript, and links to additional resources can be found on their dedicated resource page.
Light pollution has been visible from space for a long time, but new LED lights are bright enough that they stand out from older street lights, even from orbit. The above photo was taken by astronaut Samantha Cristoforetti from the ISS cupola in 2015. The newly installed white LED lights in the center of the city of Milan are noticeably brighter than the lights in the surrounding neighborhoods. NASA/ESA DarkSky International has long been a champion in the fight against light pollution and a proponent of smart lighting design and policy. Their website (at darksky.org) provides many resources for amateur astronomers and other like-minded people to help communities understand the negative impacts of light pollution and how smart lighting policies can not only help bring the stars back to their night skies but make their streets safer by using smarter lighting with less glare. Communities and individuals find that their nighttime lighting choices can help save considerable sums of money when they decide to light their streets and homes “smarter, not brighter” with shielded, directional lighting, motion detectors, timers, and even choosing the proper “temperature” of new LED light replacements to avoid the harsh “pure white” glare that many new streetlamps possess. Their pages on community advocacy and on how to choose dark-sky-friendly lighting are extremely helpful and full of great information. There are even local chapters of the IDA in many communities made up of passionate advocates of dark skies.
DarkSky International has notably helped usher in “Dark Sky Places“, areas around the world that are protected from light pollution. “Dark Sky Parks“, in particular, provide visitors with incredible views of the Milky Way and are perfect places to spot the wonders of a meteor shower. These parks also perform a very important function, showing the public the wonders of a truly dark sky to many people who may have never before even seen a handful of stars in the sky, let alone the full, glorious spread of the Milky Way.
More research into the negative effects of light pollution on the health of humans and the environment is being conducted than ever before. Watching the nighttime light slowly increase in your neighborhood, combined with reading so much bad news, can indeed be disheartening! However, as awareness of light pollution and its negative effects increases, more people are becoming aware of the problem and want to be part of the solution. There is even an episode of PBS Kid’s SciGirls where the main characters help mitigate light pollution in their neighborhood!
Astronomy clubs are uniquely situated to help spread awareness of good lighting practices in their local communities in order to help mitigate light pollution. Take inspiration from Tucson, Arizona, and other dark sky-friendly communities that have adopted good lighting practices. Tucson even reduced its skyglow by 7% after its own citywide lighting conversion, proof that communities can bring the stars back with smart lighting choices.
Originally posted by Dave Prosper: November 2018
Last Updated by Kat Troche: January 2025
View the full article
-
By NASA
NASA, ESA, and M. Wong (University of California – Berkeley); Processing: Gladys Kober (NASA/Catholic University of America) This NASA Hubble Space Telescope image shows the planet Jupiter in a color composite of ultraviolet wavelengths. Released on Nov. 3, 2023, in honor of Jupiter reaching opposition, which occurs when the planet and the Sun are in opposite sides of the sky, this view of the gas giant planet includes the iconic, massive storm called the “Great Red Spot.” Though the storm appears red to the human eye, in this ultraviolet image it appears darker because high altitude haze particles absorb light at these wavelengths. The reddish, wavy polar hazes are absorbing slightly less of this light due to differences in either particle size, composition, or altitude.
Learn more about Hubble and how this type of data can help us learn more about our universe.
Image credit: NASA, ESA, and M. Wong (University of California – Berkeley); Processing: Gladys Kober (NASA/Catholic University of America)
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.