Jump to content

Juice: why’s it taking sooo long


Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      6 Min Read NASA Discovers a Long-Sought Global Electric Field on Earth
      The geographic North Pole seen from the Endurance rocket ship at 477 miles (768 kilometers) altitude above the Arctic. The faint red and green streaks at the top of the image are artifacts of lens flare. Credits: NASA Key Points
      A rocket team reports the first successful detection of Earth’s ambipolar electric field: a weak, planet-wide electric field as fundamental as Earth’s gravity and magnetic fields. First hypothesized more than 60 years ago, the ambipolar electric field is a key driver of the “polar wind,” a steady outflow of charged particles into space that occurs above Earth’s poles. This electric field lifts charged particles in our upper atmosphere to greater heights than they would otherwise reach and may have shaped our planet’s evolution in ways yet to be explored.
      Using observations from a NASA suborbital rocket, an international team of scientists has, for the first time, successfully measured a planet-wide electric field thought to be as fundamental to Earth as its gravity and magnetic fields. Known as the ambipolar electric field, scientists first hypothesized over 60 years ago that it drove how our planet’s atmosphere can escape above Earth’s North and South Poles. Measurements from the rocket, NASA’s Endurance mission, have confirmed the existence of the ambipolar field and quantified its strength, revealing its role in driving atmospheric escape and shaping our ionosphere — a layer of the upper atmosphere — more broadly.
      Understanding the complex movements and evolution of our planet’s atmosphere provides clues not only to the history of Earth but also gives us insight into the mysteries of other planets and determining which ones might be hospitable to life. The paper was published Wednesday, Aug. 28, 2024, in the journal Nature.
      Credit: NASA’s Goddard Space Flight Center/Lacey Young
      Download this video and related animations from NASA’s Scientific Visualization Studio. An Electric Field Drawing Particles Out to Space
      Since the late 1960s, spacecraft flying over Earth’s poles have detected a stream of particles flowing from our atmosphere into space. Theorists predicted this outflow, which they dubbed the “polar wind,” spurring research to understand its causes. 
      Some amount of outflow from our atmosphere was expected. Intense, unfiltered sunlight should cause some particles from our air to escape into space, like steam evaporating from a pot of water. But the observed polar wind was more mysterious. Many particles within it were cold, with no signs they had been heated — yet they were traveling at supersonic speeds.
      “Something had to be drawing these particles out of the atmosphere,” said Glyn Collinson, principal investigator of Endurance at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the paper. Scientists suspected a yet-to-be-discovered electric field could be at work.
      The hypothesized electric field, generated at the subatomic scale, was expected to be incredibly weak, with its effects felt only over hundreds of miles. For decades, detecting it was beyond the limits of existing technology. In 2016, Collinson and his team got to work inventing a new instrument they thought was up to the task of measuring Earth’s ambipolar field.
      Launching a Rocket from the Arctic
      The team’s instruments and ideas were best suited for a suborbital rocket flight launched from the Arctic. In a nod to the ship that carried Ernest Shackleton on his famous 1914 voyage to Antarctica, the team named their mission Endurance. The scientists set a course for Svalbard, a Norwegian archipelago just a few hundred miles from the North Pole and home to the northernmost rocket range in the world.
      “Svalbard is the only rocket range in the world where you can fly through the polar wind and make the measurements we needed,” said Suzie Imber, a space physicist at the University of Leicester, UK, and co-author of the paper.
      On May 11, 2022, Endurance launched and reached an altitude of 477.23 miles (768.03 kilometers), splashing down 19 minutes later in the Greenland Sea. Across the 322-mile altitude range where it collected data, Endurance measured a change in electric potential of only 0.55 volts.
      “A half a volt is almost nothing — it’s only about as strong as a watch battery,” Collinson said. “But that’s just the right amount to explain the polar wind.”
      The Endurance rocket ship launches from Ny-Ålesund, Svalbard. Credit: Andøya Space/Leif Jonny Eilertsen Hydrogen ions, the most abundant type of particle in the polar wind, experience an outward force from this field 10.6 times stronger than gravity. “That’s more than enough to counter gravity — in fact, it’s enough to launch them upwards into space at supersonic speeds,” said Alex Glocer, Endurance project scientist at NASA Goddard and co-author of the paper.
      Heavier particles also get a boost. Oxygen ions at that same altitude, immersed in this half-a-volt field, weigh half as much. In general, the team found that the ambipolar field increases what’s known as the “scale height” of the ionosphere by 271%, meaning the ionosphere remains denser to greater heights than it would be without it.
      “It’s like this conveyor belt, lifting the atmosphere up into space,” Collinson added.
      Endurance’s discovery has opened many new paths for exploration. The ambipolar field, as a fundamental energy field of our planet alongside gravity and magnetism, may have continuously shaped the evolution of our atmosphere in ways we can now begin to explore. Because it’s created by the internal dynamics of an atmosphere, similar electric fields are expected to exist on other planets, including Venus and Mars.
      “Any planet with an atmosphere should have an ambipolar field,” Collinson said. “Now that we’ve finally measured it, we can begin learning how it’s shaped our planet as well as others over time.”

      By Miles Hatfield and Rachel Lense
      NASA’s Goddard Space Flight Center, Greenbelt, Md.

      Endurance was a NASA-funded mission conducted through the Sounding Rocket Program at NASA’s Wallops Flight Facility in Virginia. The Svalbard Rocket Range is owned and operated by Andøya Space. The European Incoherent Scatter Scientific Association (EISCAT) Svalbard radar, located in Longyearbyen, made ground-based measurements of the ionosphere critical to interpreting the rocket data. The United Kingdom Natural Environment Research Council (NERC) and the Research Council of Norway (RCN) funded the EISCAT radar for the Endurance mission. EISCAT is owned and operated by research institutes and research councils of Norway, Sweden, Finland, Japan, China, and the United Kingdom (the EISCAT Associates). The Endurance mission team encompasses affiliates of the Catholic University of America, Embry-Riddle Aeronautical University, the University of California, Berkeley, the University of Colorado at Boulder, the University of Leicester, U.K., the University of New Hampshire, and Penn State University.
      Share
      Details
      Last Updated Aug 28, 2024 Related Terms
      Goddard Space Flight Center Heliophysics Heliophysics Division Ionosphere Science & Research Sounding Rockets Sounding Rockets Program View the full article
    • By European Space Agency
      Video: 00:01:23 On 19–20 August 2024, Juice successfully completed a world-first lunar-Earth flyby, with flight controllers guiding the spacecraft first past the Moon, then past Earth. The gravity of the two changed Juice’s speed and direction, sending it on a shortcut to Jupiter via Venus.
      The closest approach to the Moon was at 23:15 CEST on 19 August, deflecting Juice towards a closest approach to Earth just over 24 hours later at 23:56 CEST on 20 August. In the hours before and after both close approaches, Juice’s two monitoring cameras captured photos, giving us a unique ‘Juice eye view’ of our home planet.
      Juice’s two monitoring cameras provide black-and-white snapshots in 1024 x 1024 pixel resolution (they can be processed in colour). Their main purpose is to monitor the spacecraft’s various booms and antennas, especially during the challenging period after launch. The photos they captured of the Moon and Earth during the lunar-Earth flyby are a bonus.
      The piece of music that accompanies the images is called 11,2 km/s. It was composed by Gautier Archer back in 2015, and selected as the official theme music for ESA’s Estrack ground station network to mark its 40th anniversary (more information). The music is available under a CC BY-NC-SA licence.
      Juice rerouted to Venus in world’s first lunar-Earth flyby
      Juice’s lunar-Earth flyby: all you need to know
      Processing notes: The Juice monitoring cameras provide 1024 x 1024 pixel images. Upscaling software was used to convert the images into 2160 x 2160 pixel images, which match the 3480 x 2160 pixel resolution of the 4K movie format.
      Access the related broadcast quality footage.
      View the full article
    • By NASA
      NASA Dr. Irene Duhart Long was the first female and the first minority to hold the position of chief medical officer at NASA’s Kennedy Space Center in Florida, as well as the first African American female to serve in the Senior Executive Service at the center. These distinctions were only two of many firsts in her 31-year-long career at NASA.
      While she broke barriers in her own life, she also advocated for others to have more opportunities. She helped create the Spaceflight and Life Sciences Training Program at Kennedy, in partnership with Florida Agricultural and Mechanical University, a program that encouraged more women and minority college students to explore careers in science. She also motivated and mentored her coworkers, taking a strong interest in their trajectory at NASA.
      “One of the admirable qualities of Irene Long was her inclusion mentality regarding women in the workplace,” Kennedy Employee Assistance Counselor Patricia Bell said. “She was a front runner in advocating for women.” Long helped coordinate an educational women’s forum, focused on health, mental well-being and other topics of interest for women. Long died Aug. 4, 2020, at age 69.
      For Womens Equality Day, read more about Dr. Long’s legacy at NASA.
      Image Credit: NASA
      View the full article
    • By NASA
      The crew of the Human Exploration Research Analog’s Campaign 7 Mission 1 clasp hands above their simulated space habitat’s elevator shaft.Credit: NASA NASA is funding 11 new studies to better understand how to best support the health and performance of crew members during long-duration spaceflight missions. The awardees will complete the studies on Earth without the need for samples and data from astronauts.
      Together, the studies will help measure physiological and psychological responses to physical and mental challenges that astronauts may encounter during spaceflight. The projects will address numerous spaceflight risks related to team performance, communication, living environment, decision-making, blood flow, and brain health. With this information, NASA will better mitigate risks and protect astronaut health and performance during future long-duration missions to the Moon, Mars, and beyond.
      The 11 finalists were selected from 123 proposals in response to the 2024 Human Exploration Research Opportunities available through the NASA Solicitation and Proposal Integrated Review and Evaluation System. Selected proposals originate from 10 institutions, and the cumulative award totals about $14.6 million. The durations of the projects range from one to five years.
      The following investigators and teams were selected:
      Katya Arquilla, University Of Colorado, Boulder, “Investigating Countermeasures for Communication Delays through the Laboratory-based Exploration Mission Analog” Tripp Driskell, Florida Maxima Corporation, “CADMUS (Crew Adaptive Decision Making Under Stress) and Crew Decision Support System: Development, Validation, and Proof-of-Concept” Christopher Jones, University of Pennsylvania, Philadelphia, “Predicting Operationally Meaningful Performance with Multivariate Biomarkers Using Advanced Algorithms” Jessica Marquez, NASA Ames Research Center, Silicon Valley, California, “Enhancing Performance and Communication for Distributed Teams During Lunar Spacewalks” Shu-Chieh Wu, San Jose State University Research Foundation, California, “Lessening the Impact of Interface Inconsistency Through Goal-Directed Crew Operations” Erika Rashka, Johns Hopkins University, Baltimore, “Local Psychiatric Digital Phenotyping for Isolated, Constrained, and Extreme (ICE) Environments via Multimodal Sensing” Ana Diaz Artiles, Texas A&M Engineering Experiment Station, College Station, “Dose-response Curves of Cardiovascular and Ocular Variables During Graded Lower Body Negative Pressure in Microgravity Conditions Using Parabolic Flight” Theodora Chaspari, University Of Colorado, Boulder, “A Speech-Based Artificial Intelligence System for Predicting Team Functioning Degradation in HERA (Human Exploration Research Analog) Missions” Ute Fischer, Georgia Tech Research Corporation, Atlanta, “Supporting Collaboration and Connectedness between Space and Ground at Lunar Latencies” Xiaohong Lu, Louisiana State University, Shreveport, “Space Exposome Converges on Genotoxic Stress to Accelerate Brain Aging and Countermeasures to Mitigate Acute and Late Central Nervous System Risks” Catherine Davis, Henry M. Jackson Foundation For The Advancement of Military Medicine, North Bethesda, Maryland, “NeuroSTAR (Neurobehavioral Changes Following Stressors and Radiation): Predicting Mission Impacts from Analogous Human and Rodent Endpoints” Proposals were independently reviewed by subject matter experts in academia, industry, and government using a dual anonymous peer-review process to assess scientific merit. NASA assessed the top scoring proposals for relevance to the agency’s human research roadmap before final selections were made.
      ____
      NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy as space exploration expands to the Moon, Mars, and beyond.
      Explore More
      5 min read NASA Shares Asteroid Bennu Sample in Exchange with JAXA
      Article 2 hours ago 10 min read Preguntas frecuentes: Estado del retorno de la prueba de vuelo tripulado Boeing de la NASA
      Article 3 hours ago 2 min read 2025 Human Lander Challenge
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Living in Space
      Artemis
      Human Research Program
      Space Station Research and Technology
      View the full article
    • By European Space Agency
      Since ESA’s Jupiter Icy Moons Explorer (Juice) flew by the Moon and Earth earlier this week, we’ve seen images from its monitoring cameras and we’ve seen images from its navigation camera. Today we reveal the first images from its scientific camera, JANUS, designed to take detailed, high-resolution photos of Jupiter and its icy moons.
      View the full article
  • Check out these Videos

×
×
  • Create New...