Members Can Post Anonymously On This Site
Juice: why’s it taking sooo long
-
Similar Topics
-
By USH
On March 26, 2020, a French astronomer Mark Carlotto used a telescope to capture a video showing the moon at night. Dr. M. Carlotto is a specialist in digital video analysis of space objects. The video shows three objects rising above the Moon’s limb, flying across the lunar surface and disappearing in the Moon’s shadow.
The fact that some of these objects are so clearly visible and close enough to the moon to be able to cast noticeable shadows immediately suggests that they are quite large. Using the large Endymion crater as a benchmark, the sizes of the objects were determined.
The size of the object flying over Endymion is about 5 miles long and about 1 to 3 miles wide. The other two objects appear to be comparable in size.
By measuring the displacement of the object it appears that the object is traveling at about 31 mps. It is traveling more than 30 times faster than if it were in lunar orbit.
A paper was recently published that attempts to prove that the original video is a fake. Arxiv.org analyzed the video (not included in the analysis) but extracted and provided three images of the recorded objects for examination, as seen above, and they then conducted calculations to verify its authenticity.
Despite government and space agency denials of UFO existence, photographic evidence and subsequent analysis suggest the presence of large extraterrestrial craft near the Moon and elsewhere in space.View the full article
-
By NASA
Portrait of John Boyd, whose contributions to NASA spanned more than 70 years.Credit: NASA John Boyd, known to many as Jack and whose career spanned more than seven decades in a multitude of roles across NASA as well as its predecessor, the National Advisory Committee for Aeronautics (NACA), died Feb. 20. He was 99. Born in 1925, and raised in Danville, Virginia, he was a long-time resident of Saratoga, California.
Boyd is being remembered by many across the agency, including Dr. Eugene Tu, director, NASA’s Ames Research Center in California’s Silicon Valley, where Boyd spent most of his career.
“Jack brought an energy, optimism, and team-based approach to solving some of the greatest technological challenges humanity has ever faced, which remains part of our culture to this day,” said Tu. “There are few careers as wide-ranging and impactful as Jack’s.”
In 1947, Boyd began his career at the then-called Ames Aeronautical Laboratory in Moffett Field, California, as an aeronautical engineer working to design and test various wing shapes using the center’s 1-by-3-foot supersonic wind tunnel. Boyd continued conducting research in wind tunnels, testing designs that led to dramatic increases in the efficiency of the supersonic B-58 bomber, as well as the F-102 and F-106 fighters.
In 1958, just before Ames became part of a newly established NASA, Boyd recalled thinking, “Maybe someday we’ll go out into the far blue yonder, and if we do, what are we going to fly? How are we going to bring it back into the atmosphere safely?” He and a team of engineers turned their attention to studying the dynamics of high-speed projectiles in hypervelocity ranges, filled with different mixtures of gases to mimic the atmospheres of Mars and Venus, in preparation for sending spacecraft out into space and safely back again or to the surface of other worlds.
By the mid-60s, Boyd was promoted into leadership and tapped to become deputy director for Aeronautics and Flight Systems at NASA Ames. In the late 1960s, as America was redefining its space exploration goals and sending humans to the Moon, Boyd served as the center’s lead to assist NASA Headquarters in Washington consolidate and create new research programs.
In 1979, Boyd served as the deputy director at NASA’s Dryden Flight Research Center (now known as NASA’s Armstrong Flight Research Center) in Edwards, California, and prepared the center for its role as a landing site for the space shuttle. He briefly returned to Ames before heading to NASA Headquarters to be associate administrator for management under James M. Beggs. Boyd left government service in 1985, taking a position as chancellor for research and an adjunct professor of aerodynamics, engineering, and the history of spaceflight for the University of Texas System.
Boyd returned to NASA and California’s Silicon Valley in 1993,inspiring students through educational outreach initiatives, and serving as the senior advisor to the director, senior advisor for history, and the center ombudsman until his retirement in 2020.
Boyd credits his interest in airplanes to a cousin who was a paratrooper and gave him a ride in a biplane in the 1940s. In 1943, he enrolled and became the first in his family to earn a degree with a bachelor of science in aeronautical engineering from Virginia Polytechnic Institute and State University in Blacksburg, Virginia. He was a recipient of the NASA Exceptional Service Award, the NASA Outstanding Leadership Award, the NASA Equal Employment Opportunity Medal, the Presidential Rank of Meritorious Executive, the NASA Distinguished Service Medal, the Army Command Medal, and the NASA Headquarters History Award. He also was a Fellow of the American Institute of Aeronautics and Astronautics and a Sloan Fellow at Stanford University.
“The agency and the nation thank and honor Jack as a member of the NASA family and the highest exemplar of a public servant who believed investing in others is the greatest contribution one can make,” added Tu. “He will be deeply missed.”
For more information about NASA Ames, visit:
https://www.nasa.gov/ames
-end-
Cheryl Warner
Headquarters, Washington
202-358-1600
cheryl.m.warner@nasa.gov
Rachel Hoover
Ames Research Center, Silicon Valley
650-604-4789
rachel.hoover@nasa.gov
Share
Details
Last Updated Feb 26, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
Ames Research Center Aeronautics Armstrong Flight Research Center NASA Headquarters National Advisory Committee for Aeronautics (NACA) View the full article
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
During the Apollo program, when NASA sent humans to the Moon, those missions took several days to reach the Moon. The fastest of these was Apollo 8, which took just under three days to go from Earth orbit to orbit around the Moon.
Now it’s possible to save some fuel by flying different kinds of trajectories to the Moon that are shaped in such a way to save fuel. And those trajectories can take more time, potentially weeks or months, to reach the Moon, depending on how you do it.
Mars is further away, about 50 percent further away from the Sun than Earth is. And reaching Mars generally takes somewhere between seven to ten months, flying a relatively direct route.
NASA’s Mars Reconnaissance Orbiter mission took about seven and a half months to reach Mars. And NASA’s MAVEN mission took about ten months to reach Mars.
Jupiter is about five times further away from the Sun than the Earth is. And so in order to make those missions practical, we have to find ways to reduce the fuel requirements. And the way we do that is by having the spacecraft do some flybys of Earth and or Venus to help shape the spacecraft’s trajectory and change the spacecraft’s speed without using fuel. And using that sort of approach, it takes between about five to six years to reach Jupiter.
So NASA’s Galileo mission, the first mission to Jupiter, took just a little over six years. And then NASA’s second mission to Jupiter, which was called Juno, took just under five years.
So to get to the Moon takes several days. To get to Mars takes seven to ten months. And getting to Jupiter takes between five and six years.
[END VIDEO TRANSCRIPT]
Full Episode List
Full YouTube Playlist
Share
Details
Last Updated Feb 19, 2025 Related Terms
Science Mission Directorate Planetary Science Planetary Science Division The Solar System Explore More
3 min read Eclipses to Auroras: Eclipse Ambassadors Experience Winter Field School in Alaska
In 2023 and 2024, two eclipses crossed the United States, and the NASA Science Activation…
Article 18 hours ago 2 min read NASA Science: Being Responsive to Executive Orders
February 18, 2025 To the NASA Science Community – As the nation’s leader in Earth…
Article 19 hours ago 5 min read Ultra-low-noise Infrared Detectors for Exoplanet Imaging
One of the ultimate goals in astrophysics is the discovery of Earth-like planets that are…
Article 22 hours ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions 2 min read
Sols 4454-4457: Getting Ready to Fill the Long Weekend with Science
NASA’s Mars rover Curiosity acquired this image, which includes the pyramid-shaped rock at left in the photo, the science target dubbed “Pyramid Lake,” using its Left Navigation Camera. The rover acquired the image on sol 4452, or Martian day 4,452 of the Mars Science Laboratory mission, on Feb. 13, 2025, at 14:22:06 UTC. NASA/JPL-Caltech Earth planning date: Friday, Feb. 14, 2025
Curiosity is continuing to make progress along the strategic route, traversing laterally across the sulfate (salt) bearing unit toward the boxwork structures. The team celebrated the completion of another successful drive when we received the downlink this morning, and then we immediately got to work thinking about what’s next. There is a holiday in the United States on Monday, so instead of the typical three-sol weekend plan, we actually planned four sols, which will set us up to return to planning next Tuesday.
The first sol of the plan focuses on remote sensing, and we’ll be taking several small Mastcam mosaics of features around the rover. One of my favorite targets the team picked is a delightfully pointy rock visible toward the left of the Navcam image shown above. The color images we’ll take with Mastcam will give us more information about the textures of this rock and potentially provide insight into the geologic forces that transformed it into this comical shape. The team chose what I think is a very appropriate name for this Martian pyramid-shaped target — “Pyramid Lake.” The terrestrial inspiration behind this name is a human-made reservoir (lake) near Los Angeles with a big (also human-made) pyramidal hill in it.
On the second sol of the plan, we’ll use the instruments on Curiosity’s arm to collect data of rock targets at our feet, including “Strawberry Peak,” a bumpy piece of bedrock, “Lake Arrowhead,” a smooth piece of bedrock, and “Skyline Trail,” a dark float rock. ChemCam will also collect chemical data of Skyline Trail, “Big Tujunga” — which is similar to Strawberry Peak — and “Momyer.” We’ll also take the first part of a 360-degree color mosaic with Mastcam!
In the third sol of the plan, we’ll complete the 360-degree mosaic and continue driving to the southwest along our strategic route. The fourth sol is pretty quiet, with some atmospheric observations and a ChemCam AEGIS. Atmospheric observations are additionally sprinkled throughout other sols of the plan. This time of year we are particularly interested in studying the clouds above Gale crater!
I’m looking forward to the nice long weekend, and returning on Tuesday morning to see everything Curiosity accomplished.
Written by Abigail Fraeman, Planetary Geologist at NASA’s Jet Propulsion Laboratory
Share
Details
Last Updated Feb 17, 2025 Related Terms
Blogs Explore More
2 min read Sols 4452-4453: Keeping Warm and Keeping Busy
Article
3 days ago
2 min read Sols 4450-4451: Making the Most of a Monday
Article
5 days ago
3 min read Sols 4447–4449: Looking Back at the Marker Band Valley
Article
6 days ago
Keep Exploring Discover More Topics From NASA
Mars
Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited…
All Mars Resources
Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,…
Rover Basics
Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a…
Mars Exploration: Science Goals
The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four…
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.