Jump to content

DAF launches coaching website


Space Force

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By Space Force
      DAF senior leaders focused on how the Air Force and Space Force must capitalize and leverage acceptable risk in future planning, adapt to the resourcing and risks present in today’s dynamic environment.

      View the full article
    • By NASA
      On Sept. 10, 2009, the Japan Aerospace Exploration Agency (JAXA) launched its first cargo delivery spacecraft, the H-II Transfer Vehicle-1 (HTV-1), to the International Space Station. The HTV cargo vehicles, also called Kounotori, meaning white stork in Japanese, not only maintained the Japanese Experiment Module Kibo but also resupplied the space station in general with pressurized and unpressurized cargo and payloads. Following its rendezvous with the space station, Expedition 20 astronauts grappled and berthed HTV-1 on Sept. 17, and spent the next month transferring its 9,900 pounds of internal and external cargo to the space station and filling the HTV-1 with trash and unneeded equipment. They released the craft on Oct. 30 and ground controllers commanded it to a destructive reentry on Nov. 1.

      Left and middle: Two views of the HTV-1 Kounotori cargo spacecraft during prelaunch processing at the Tanegashima Space Center in Japan. Right: Schematic illustration showing the HTV’s major components. Image credits: courtesy JAXA.
      The HTV formed part of a fleet of cargo vehicles that at the time included NASA’s space shuttle until its retirement in 2011, Roscosmos’ Progress, and the European Space Agency’s (ESA) Automated Transfer Vehicle that flew five missions between 2008 and 2015. The SpaceX Cargo Dragon and Orbital (later Northrup Grumman) Cygnus commercial cargo vehicles supplemented the fleet starting in 2012 and 2013, respectively. The HTV weighed 23,000 pounds empty and could carry up to 13,000 pounds of cargo, although on this first flight carried only 9,900 pounds. The vehicle included both a pressurized and an unpressurized logistics carrier. Following its rendezvous with the space station, it approached to within 33 feet, at which point astronauts grappled it with the station’s robotic arm and berthed it to the Harmony Node 2 module’s Earth facing port. Space station managers added two flights to the originally planned seven, with the last HTV flying in 2020. An upgraded HTV-X vehicle will soon make its debut to carry cargo to the space station, incorporating the lessons learned from the nine-mission HTV program.

      Left: Technicians place HTV-1 inside its launch protective shroud at the Tanegashima Space Center. Middle left: Workers truck the HTV-1 to Vehicle Assembly Building (VAB). Middle right: The HTV-1 atop its H-II rolls out of the VAB on its way to the launch pad. Right: The HTV-1 mission patch. Image credits: courtesy JAXA.
      Prelaunch processing of HTV-1 took place at the Tanegashima Space Center, where engineers inspected and assembled the spacecraft’s components. Workers installed the internal cargo into the pressurized logistics carrier and external payloads onto the External Pallet that they installed into the unpressurized logistics carrier. HTV-1 carried two external payloads, the Japanese Superconducting submillimeter-wave Limb Emission Sounder (SMILES) and the U.S. Hyperspectral Imager for Coastal Ocean (HICO)-Remote Atmospheric and Ionospheric detection System (RAIDS) Experiment Payload (HREP). On Aug. 23, 2009, workers encapsulated the assembled HTV into its payload shroud and a week later moved it into the Vehicle Assembly Building (VAB), where they mounted it atop the H-IIB rocket. Rollout from the VAB to the pad took place on the day of launch.

      Liftoff of HTV-1 from the Tanegashima Space Center in Japan. Image credit: courtesy JAXA.

      Left: The launch control center at the Tanegahsima Space Center in Japan. Middle: The mission control room at the Tsukuba Space Center in Japan. Image credits: courtesy JAXA. Right: The HTV-1 control team in the Mission Control Center at NASA’s Johnson Space Center in Houston.
      On Sept. 10 – Sept. 11 Japan time – HTV-1 lifted off its pad at Tanegashima on the maiden flight of the H-IIB rocket. Controllers in Tanegashima’s launch control center monitored the flight until HTV-1 separated from the booster’s second stage. At that point, HTV-1 automatically activated its systems and established communications with NASA’s Tracking and Data Relay Satellite System. Control of the flight shifted to the mission control room at the Tsukuba Space Center outside Tokyo. Controllers in the Mission Control Center at NASA’s Johnson Space Center in Houston also monitored the mission’s progress.

      Left: HTV-1 approaches the space station. Middle: NASA astronaut Nicole P. Stott grapples HTV-1 with the station’s robotic arm and prepares to berth it to the Node 2 module. Right: European Space Agency astronaut Frank DeWinne, left, Stott, and Canadian Space Agency astronaut Robert Thirsk in the Destiny module following the robotic operations to capture and berth HTV-1.
      Following several days of systems checks, HTV-1 approached the space station on Sept. 17. Members of Expedition 20 monitored its approach, as it stopped within 33 feet of the orbiting laboratory. Using the space station’s Canadarm2 robotic arm, Expedition 20 Flight Engineer and NASA astronaut Nicole P. Stott grappled HTV-1. Fellow crew member Canadian Space Agency astronaut Robert Thirsk berthed the vehicle on the Harmony Node 2 module’s Earth-facing port. The following day, the Expedition 20 crew opened the hatch to HTV-1 to begin the cargo transfers.

      Left: Canadian Space Agency astronaut Robert Thirsk inside HTV-1. Middle: NASA astronaut Nicole P. Stott transferring cargo from HTV-1 to the space station. Right: Stott in HTV-1 after completion of much of the cargo transfer.
      Over the next several weeks, the Expedition 20 and 21 crews transferred more than 7,900 pounds of cargo from the pressurized logistics carrier to the space station. The items included food, science experiments, robotic arm and other hardware for the Kibo module, crew supplies including clothing, toiletries, and personal items, fluorescent lights, and other supplies. They then loaded the module with trash and unneeded equipment, altogether weighing 3,580 pounds.

      Left: The space station’s robotic arm grapples the Exposed Pallet (EP) to transfer it to the Japanese Experiment Module-Exposed Facility (JEM-EF). Right: Canadian Space Agency astronaut Robert Thirsk and NASA astronaut Nicole P. Stott operate the station’s robotic arm to temporarily transfer the EP and its payloads to the JEM-EF.

      Left: The Japanese robotic arm grapples one of the payloads from the Exposed Pallet (EP) to transfer it to the Japanese Experiment Module-Exposed Facility (JEM-EF). Right: European Space Agency astronaut Frank DeWinne, left, and NASA astronaut Nicole P. Stott operate the Japanese robotic arm from inside the JEM.
      Working as a team, NASA astronauts Stott and Michael R. Barratt along with Thirsk and ESA astronaut Frank DeWinne performed the transfer of the external payloads. On Sept. 23, using the station’s robotic arm, they grappled the Exposed Pallet (EP) and removed it from HTV-1’s unpressurized logistics carrier, handing it off to the Japanese remote manipulator system arm that temporarily stowed it on the JEM’s Exposed Facility (JEM-EF). The next day, using the Japanese arm, DeWinne and Stott transferred the SMILES and HREP experiments to their designated locations on the JEM-EF. On Sept. 25, they grappled the now empty EP and placed it back into HTV-1’s unpressurized logistics carrier.

      Left: Astronauts transfer the empty Exposed Pallet back to HTV-1. Middle: NASA astronaut Nicole P. Stott poses in front of the now-closed hatch to HTV-1. Right: European Space Agency astronaut Frank DeWinne, left, and Stott operate the station’s robotic arm to grapple HTV-1 for release.

      Left: The space station’s robotic arm grapples HTV-1 in preparation for its unberthing. Middle: The station’s robotic arm has unberthed HTV-1 in preparation for its release. Right: The arm has released HTV-1 and it begins its separation from the space station.
      Following completion of all the transfers, Expedition 21 astronauts aboard the space station closed the hatch to HTV-1 on Oct. 29. The next day, Stott and DeWinne grappled the vehicle and unberthed it from Node 2. While passing over the Pacific Ocean, they released HTV-1 and it began its departure maneuvers from the station. On Nov. 1, the flight control team in Tsukuba sent commands to HTV-1 to execute three deorbit burns. The vehicle reentered the Earth’s atmosphere, burning up off the coast of New Zealand, having completed the highly successful 52-day first HTV resupply mission. Eight more HTV missions followed, all successful, with HTV-9 completing its mission in August 2020.
      Explore More
      9 min read 30 Years Ago: STS-64 Astronauts Test a Spacewalk Rescue Aid
      Article 2 hours ago 5 min read NASA Tunnel Generates Decades of Icy Aircraft Safety Data
      Article 5 days ago 8 min read 40 Years Ago: STS-41D – First Flight of Space Shuttle Discovery
      Article 7 days ago View the full article
    • By NASA
      This artist’s concept depicts one of the Carbon Mapper Coalition’s Tanager satellites, the first of which launched on Aug. 16. Tanager-1 will use imaging spectrometer technology developed at JPL to measure greenhouse gas point-source emissions.Planet Labs PBC Developed by the agency’s Jet Propulsion Laboratory, the imaging spectrometer will provide actionable data to help reduce emissions that contribute to global warming.
      Tanager-1, the Carbon Mapper Coalition’s first satellite, which carries a state-of-the-art, NASA-designed greenhouse-gas-tracking instrument, is in Earth orbit after lifting off aboard a SpaceX Falcon 9 rocket from Space Launch Complex 4E at Vandenberg Space Force Base in California at 11:56 a.m. PDT Friday, Aug. 16. Ground controllers successfully established communications with Tanager-1 at 2:45 p.m. PDT the same day.
      The satellite will use imaging spectrometer technology developed at NASA’s Jet Propulsion Laboratory in Southern California to measure methane and carbon dioxide point-source emissions, down to the level of individual facilities and equipment, on a global scale. Tanager-1 was developed as part of a philanthropically funded public-private coalition led by the nonprofit Carbon Mapper. Planet Labs PBC, which built Tanager-1, and JPL are both members of the Carbon Mapper Coalition and plan to launch a second Tanager satellite equipped with a JPL-built imaging spectrometer at a later date.
      “The imaging spectrometer technology aboard Tanager-1 is the product of four decades of development at NASA JPL and truly in a class of its own,” said JPL Director Laurie Leshin. “The data that this public-private partnership provides on sources of greenhouse gas emissions will be precise and global, making it beneficial to everyone.”
      Once in operation, the spacecraft will scan about 50,000 square miles (130,000 square kilometers) of Earth’s surface per day. Carbon Mapper scientists will analyze data from Tanager-1 to identify gas plumes with the unique spectral signatures of methane and carbon dioxide — and pinpoint their sources. Plume data will be publicly available online at the Carbon Mapper data portal.
      Methane and carbon dioxide are the greenhouse gases that contribute most to climate change. About half of methane emissions worldwide result from human activities — primarily from the fossil fuel, agriculture, and waste management industries. Meanwhile, there is now 50% more carbon dioxide in the atmosphere than there was in 1750, an increase largely due to the extraction and burning of coal, oil, and gas.
      “The Carbon Mapper Coalition is a prime example of how organizations from different sectors are uniting around a common goal of addressing climate change,” said Riley Duren, Carbon Mapper CEO. “By detecting, pinpointing, and quantifying super-emitters and making this data accessible to decision-makers, we can drive significant action around the world to cut emissions now.”
      The imaging spectrometer aboard the satellite measures hundreds of wavelengths of light that are reflected by Earth’s surface. Different compounds in the planet’s atmosphere — including methane and carbon dioxide — absorb different wavelengths of light, leaving spectral “fingerprints” that the imaging spectrometer can identify. These infrared fingerprints can enable researchers to pinpoint and quantify strong greenhouse gas emissions, potentially accelerating mitigation efforts.
      Tanager-1 is part of a broader effort to make methane and carbon dioxide data accessible and actionable. That effort includes using measurements provided by NASA’s EMIT (Earth Surface Mineral Dust Source Investigation), an imaging spectrometer developed by JPL and installed on the International Space Station.
      More About Carbon Mapper
      Carbon Mapper is a nonprofit organization focused on facilitating timely action to mitigate greenhouse gas emissions. Its mission is to fill gaps in the emerging global ecosystem of methane and carbon dioxide monitoring systems by delivering data at facility scale that is precise, timely, and accessible to empower science-based decision making and action. The organization is leading the development of the Carbon Mapper constellation of satellites supported by a public-private partnership composed of Planet Labs PBC, JPL, the California Air Resources Board, the University of Arizona, Arizona State University, and RMI, with funding from High Tide Foundation, Bloomberg Philanthropies, Grantham Foundation for the Protection of the Environment, and other philanthropic donors.
      News Media Contacts
      Andrew Wang / Jane J. Lee
      Jet Propulsion Laboratory, Pasadena, Calif.
      626-379-6874 / 818-354-0307
      andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
      Kelly Vaughn
      Carbon Mapper, Pasadena, Calif.
      970-401-0001
      kelly@carbonmapper.org
      2024-109
      Share
      Details
      Last Updated Aug 16, 2024 Related Terms
      Climate Change Earth Earth Science Greenhouse Gases Explore More
      3 min read New TEMPO Cosmic Data Story Makes Air Quality Data Publicly Available
      On May 30th, 2024, NASA and the Center for Astrophysics | Harvard & Smithsonian announced…
      Article 3 days ago 3 min read Earth Educators Rendezvous with Infiniscope and Tour It
      At the Earth Educator’s Rendezvous, held July 15-19, 2024, NASA’s Infiniscope project from Arizona State…
      Article 4 days ago 3 min read NASA Aircraft Gathers 150 Hours of Data to Better Understand Earth
      Article 1 week ago View the full article
    • By Space Force
      Senior leaders gathered at the AFSA Summit to strategize, enhance innovation, and advance development for the Department of the Air Force.

      View the full article
    • By NASA
      2 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Engineer Adam Gannon works on the development of Cognitive Engine-1 in the Cognitive Communications Lab at NASA’s Glenn Research Center.Credit: NASA  Automated technology developed in Cleveland has launched to space aboard the Technology Education Satellite 11 mission. The flight test aims to confirm the precision and accuracy of this new technology developed at NASA’s Glenn Research Center. 
      The Cognitive Communications Project was founded by NASA in 2016 to develop autonomous space communications systems for the agency. Autonomous systems use technology that can react to its environment to implement updates during a mission, without needing any human interaction.  
      The project first collaborated with the Technology Education Satellite (TES) program at NASA’s Ames Research Center in California’s Silicon Valley back in 2022 to launch the TES-13 CubeSat, which sent the first neuromorphic processor to space. A neuromorphic processor is a piece of technology built to act in ways that replicate how the human brain functions. Through TES-13, the cognitive team was able to test their advanced technology in space successfully for the first time.  
      Researchers at NASA’s Ames Research Center in California’s Silicon Valley assemble the Technology Education Satellite-11 CubeSat inside of a laboratory.Credit: NASA  After the success of TES-13, the team compiled each of their unique capabilities into one end-to-end system, called Cognitive Engine 1, or CE-1. CE-1 is a space and ground software system that automates normal aspects of spacecraft communications, like service scheduling and planning reliable priority-based data transfers.  
      Cognitive technology launched to space for the second time on July 3 on TES-11 aboard Firefly Aerospace’s Noise of Summer mission. TES-11 was one of eight small satellites launched during the mission. It was created as a part of the Technology Education Satellite program at NASA Ames, which organizes collaborative projects and missions that pair college and university students with NASA researchers to evaluate how new technologies work on small satellites, known as CubeSats.  
      Image of various CubeSats deployed in space from the International Space Station. Credit: NASA  TES-11 is testing the components of CE-1 that allow satellites to independently schedule time with ground stations and download data without human interaction. Results from the TES-11 mission will be used by the Cognitive Communications team to finalize their CE-1 design, to ensure that the technology is ready to be adopted by future NASA missions.  
      The Cognitive Communications Project is funded by the Space Communications and Navigation program at NASA Headquarters in Washington and managed out of NASA’s Glenn Research Center in Cleveland.  
      Return to Newsletter Explore More
      1 min read Cleveland High School Students Land STEM Career Exploration Experience 
      Article 5 mins ago 1 min read NASA Lands at National Cherry Festival 
      Article 5 mins ago 1 min read Local Creators Learn About NASA’s Iconic Logo 
      Article 5 mins ago View the full article
  • Check out these Videos

×
×
  • Create New...