Jump to content

Unidentified Anomalous Phenomena Independent Study Report


NASA

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      5 Min Read 9 Phenomena NASA Astronauts Will Encounter at Moon’s South Pole
      An artist’s rendering of an Artemis astronaut working on the Moon’s surface. Credits:
      NASA NASA’s Artemis campaign will send the first woman and the first person of color to the Moon’s south polar region, marking humanity’s first return to the lunar surface in more than 50 years.
      Here are some out-of-this-world phenomena Artemis astronauts will experience:
      1. A Hovering Sun and Giant Shadows
      This visualization shows the motions of Earth and the Sun as viewed from the South Pole of the Moon.
      NASA’s Goddard Space Flight Center Near the Moon’s South Pole, astronauts will see dramatic shadows that are 25 to 50 times longer than the objects casting them. Why? Because the Sun strikes the surface there at a low angle, hanging just a few degrees above the horizon. As a result, astronauts won’t see the Sun rise and set. Instead, they’ll watch it hover near the horizon as it moves horizontally across the sky.

      2. Sticky, Razor-Sharp Dust …
      This dust particle came from a lunar regolith sample brought to Earth in 1969 by Apollo 11 astronauts. The particle is about 25 microns across, less than the width of an average human hair. The image was taken with a scanning electron microscope. The lunar dust, called regolith, that coats the Moon’s surface looks fine and soft like baking powder. But looks can be deceiving. Lunar regolith is formed when meteoroids hit the Moon’s surface, melting and shattering rocks into tiny, sharp pieces. The Moon doesn’t have moving water or wind to smooth out the regolith grains, so they stay sharp and scratchy, posing a risk to astronauts and their equipment.

      3. … That’s Charged with Static Electricity
      Astronaut Eugene Cernan, commander of Apollo 17, inside the lunar module on the Moon after his second moonwalk of the mission in 1972. His spacesuit and face are covered in lunar dust. Because the Moon has no atmosphere to speak of, its surface is exposed to plasma and radiation from the Sun. As a result, static electricity builds up on the surface, as it does when you shuffle your feet against a carpeted floor. When you then touch something, you transfer that charge via a small shock. On the Moon, this transfer can short-circuit electronics. Moon dust also can make its way into astronaut living quarters, as the static electricity causes it to easily stick to spacesuits. NASA has developed methods to keep the dust at bay using resistant textiles, filters, and a shield that employs an electric field to remove dust from surfaces.

      4. A New Sense of Lightness
      In 1972, Apollo 16 astronaut Charles Duke hammered a core tube into the Moon’s surface until it met a rock and wouldn’t go any farther. Then the hammer flew from his hand. He made four attempts to pick it up by bending down and leaning to reach for it. He gave up and returned to the rover to get tongs to finally pick up the hammer successfully.
      NASA’s Johnson Space Center Artemis moonwalkers will have a bounce to their step as they traverse the lunar surface. This is because gravity won’t pull them down as forcefully as it does on Earth. The Moon is only a quarter of Earth’s size, with six times less gravity. Simple activities, like swinging a rock hammer to chip off samples, will feel different. While a hammer will feel lighter to hold, its inertia won’t change, leading to a strange sensation for astronauts. Lower gravity has perks, too. Astronauts won’t be weighed down by their hefty spacesuits as much as they would be on Earth. Plus, bouncing on the Moon is just plain fun.

      5. A Waxing Crescent … Earth?
      This animated image features a person holding a stick with a sphere on top that represents the Moon. The person is demonstrating an activity that helps people learn about the phases of the Moon by acting them out. NASA’s Jet Propulsion Laboratory When Artemis astronauts look at the sky from the Moon, they’ll see their home planet shining back at them. Just like Earthlings see different phases of the Moon throughout a month, astronauts will see an ever-shifting Earth. Earth phases occur opposite to Moon phases: When Earth experiences a new Moon, a full Earth is visible from the Moon.

      6. An Itty-Bitty Horizon 
      A view from the Apollo 11 spacecraft in July 1969 shows Earth rising above the Moon’s horizon. NASA Because the Moon is smaller than Earth, its horizon will look shorter and closer. To someone standing on a level Earth surface, the horizon is 3 miles away, but to astronauts on the Moon, it’ll be only 1.5 miles away, making their surroundings seem confined.

      7. Out-of-This-World Temperatures
      This graphic shows maximum summer and winter temperatures near the lunar South Pole. Purple, blue, and green identify cold regions, while yellow to red signify warmer ones. The graphic incorporates 10 years of data from NASA’s LRO (Lunar Reconnaissance Orbiter), which has been orbiting the Moon since 2009.
      NASA/LRO Diviner Seasonal Polar Data Because sunlight at the Moon’s South Pole skims the surface horizontally, it brushes crater rims, but doesn’t always reach their floors. Some deep craters haven’t seen the light of day for billions of years, so temperatures there can dip to minus 334 F. That’s nearly three times colder than the lowest temperature recorded in Antarctica. At the other extreme, areas in direct sunlight, such as crater rims, can reach temperatures of 130 F.

      8. An Inky-Black Sky
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      An animated view of Earth emerging below the horizon as seen from the Moon’s South Pole. This visual was created using a digital elevation map from LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio The Moon, unlike Earth, doesn’t have a thick atmosphere to scatter blue light, so the daytime sky is black. Astronauts will see a stark contrast between the dark sky and the bright ground.

      9. A Rugged Terrain 
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      An overhead view of the Moon, beginning with a natural color from a distance and changing to color-coded elevation as the camera comes closer. The visual captures the rugged terrain of the lunar South Pole area. It includes a color key and animated scale bar. This visual was created using a digital elevation map from NASA LRO’s laser altimeter, LOLA. NASA’s Scientific Visualization Studio Artemis moonwalkers will find a rugged landscape that takes skill to traverse. The Moon has mountains, valleys, and canyons, but its most notable feature for astronauts on the surface may be its millions of craters. Near the South Pole, gaping craters and long shadows will make it difficult for astronauts to navigate. But, with training and special gear, astronauts will be prepared to meet the challenge.

      By Avery Truman
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share








      Details
      Last Updated Sep 11, 2024 Related Terms
      Artemis Earth’s Moon Exploration Systems Development Mission Directorate Humans in Space Missions NASA Directorates Planetary Science Division Science Mission Directorate The Solar System Explore More
      5 min read Voyager 1 Team Accomplishes Tricky Thruster Swap


      Article


      21 hours ago
      5 min read NASA’s Hubble, Chandra Find Supermassive Black Hole Duo


      Article


      2 days ago
      2 min read NASA Summer Camp Inspires Future Climate Leaders


      Article


      5 days ago
      Keep Exploring Discover More Topics From NASA
      Missions



      Humans in Space



      Climate Change



      Solar System


      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      An astronaut aboard the International Space Station photographed wildfire smoke from Nova Scotia billowing over the Atlantic Ocean in May 2023. Warm weather and lack of rain fueled blazes across Canada last year, burning 5% of the country’s forests.NASA Extreme wildfires like these will continue to have a large impact on global climate.
      Stoked by Canada’s warmest and driest conditions in decades, extreme forest fires in 2023 released about 640 million metric tons of carbon, NASA scientists have found. That’s comparable in magnitude to the annual fossil fuel emissions of a large industrialized nation. NASA funded the study as part of its ongoing mission to understand our changing planet.
      The research team used satellite observations and advanced computing to quantify the carbon emissions of the fires, which burned an area roughly the size of North Dakota from May to September 2023. The new study, published on Aug. 28 in the journal Nature, was led by scientists at NASA’s Jet Propulsion Laboratory in Southern California.
      To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video
      Carbon monoxide from Canada wildfires curls thousands of miles across North America in this animation showing data from summer 2023. Lower concentrations are shown in purple; higher concentrations are in yellow. Red triangles indicate fire hotspots.NASA’s Goddard Space Flight Center They found that the Canadian fires released more carbon in five months than Russia or Japan emitted from fossil fuels in all of 2022 (about 480 million and 291 million metric tons, respectively). While the carbon dioxide (CO2) emitted from both wildfires and fossil fuel combustion cause extra warming immediately, there’s an important distinction, the scientists noted. As the forest regrows, the amount of carbon emitted from fires will be reabsorbed by Earth’s ecosystems. The CO2 emitted from the burning of fossil fuels is not readily offset by any natural processes.
      An ESA (European Space Agency) instrument designed to measure air pollution observed the fire plumes over Canada. The TROPOspheric Monitoring Instrument, or TROPOMI, flies aboard the Sentinel 5P satellite, which has been orbiting Earth since 2017. TROPOMI has four spectrometers that measure and map trace gases and fine particles (aerosols) in the atmosphere.
      The scientists started with the end result of the fires: the amount of carbon monoxide (CO) in the atmosphere during the fire season. Then they “back-calculated” how large the emissions must have been to produce that amount of CO. They were able to estimate how much CO2 was released based on ratios between the two gases in the fire plumes.  
      “What we found was that the fire emissions were bigger than anything in the record for Canada,” said Brendan Byrne, a JPL scientist and lead author of the new study. “We wanted to understand why.”
      Warmest Conditions Since at Least 1980
      Wildfire is essential to the health of forests, clearing undergrowth and brush and making way for new plant life. In recent decades, however, the number, severity, and overall size of wildfires have increased, according to the U.S. Department of Agriculture. Contributing factors include extended drought, past fire management strategies, invasive species, and the spread of residential communities into formerly less developed areas.
      To explain why Canada’s fire season was so intense in 2023, the authors of the new study cited tinderbox conditions across its forests. Climate data revealed the warmest and driest fire season since at least 1980. Temperatures in the northwest part of the country — where 61% of fire emissions occurred — were more than 4.5 degrees Fahrenheit (2.6 degrees Celsius) above average from May through September. Precipitation was also more than 3 inches (8 centimeters) below average for much of the year.
      Driven in large part by these conditions, many of the fires grew to enormous sizes. The fires were also unusually widespread, charring some 18 million hectares of forest from British Columbia in the west to Quebec and the Atlantic provinces in the east. The area of land that burned was more than eight times the 40-year average and accounted for 5% of Canadian forests.
      “Some climate models project that the temperatures we experienced last year will become the norm by the 2050s,” Byrne said. “The warming, coupled with lack of moisture, is likely to trigger fire activity in the future.”
      If events like the 2023 Canadian forest fires become more typical, they could impact global climate. That’s because Canada’s vast forests compose one of the planet’s important carbon sinks, meaning that they absorb more CO2 from the atmosphere than they release. The scientists said that it remains to be seen whether Canadian forests will continue to absorb carbon at a rapid rate or whether increasing fire activity could offset some of the uptake, diminishing the forests’ capacity to forestall climate warming.
      News Media Contacts
      Jane J. Lee / Andrew Wang
      Jet Propulsion Laboratory, Pasadena, Calif.
      818-354-0307 / 626-379-6874
      jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov
      Written by Sally Younger
      2024-113
      Share
      Details
      Last Updated Aug 28, 2024 Related Terms
      Earth Climate Change Earth Science Water on Earth Explore More
      3 min read Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
      During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used…
      Article 45 mins ago 9 min read Looking Back on Looking Up: The 2024 Total Solar Eclipse
      Introduction First as a bite, then a half Moon, until crescent-shaped shadows dance through the…
      Article 6 days ago 3 min read Entrepreneurs Challenge Prize Winner Uses Artificial Intelligence to Identify Methane Emissions
      The NASA Science Mission Directorate (SMD) instituted the Entrepreneurs Challenge to identify innovative ideas and…
      Article 1 week ago Keep Exploring Discover Related Topics
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      Learn Home Eclipse Soundscapes AudioMoth… Audio Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Stories Science Activation Highlights Citizen Science   3 min read
      Eclipse Soundscapes AudioMoth Donations Will Study Nature at Night
      During the April 8, 2024 total solar eclipse, approximately 770 AudioMoth recording devices were used to capture sound data as part of the Eclipse Soundscapes Project — a multisensory participatory science (also known as “citizen science”) project that is studying how eclipses impact life on Earth. Following the eclipse, participants had the option to keep or send back their AudioMoth device for donation. Fifty-two AudioMoths were sent back to Eclipse Soundscapes (ES) so that ES could donate them to projects or communities for future scientific usage. Eighteen of those AudioMoths have been donated to Dark Sky Missouri, an initiative to protect our night skies and the creatures that depend on them. On Wednesday, August 21, 2024, at 3 p.m. EST, Eclipse Soundscapes hosted a webinar with Dark Sky Missouri founder Don Ficken to learn more about how these AudioMoths will contribute to future participatory science.
      Don Ficken is a Missouri Master Naturalist and amateur astronomer who found the Eclipse Soundscapes Project through SciStarter, an organization that helps bring together millions of curious and concerned people in the world to engage in real-world research questions through citizen science. He participated as a Data Collector in 2024. “[The Eclipse Soundscapes Project] opened up a door for me because I never really thought about sound acoustics in this way,” Ficken said.
      It occurred to Ficken that acoustics could help bolster Dark Sky Missouri’s efforts to study and conserve night time wildlife. One of these efforts, Lights Out Heartland, encourages homeowners and businesses to minimize artificial light usage in order to protect migrating birds from collisions due to disorienting bright lights. Ficken hopes to use the AudioMoths to capture the birds’ nocturnal flight calls as they fly over locations like the Gateway Arch, Shaw Nature Reserve, and Missouri Botanical Gardens.
      Dark Sky Missouri also hopes to take more general surveys of nature at night by placing AudioMoths in parks and natural areas. Even though parks are not typically open or staffed at night, the AudioMoths could help map the locations and movements of wildlife, creating talking points and learning opportunities for staff and visitors alike.
      Both initiatives will be piloted during the fall bird migration, with the goal of developing a framework for an expanded long term project. While there are no opportunities for the general public to get involved in the projects just yet, Ficken says participatory scientists can benefit from the multisensory methods employed in the Eclipse Soundscapes Project. “I think that the thing that they should think about is really the door that acoustics would be opening for them,” he said. “In other words, you don’t have to just visually look at daytime. Think about sound. Think about night.” For more information on how Dark Sky Missouri will use the AudioMoth recorders, read the Eclipse Soundscapes blog post.
      The Eclipse Soundscapes Project is supported by NASA under cooperative agreement award number 80NSSC21M0008 and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn

      Dark Sky Missouri will use the donated Eclipse Soundscapes AudioMoths to study bird calls and behavior at night. Share








      Details
      Last Updated Aug 28, 2024 Editor NASA Science Editorial Team Related Terms
      2024 Solar Eclipse Astrophysics Audio Citizen Science Earth Science Heliophysics Planetary Science Science Activation Explore More
      2 min read Hubble Traces Star Formation in a Nearby Nebula


      Article


      2 hours ago
      2 min read Hubble Pinpoints a Dim, Starry Mini-galaxy


      Article


      1 day ago
      5 min read Webb Finds Early Galaxies Weren’t Too Big for Their Britches After All


      Article


      2 days ago
      Keep Exploring Discover More Topics From NASA
      James Webb Space Telescope


      Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the…


      Perseverance Rover


      This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial…


      Parker Solar Probe


      On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona…


      Juno


      NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to…

      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      By Jessica Barnett 
      From Earth, one might be tempted to view the Sun as a unique celestial object like no other, as it’s the star our home planet orbits and the one our planet relies on most for heat and light. But if you took a step back and compared the Sun to the other stars NASA has studied over the years, how would it compare? Would it still be so unique?
      The Full-sun Ultraviolet Rocket SpecTrograph (FURST) aims to answer those questions when it launches aboard a Black Brant IX sounding rocket Aug. 11 at White Sands Missile Range in New Mexico.
      “When we talk about ‘Sun as a star’, we’re treating it like any other star in the night sky as opposed to the unique object we rely on for human life. It’s so exciting to study the Sun from that vantage point,” said Adam Kobelski, institutional principal investigator for FURST and a research astrophysicist at NASA’s Marshall Space Flight Center in Huntsville, Alabama.
      The Full-sun Ultraviolet Rocket SpecTrograph (FURST) undergoes testing at White Sands Missile Range in New Mexico in preparation for launch on Aug. 11. FURST will be launched aboard a Black Bryant IX sounding rocket and will observe the Sun in vacuum ultraviolet (VUV). The instrument was designed and built at Montana State University. NASA Marshall provided the camera, supplied avionics, and designed and built its calibration system. Credit: Montana State University FURST will obtain the first high-resolution spectra of the “Sun as a star” in vacuum ultraviolet (VUV), a light wavelength that is absorbed in Earth’s atmosphere meaning it can only be observed from space. Astronomers have studied other stars in the vacuum ultraviolet with orbiting telescopes, however these instruments are too sensitive to be pointed to the Sun. The recent advancements in high-resolution VUV spectroscopy now allow for the same observations of our own star, the Sun.
      “These are wavelengths that Hubble Space Telescope is really great at observing, so there is a decent amount of Hubble observations of stars in ultraviolet wavelengths, but we don’t have comparable observations of our star in this wavelength range,” said Kobelski. Marshall was the lead field center for the design, development, and construction of the Hubble Space Telescope.
      Because Hubble is too sensitive to point at Earth’s Sun, new instruments were needed to get a spectrum of the entire Sun that is of a similar quality to Hubble’s observations of other stars. Marshall built the camera, supplied avionics, and designed and built a new calibration system for the FURST mission. Montana State University (MSU), which leads the FURST mission in partnership with Marshall, built the optical system, which includes seven optics that will feed into the camera that will essentially create seven exposures, covering the entire ultraviolet wavelength range.
      Charles Kankelborg, a heliophysics professor at MSU and principal investigator for FURST, described the mission as a very close collaboration with wide-ranging implications.
      “Our mission will obtain the first far ultraviolent spectrum of the Sun as a star,” Kankelborg said. “This is a key piece of information that has been missing for decades. With it, we will place the Sun in context with other stars.”
      Kobelski echoed the sentiment.
      “How well do the observations and what we know about our Sun compare to our observations or what we know of other stars?” Kobelski said. “You’d expect that we know all this information about the Sun – it’s right there – but it turns out, we actually don’t. If we can get these same observations or same wavelengths as we’ve observed from these other sources, we can start to connect the dots and connect our Sun to other stars.”
      Montana State University alumnus Jake Davis, left, Professor Charles Kankelborg, and doctoral students Catharine “Cappy” Bunn and Suman Panda, pose at White Sands Missile Range in New Mexico, where they are preparing for the launch of the FURST rocket mission to observe the sun in far ultraviolet.Credit: Montana State University FURST will be the third launch led by Marshall for NASA’s Sounding Rocket Program within five months, making 2024 an active year for the program. Like the Hi-C Flare mission that launched in April, the sounding rocket will launch and open during flight to allow FURST to observe the Sun for approximately five minutes before closing and falling back to Earth’s surface. Marshall team members will be able to calibrate the instruments during launch and flight, as well as retrieve data during flight and soon after landing.
      Kobelski and Kankelborg each said they’re grateful for the opportunity to fill the gaps in our knowledge of Earth’s Sun.
      The launch will be livestreamed on Sunday, Aug. 11, with a launch window of 11:40 a.m.– 12:40 p.m. CDT. Tune in on NASA’s White Sands Test Facility Launch Channel.
      The FURST mission is led by Marshall in partnership with Montana State University in Bozeman, Montana, with additional support from the NASA’s Sounding Rockets Office and the U.S. National Center for Atmospheric Research’s High Altitude Observatory. Launch support is provided at White Sands Missile Range in New Mexico by NASA’s Johnson Space Center. NASA’s Sounding Rocket Program is managed by the agency’s Heliophysics Division.
      Lane Figueroa 
      Marshall Space Flight Center, Huntsville, Ala. 
      256.544.0034  
      lane.e.figueroa@nasa.gov 
      Share
      Details
      Last Updated Aug 09, 2024 EditorBeth RidgewayLocationMarshall Space Flight Center Related Terms
      Marshall Space Flight Center Sounding Rockets Sounding Rockets Program Wallops Flight Facility Explore More
      4 min read NASA to Launch 8 Scientific Balloons From New Mexico
      Article 2 hours ago 4 min read This Rocks! NASA is Sending Student Science to Space
      Article 21 hours ago 23 min read The Marshall Star for August 7, 2024
      Article 2 days ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      4 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Warming global climate is changing the vegetation structure of forests in the far north. It’s a trend that will continue at least through the end of this century, according to NASA researchers. The change in forest structure could absorb more of the greenhouse gas carbon dioxide (CO2) from the atmosphere, or increase permafrost thawing, resulting in the release of ancient carbon. Millions of data points from the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) and Landsat missions helped inform this latest research, which will be used to refine climate forecasting computer models.
      Landscape at Murphy Dome fire scar, outside of Fairbanks, Alaska, during the Arctic Boreal Vulnerability Experiment (ABoVE) in August 2022. Credit: NASA/Katie Jepson Tundra landscapes are getting taller and greener. With the warming climate, the vegetation of forests in the far north is changing as more trees and shrubs appear. These shifts in the vegetation structure of boreal forests and tundra will continue for at least the next 80 years, according to NASA scientists in a recently published study.
      Boreal forests generally grow between 50 and 60 degrees north latitude, covering large parts of Alaska, Canada, Scandinavia, and Russia. The biome is home to evergreens such as pine, spruce, and fir. Farther north, the permafrost and short growing season of the tundra biome have historically made it hard to support large trees or dense forests. The vegetation in those regions has instead been made up of shrubs, mosses, and grasses.
      The boundary between the two biomes is difficult to discern. Previous studies have found high-latitude plant growth increasing and moving northward into areas that earlier were sparsely covered in the shrubs and grasses of the tundra. Now, the new NASA-led study finds an increased presence of trees and shrubs in those tundra regions and adjacent transitional forests, where boreal regions and tundra meet. This is predicted to continue until at least the end of the century.
      Data from the study depicted on a map of Alaska and Northern Canada highlighting the change in tree canopy cover extending into transitional landscapes. In boreal North America, the largest increases in canopy cover (dark green) have occurred in transitional tundra landscapes. These landscapes are found along the cold, northern extent of the study area and have historically supported mostly shrubs, mosses, and grasses. Credit: NASA Earth Observatory/Wanmei Liang “The results from this study advance a growing body of work that recognizes a shift in vegetation patterns within the boreal forest biome,” said Paul Montesano, lead author for the paper and research scientist at NASA Goddard’s Space Flight Center in Greenbelt, Maryland. “We’ve used satellite data to track the increased vegetation growth in this biome since 1984, and we found that it’s similar to what computer models predict for the decades to come. This paints a picture of continued change for the next 80 or so years that is particularly strong in transitional forests.”
      Scientists found predictions of “positive median height changes” in all tundra landscapes and transitional – between boreal and tundra – forests featured in this study. This suggests trees and shrubs will be both larger and more abundant in areas where they are currently sparse.
      “The increase of vegetation that corresponds with the shift can potentially offset some of the impact of rising CO2 emissions by absorbing more CO2 through photosynthesis,” said study co-author Chris Neigh, NASA’s Landsat 8 and 9 project scientist at Goddard. Carbon absorbed through this process would then be stored in the trees, shrubs, and soil.
      The change in forest structure may also cause permafrost areas to thaw as more sunlight is absorbed by the darker colored vegetation. This could release CO2 and methane that has been stored in the soil for thousands of years.
      In their paper published in Nature Communications Earth & Environment in May, NASA scientists described the mixture of satellite data, machine learning, climate variables, and climate models they used to model and predict how the forest structure will look for years to come. Specifically, they analyzed nearly 20 million data points from NASA’s ICESat-2. They then matched these data points with tens of thousands of scenes of North American boreal forests between 1984 to 2020 from Landsat, a joint mission of NASA and the U.S. Geological Survey. Advanced computing capabilities are required to create models with such large quantities of data, which are called “big data” projects.
      Flight over the boreal landscapes of Fairbanks, Alaska, during the ABoVE field campaign in August 2022. Credit: NASA/Sofie Bates The ICESat-2 mission uses a laser instrument called lidar to measure the height of Earth’s surface features (like ice sheets or trees) from the vantage point of space. In the study, the authors examined these measurements of vegetation height in the far north to understand what the current boreal forest structure looks like. Scientists then modeled several future climate scenarios — adjusting to different scenarios for temperature and precipitation — to show what forest structure may look like in response.
      “Our climate is changing and, as it changes, it affects almost everything in nature,” said Melanie Frost, remote sensing scientist at NASA Goddard. “It’s important for scientists to understand how things are changing and use that knowledge to inform our climate models.”
      By Erica McNamee
      NASA’s Goddard Space Flight Center, Greenbelt, Md.
      Share
      Details
      Last Updated Aug 06, 2024 EditorKate D. RamsayerContactErica McNameeerica.s.mcnamee@nasa.govLocationGoddard Space Flight Center Related Terms
      Earth ICESat-2 (Ice, Cloud and land Elevation Satellite-2) Landsat Explore More
      5 min read NASA Flights Link Methane Plumes to Tundra Fires in Western Alaska
      Article 9 months ago 5 min read NASA Returns to Arctic Studying Summer Sea Ice Melt
      Article 2 weeks ago 5 min read How ‘Glowing’ Plants Could Help Scientists Predict Flash Drought
      Article 3 months ago View the full article
  • Check out these Videos

×
×
  • Create New...