Jump to content

Recommended Posts

Posted
Little Pictures Competition

Are you a creative visionary with a passion for climate action? Enter ESA’s latest competition to showcase your talent by transforming decades of satellite climate data into impactful visuals to help bridge the gap between climate science, policy makers and the wider public. The winner will have the unique opportunity to display their data visualisation at the 2023 United Nations Climate Change Conference (COP28) taking place later this year.

View the full article

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By European Space Agency
      Image: Hera asteroid mission in your house View the full article
    • By NASA
      4 Min Read NASA Finds ‘Sideways’ Black Hole Using Legacy Data, New Techniques
      Image showing the structure of galaxy NGC 5084, with data from the Chandra X-ray Observatory overlaid on a visible-light image of the galaxy. Chandra’s data, shown in purple, revealed four plumes of hot gas emanating from a supermassive black hole rotating “tipped over” at the galaxy’s core. Credits: X-ray: NASA/CXC, A. S. Borlaff, P. Marcum et al.; Optical full image: M. Pugh, B. Diaz; Image Processing: NASA/USRA/L. Proudfit NASA researchers have discovered a perplexing case of a black hole that appears to be “tipped over,” rotating in an unexpected direction relative to the galaxy surrounding it. That galaxy, called NGC 5084, has been known for years, but the sideways secret of its central black hole lay hidden in old data archives. The discovery was made possible by new image analysis techniques developed at NASA’s Ames Research Center in California’s Silicon Valley to take a fresh look at archival data from the agency’s Chandra X-ray Observatory.
      Using the new methods, astronomers at Ames unexpectedly found four long plumes of plasma – hot, charged gas – emanating from NGC 5084. One pair of plumes extends above and below the plane of the galaxy. A surprising second pair, forming an “X” shape with the first, lies in the galaxy plane itself. Hot gas plumes are not often spotted in galaxies, and typically only one or two are present.
      The method revealing such unexpected characteristics for galaxy NGC 5084 was developed by Ames research scientist Alejandro Serrano Borlaff and colleagues to detect low-brightness X-ray emissions in data from the world’s most powerful X-ray telescope. What they saw in the Chandra data seemed so strange that they immediately looked to confirm it, digging into the data archives of other telescopes and requesting new observations from two powerful ground-based observatories.
      Hubble Space Telescope image of galaxy NGC 5084’s core. A dark, vertical line near the center shows the curve of a dusty disk orbiting the core, whose presence suggests a supermassive black hole within. The disk and black hole share the same orientation, fully tipped over from the horizontal orientation of the galaxy.NASA/STScI, M. A. Malkan, B. Boizelle, A.S. Borlaff. HST WFPC2, WFC3/IR/UVIS.  The surprising second set of plumes was a strong clue this galaxy housed a supermassive black hole, but there could have been other explanations. Archived data from NASA’s Hubble Space Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile then revealed another quirk of NGC 5084: a small, dusty, inner disk turning about the center of the galaxy. This, too, suggested the presence of a black hole there, and, surprisingly, it rotates at a 90-degree angle to the rotation of the galaxy overall; the disk and black hole are, in a sense, lying on their sides.
      The follow-up analyses of NGC 5084 allowed the researchers to examine the same galaxy using a broad swath of the electromagnetic spectrum – from visible light, seen by Hubble, to longer wavelengths observed by ALMA and the Expanded Very Large Array of the National Radio Astronomy Observatory near Socorro, New Mexico.
      “It was like seeing a crime scene with multiple types of light,” said Borlaff, who is also the first author on the paper reporting the discovery. “Putting all the pictures together revealed that NGC 5084 has changed a lot in its recent past.”
      It was like seeing a crime scene with multiple types of light.
      Alejandro Serrano Borlaff
      NASA Research Scientist
      “Detecting two pairs of X-ray plumes in one galaxy is exceptional,” added Pamela Marcum, an astrophysicist at Ames and co-author on the discovery. “The combination of their unusual, cross-shaped structure and the ‘tipped-over,’ dusty disk gives us unique insights into this galaxy’s history.”
      Typically, astronomers expect the X-ray energy emitted from large galaxies to be distributed evenly in a generally sphere-like shape. When it’s not, such as when concentrated into a set of X-ray plumes, they know a major event has, at some point, disturbed the galaxy.
      Possible dramatic moments in its history that could explain NGC 5084’s toppled black hole and double set of plumes include a collision with another galaxy and the formation of a chimney of superheated gas breaking out of the top and bottom of the galactic plane.
      More studies will be needed to determine what event or events led to the current strange structure of this galaxy. But it is already clear that the never-before-seen architecture of NGC 5084 was only discovered thanks to archival data – some almost three decades old – combined with novel analysis techniques.
      The paper presenting this research was published Dec. 18 in The Astrophysical Journal. The image analysis method developed by the team – called Selective Amplification of Ultra Noisy Astronomical Signal, or SAUNAS – was described in The Astrophysical Journal in May 2024.
      For news media:
      Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom.
      Share
      Details
      Last Updated Dec 18, 2024 Related Terms
      Black Holes Ames Research Center Ames Research Center's Science Directorate Astrophysics Chandra X-Ray Observatory Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research General Hubble Space Telescope Marshall Astrophysics Marshall Science Research & Projects Marshall Space Flight Center Missions NASA Centers & Facilities Science & Research Supermassive Black Holes The Universe Explore More
      4 min read Space Gardens
      Article 18 mins ago 8 min read NASA’s Kennedy Space Center Looks to Thrive in 2025
      Article 1 hour ago 4 min read NASA Open Science Reveals Sounds of Space
      NASA has a long history of translating astronomy data into beautiful images that are beloved…
      Article 1 hour ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
    • By NASA
      At Goddard Space Flight Center, the GSFC Data Science Group has completed the testing for their SatVision Top-of-Atmosphere (TOA) Foundation Model, a geospatial foundation model for coarse-resolution all-sky remote sensing imagery. The team, comprised of Mark Carroll, Caleb Spradlin, Jordan Caraballo-Vega, Jian Li, Jie Gong, and Paul Montesano, has now released their model for wide application in science investigations.
      Foundation models can transform the landscape of remote sensing (RS) data analysis by enabling the pre-training of large computer-vision models on vast amounts of remote sensing data. These models can be fine-tuned with small amounts of labeled training and applied to various mapping and monitoring applications. Because most existing foundation models are trained solely on cloud-free satellite imagery, they are limited to applications of land surface or require atmospheric corrections. SatVision-TOA is trained on all-sky conditions which enables applications involving atmospheric variables (e.g., cloud or aerosol).
      SatVision TOA is a 3 billion parameter model trained on 100 million images from Moderate Resolution Imaging Spectroradiometer (MODIS). This is, to our knowledge, the largest foundation model trained solely on satellite remote sensing imagery. By including “all-sky” conditions during pre-training, the team incorporated a range of cloud conditions often excluded in traditional modeling. This enables 3D cloud reconstruction and cloud modeling in support of Earth and climate science, offering significant enhancement for large-scale earth observation workflows.
      With an adaptable and scalable model design, SatVision-TOA can unify diverse Earth observation datasets and reduce dependency on task-specific models. SatVision-TOA leverages one of the largest public datasets to capture global contexts and robust features. The model could have broad applications for investigating spectrometer data, including MODIS, VIIRS, and GOES-ABI. The team believes this will enable transformative advancements in atmospheric science, cloud structure analysis, and Earth system modeling.
      The model architecture and model weights are available on GitHub and Hugging Face, respectively. For more information, including a detailed user guide, see the associated white paper: SatVision-TOA: A Geospatial Foundation Model for Coarse-Resolution All-Sky Remote Sensing Imagery. 
      Examples of image reconstruction by SatVision-TOA. Left: MOD021KM v6.1 cropped image chip using MODIS bands [1, 3, 2]. Middle: The same images with randomly applied 8×8 mask patches, masking 60% of the original image. Right: The reconstructed images produced by the model, along with their respective Structural Similarity Index Measure (SSIM) scores. These examples illustrate the model’s ability to preserve structural detail and reconstruct heterogeneous features, such as cloud textures and land-cover transitions, with high fidelity.NASAView the full article
    • By European Space Agency
      Launched in May 2024, ESA’s EarthCARE satellite is nearing the end of its commissioning phase with the release of its first data on clouds and aerosols expected early next year. In the meantime, an international team of scientists has found an innovative way of applying artificial intelligence to other satellite data to yield 3D profiles of clouds.
      This is particularly news for those eagerly awaiting data from EarthCARE in their quest to advance climate science.
      View the full article
    • By NASA
      NASA/Joel Kowsky On Dec. 4, 2024, NASA astronauts Loral O’Hara, left, and Jasmin Moghbeli spent a moment in part of the Earth Information Center, an immersive experience combining live NASA data sets with innovative data visualization and storytelling at NASA Headquarters in Washington.
      O’Hara and Moghbeli spent six months in space as part of Expedition 70 aboard the International Space Station. On Nov. 1, 2023, they performed a spacewalk together that lasted 6 hours and 42 minutes.
      Image credit: NASA/Joel Kowsky
      View the full article
  • Check out these Videos

×
×
  • Create New...