Jump to content

Astronomers Find Hyperactive Galaxies in the Early Universe


HubbleSite

Recommended Posts

low_STSCI-H-p0924a-k-1340x520.png

Looking almost 11 billion years into the past, astronomers have measured the motions of stars for the first time in a very distant galaxy. They are whirling at a speed of one million miles per hour-about twice the speed of our Sun through the Milky Way. Even stranger, the galaxies are a fraction the size of our Milky Way, and so may have evolved over billions of years into the full-grown galaxies seen around us today. Astronomers are puzzled by how galaxies like these formed. They may be what will eventually become the dense central regions of very large galaxies.

The galaxies were found by using the combined power of NASA's Hubble Space Telescope and the 8-meter Gemini South telescope in Chile. Hubble shows that the galaxies are a fraction the size of most galaxies we see today. The Gemini telescope clocks their speed by using spectroscopy. To witness the formation of these extreme galaxies astronomers plan to observe galaxies even farther back in time with Hubble's new Wide Field Camera 3.

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      Hubble Space Telescope Home NASA’s Hubble Finds More… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   4 Min Read NASA’s Hubble Finds More Black Holes than Expected in the Early Universe
      The Hubble Ultra Deep Field of nearly 10,000 galaxies is the deepest visible-light image of the cosmos. The image required 800 exposures taken over 400 Hubble orbits around Earth. The total amount of exposure time was 11.3 days, taken between Sept. 24, 2003 and Jan. 16, 2004. Credits:
      NASA, ESA, S. Beckwith (STScI) and the HUDF Team With the help of NASA’s Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      Currently, scientists do not have a complete picture of how the first black holes formed not long after the big bang. It is known that supermassive black holes, that can weigh more than a billion suns, exist at the center of several galaxies less than a billion years after the big bang.
      “Many of these objects seem to be more massive than we originally thought they could be at such early times — either they formed very massive or they grew extremely quickly,” said Alice Young, a PhD student from Stockholm University and co-author of the study  published in The Astrophysical Journal Letters.
      This is a new image of the Hubble Ultra Deep Field. The first deep imaging of the field was done with Hubble in 2004. The same survey field was observed again by Hubble several years later, and was then reimaged in 2023. By comparing Hubble Wide Field Camera 3 near-infrared exposures taken in 2009, 2012, and 2023, astronomers found evidence for flickering supermassive black holes in the hearts of early galaxies. One example is seen as a bright object in the inset. Some supermassive black holes do not swallow surrounding material constantly, but in fits and bursts, making their brightness flicker. This can be detected by comparing Hubble Ultra Deep Field frames taken at different epochs. The survey found more black holes than predicted. NASA, ESA, Matthew Hayes (Stockholm University); Acknowledgment: Steven V.W. Beckwith (UC Berkeley), Garth Illingworth (UC Santa Cruz), Richard Ellis (UCL); Image Processing: Joseph DePasquale (STScI)
      Download this image

      Black holes play an important role in the lifecycle of all galaxies, but there are major uncertainties in our understanding of how galaxies evolve. In order to gain a complete picture of the link between galaxy and black hole evolution, the researchers used Hubble to survey how many black holes exist among a population of faint galaxies when the universe was just a few percent of its current age.
      Initial observations of the survey region were re-photographed by Hubble after several years. This allowed the team to measure variations in the brightness of galaxies. These variations are a telltale sign of black holes. The team identified more black holes than previously found by other methods.
      The new observational results suggest that some black holes likely formed by the collapse of massive, pristine stars during the first billion years of cosmic time. These types of stars can only exist at very early times in the universe, because later-generation stars are polluted by the remnants of stars that have already lived and died. Other alternatives for black hole formation include collapsing gas clouds, mergers of stars in massive clusters, and “primordial” black holes that formed (by physically speculative mechanisms) in the first few seconds after the big bang. With this new information about black hole formation, more accurate models of galaxy formation can be constructed.
      “The formation mechanism of early black holes is an important part of the puzzle of galaxy evolution,” said Matthew Hayes from the Department of Astronomy at Stockholm University and lead author of the study. “Together with models for how black holes grow, galaxy evolution calculations can now be placed on a more physically motivated footing, with an accurate scheme for how black holes came into existence from collapsing massive stars.”
      Image Before/After Astronomers are also making observations with NASA’s James Webb Space Telescope to search for galactic black holes that formed soon after the big bang, to understand how massive they were and where they were located.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Matthew Hayes
      Stockholm University, Stockholm, Sweden
      Share








      Details
      Last Updated Sep 17, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Astrophysics Astrophysics Division Black Holes Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Hubble Science Highlights



      Hubble Online Activities



      Hubble Focus: Dark Universe


      View the full article
    • By European Space Agency
      With the help of the NASA/ESA Hubble Space Telescope, an international team of researchers led by scientists in the Department of Astronomy at Stockholm University has found more black holes in the early Universe than has previously been reported. The new result can help scientists understand how supermassive black holes were created.
      View the full article
    • By NASA
      NASA’s Artemis campaign is a series of lunar missions to further explore the lunar landscape to prepare for future missions to Mars. The Artemis missions will send humans to land on the moon and explore the lunar south pole. This will be NASA’s first human lunar landing since the Apollo missions over 50 years ago. The Artemis missions will be landing at the lunar south pole; this area is of interest because the permanently shadowed regions that exist there may be traps for water ice which could be accessed to support future missions to Mars. One area of interest is Shackleton Crater, measuring 13 miles (21 km) in diameter and 2.6 miles (4.2 km) deep. The crater has steep sides and continuous shadows cause the floor of the crater to be below 90 K and may have water ice trapped beneath the surface. To support these missions, NASA is seeking two solutions: one low-tech and one high-tech. While both solutions are related to navigation, they are independent challenges and solutions. For Challenge 1, NASA is seeking an orienteering aid that will help the astronauts navigate on traverses away from the lunar lander and return back. While there were similar devices available to the Apollo astronauts, NASA is looking for new and unique solutions. Among other considerations, devices must be accurate, easy to use, able to be used on the moon’s surface by an astronaut wearing pressurized gloves. If your solution is one of the best, you could be eligible for a share of the $15,000 prize purse. For Challenge 2, NASA is looking for assistance in getting to and mapping the bottom of Shackleton Crater. The design must work in the extreme conditions of the lunar south pole and Shackleton Crater, map the crater, characterize and quantify what is in the crater, and send the data back to be used for future missions. If you can solve this challenge by describing your design concept in detail, you could be eligible for a share of the $30,000 prize purse.
      Award: $50,000 in total prizes
      Open Date: September 4, 2024
      Close Date: November 25, 2024
      For more information, visit: https://www.freelancer.com/contest/Find-Me-on-the-Moon-NASA-Lunar-Navigation-Challenge-2442541/details
      View the full article
    • By NASA
      Hubble Space Telescope Home NASA’s Hubble, Chandra… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities   5 min read
      NASA’s Hubble, Chandra Find Supermassive Black Hole Duo
      This is an artist’s depiction of a pair of active black holes at the heart of two merging galaxies. They are both surrounded by an accretion disk of hot gas. Some of the material is ejected along the spin axis of each black hole. Confined by powerful magnetic fields, the jets blaze across space at nearly the speed of light as devastating beams of energy. NASA, ESA, Joseph Olmsted (STScI)
      Download this artist’s depiction

      Like two Sumo wrestlers squaring off, the closest confirmed pair of supermassive black holes have been observed in tight proximity. These are located approximately 300 light-years apart and were detected using NASA’s Hubble Space Telescope and the Chandra X-ray Observatory. These black holes, buried deep within a pair of colliding galaxies, are fueled by infalling gas and dust, causing them to shine brightly as active galactic nuclei (AGN).
      This AGN pair is the closest one detected in the local universe using multiwavelength (visible and X-ray light) observations. While several dozen “dual” black holes have been found before, their separations are typically much greater than what was discovered in the gas-rich galaxy MCG-03-34-64. Astronomers using radio telescopes have observed one pair of binary black holes in even closer proximity than in MCG-03-34-64, but without confirmation in other wavelengths.
      AGN binaries like this were likely more common in the early universe when galaxy mergers were more frequent. This discovery provides a unique close-up look at a nearby example, located about 800 million light-years away.
      A Hubble Space Telescope visible-light image of the galaxy MCG-03-34-064. Hubble’s sharp view reveals three distinct bright spots embedded in a white ellipse at the galaxy’s center (expanded in an inset image at upper right). Two of these bright spots are the source of strong X-ray emission, a telltale sign that they are supermassive black holes. The black holes shine brightly because they are converting infalling matter into energy, and blaze across space as active galactic nuclei. Their separation is about 300 light-years. The third spot is a blob of bright gas. The blue streak pointing to the 5 o’clock position may be a jet fired from one of the black holes. The black hole pair is a result of a merger between two galaxies that will eventually collide. NASA, ESA, Anna Trindade Falcão (CfA); Image Processing: Joseph DePasquale (STScI)
      Download this image

      The discovery was serendipitous. Hubble’s high-resolution imaging revealed three optical diffraction spikes nested inside the host galaxy, indicating a large concentration of glowing oxygen gas within a very small area. “We were not expecting to see something like this,” said Anna Trindade Falcão of the Center for Astrophysics | Harvard & Smithsonian in Cambridge, Massachusetts, lead author of the paper published today in The Astrophysical Journal. “This view is not a common occurrence in the nearby universe, and told us there’s something else going on inside the galaxy.”
      Diffraction spikes are imaging artifacts caused when light from a very small region in space bends around the mirror inside telescopes.
      Falcão’s team then examined the same galaxy in X-rays light using the Chandra observatory to drill into what’s going on. “When we looked at MCG-03-34-64 in the X-ray band, we saw two separated, powerful sources of high-energy emission coincident with the bright optical points of light seen with Hubble. We put these pieces together and concluded that we were likely looking at two closely spaced supermassive black holes,” said Falcão.
      In a surprise finding, astronomers, using NASA’s Hubble Space Telescope have discovered that the jet from a supermassive black hole at the core of M87, a huge galaxy 54 million light years away, seems to cause stars to erupt along its trajectory. The stars, called novae, are not caught inside the jet, but in a dangerous area near it.
      NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris To support their interpretation, the researchers used archival radio data from the Karl G. Jansky Very Large Array near Socorro, New Mexico. The energetic black hole duo also emits powerful radio waves. “When you see bright light in optical, X-rays, and radio wavelengths, a lot of things can be ruled out, leaving the conclusion these can only be explained as close black holes. When you put all the pieces together it gives you the picture of the AGN duo,” said Falcão.
      The third source of bright light seen by Hubble is of unknown origin, and more data is needed to understand it. That might be gas that is shocked by energy from a jet of ultra high-speed plasma fired from one of the black holes, like a stream of water from a garden hose blasting into a pile of sand.
      “We wouldn’t be able to see all of these intricacies without Hubble’s amazing resolution,” said Falcão.
      The two supermassive black holes were once at the core of their respective host galaxies. A merger between the galaxies brought the black holes into close proximity. They will continue to spiral closer together until they eventually merge — in perhaps 100 million years — rattling the fabric of space and time as gravitational waves.
      The National Science Foundation’s Laser Interferometer Gravitational-Wave Observatory (LIGO) has detected gravitational waves from dozens of mergers between stellar-mass black holes. But the longer wavelengths resulting from a supermassive black hole merger are beyond LIGO’s capabilities. The next-generation gravitational wave detector, called the LISA (Laser Interferometer Space Antenna) mission, will consist of three detectors in space, separated by millions of miles, to capture these longer wavelength gravitational waves from deep space. ESA (European Space Agency) is leading this mission, partnering with NASA and other participating institutions, with a planned launch in the mid-2030s.
      NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge, Massachusetts and flight operations from Burlington, Massachusetts. Northrop Grumman Space Technologies in Redondo Beach, California was the prime contractor for the spacecraft.
      The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA.
      Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts:
      Claire Andreoli
      NASA’s Goddard Space Flight Center, Greenbelt, MD
      claire.andreoli@nasa.gov
      Ray Villard
      Space Telescope Science Institute, Baltimore, MD
      Science Contact:
      Anna Trindade Falcão
      Center for Astrophysics | Harvard & Smithsonian, Cambridge, MA
      Share








      Details
      Last Updated Sep 09, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms
      Active Galaxies Astrophysics Astrophysics Division Chandra X-Ray Observatory Galaxies Goddard Space Flight Center Hubble Space Telescope Marshall Space Flight Center Missions Spiral Galaxies The Universe Keep Exploring Discover More Topics From Hubble
      Hubble Space Telescope


      Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe.


      Galaxy Details and Mergers



      Monster Black Holes Are Everywhere



      Hubble’s Galaxies


      View the full article
    • By NASA
      5 min read
      Preparations for Next Moonwalk Simulations Underway (and Underwater)
      Sonifications of three images have been released to mark the 25th anniversary of Chandra’s “First Light” image. For Cassiopeia A, which was one of the first objects observed by Chandra, X-ray data from Chandra and infrared data from Webb have been translated into sounds, along with some Hubble data. The second image in the sonification trio, 30 Doradus, also contains Chandra and Webb data. NGC 6872 contains data from Chandra as well as an optical image from Hubble. Each of these datasets have been mapped to notes and sounds based on properties observed by these telescopes.NASA/CXC/SAO/K.Arcand, SYSTEM Sounds (M. Russo, A. Santaguida) A quarter of a century ago, NASA released the “first light” images from the agency’s Chandra X-ray Observatory. This introduction to the world of Chandra’s high-resolution X-ray imaging capabilities included an unprecedented view of Cassiopeia A, the remains of an exploded star located about 11,000 light-years from Earth. Over the years, Chandra’s views of Cassiopeia A have become some of the telescope’s best-known images.
      To mark the anniversary of this milestone, new sonifications of three images – including Cassiopeia A (Cas A) – are being released. Sonification is a process that translates astronomical data into sound, similar to how digital data are more routinely turned into images. This translation process preserves the science of the data from its original digital state but provides an alternative pathway to experiencing the data.
      This sonification of Cas A features data from Chandra as well as NASA’s James Webb, Hubble, and retired Spitzer space telescopes. The scan starts at the neutron star at the center of the remnant, marked by a triangle sound, and moves outward. Astronomers first saw this neutron star when Chandra’s inaugural observations were released 25 years ago this week. Chandra’s X-rays also reveal debris from the exploded star that is expanding outward into space. The brighter parts of the image are conveyed through louder volume and higher pitched sounds. X-ray data from Chandra are mapped to modified piano sounds, while infrared data from Webb and Spitzer, which detect warmed dust embedded in the hot gas, have been assigned to various string and brass instruments. Stars that Hubble detects are played with crotales, or small cymbals.
      Another new sonification features the spectacular cosmic vista of 30 Doradus, one of the largest and brightest regions of star formation close to the Milky Way. This sonification again combines X-rays from Chandra with infrared data from Webb. As the scan moves from left to right across the image, the volume heard again corresponds to the brightness seen. Light toward the top of the image is mapped to higher pitched notes. X-rays from Chandra, which reveal gas that has been superheated by shock waves generated by the winds from massive stars, are heard as airy synthesizer sounds. Meanwhile, Webb’s infrared data show cooler gas that provides the raw ingredients for future stars. These data are mapped to a range of sounds including soft, low musical pitches (red regions), a wind-like sound (white regions), piano-like synthesizer notes indicating very bright stars, and a rain-stick sound for stars in a central cluster.
      The final member of this new sonification triumvirate is NGC 6872, a large spiral galaxy that has two elongated arms stretching to the upper right and lower left, which is seen in an optical light view from Hubble. Just to the upper left of NGC 6872 appears another smaller spiral galaxy. These two galaxies, each of which likely has a supermassive black hole at the center, are being drawn toward one another. As the scan sweeps clockwise from 12 o’clock, the brightness controls the volume and light farther from the center of the image is mapped to higher-pitched notes. Chandra’s X-rays, represented in sound by a wind-like sound, show multimillion-degree gas that permeates the galaxies. Compact X-ray sources from background galaxies create bird-like chirps. In the Hubble data, the core of NGC 6872 is heard as a dark low drone, and the blue spiral arms (indicating active star formation) are audible as brighter, more highly pitched tones. The background galaxies are played as a soft pluck sound while the bright foreground star is accompanied by a crash cymbal.
      More information about the NASA sonification project through Chandra, which is made in partnership with NASA’s Universe of Learning, can be found at https://chandra.si.edu/sound/.  The collaboration was driven by visualization scientist Kimberly Arcand (CXC), astrophysicist Matt Russo, and musician Andrew Santaguida, (both of the SYSTEM Sounds project), along with consultant Christine Malec.
      NASA’s Universe of Learning materials are based upon work supported by NASA under cooperative agreement award number NNX16AC65A to the Space Telescope Science Institute, working in partnership with Caltech/IPAC, Center for Astrophysics | Harvard & Smithsonian, and the Jet Propulsion Laboratory.
      More about Chandra
      Chandra, managed for NASA by Marshall in partnership with the CXC, is one of NASA’s Great Observatories, along with the Hubble Space Telescope and the now-retired Spitzer Space Telescope and Compton Gamma Ray Observatory. It was first proposed to NASA in 1976 by Riccardo Giacconi, recipient of the 2002 Nobel Prize for Physics based on his contributions to X-ray astronomy, and Harvey Tananbaum, who would later become the first director of the Chandra X-ray Center. Chandra was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar, who earned the Nobel Prize in Physics in 1983 for his work explaining the structure and evolution of stars.
      Learn more about the Chandra X-ray Observatory and its mission here:
      https://www.nasa.gov/mission/chandra-x-ray-observatory/
      https://cxc.harvard.edu
      News Media Contact
      Lane Figueroa
      Marshall Space Flight Center, Huntsville, Alabama
      256-544-0034
      lane.e.figueroa@nasa.gov
      Share
      Details
      Last Updated Sep 03, 2024 LocationMarshall Space Flight Center Related Terms
      Chandra X-Ray Observatory Marshall Space Flight Center Explore More
      5 min read Cassiopeia A, Then the Cosmos: 25 Years of Chandra X-ray Science
      Article 1 week ago 9 min read 25 Years Ago: STS-93, Launch of the Chandra X-Ray Observatory
      Article 1 month ago 5 min read 25 Years On, Chandra Highlights Legacy of NASA Engineering Ingenuity
      Article 1 month ago Keep Exploring Discover More Topics From NASA
      Missions
      Humans in Space
      Climate Change
      Solar System
      View the full article
  • Check out these Videos

×
×
  • Create New...