Members Can Post Anonymously On This Site
Three UFO cases exposed that the US does not want to reveal to the public
-
Similar Topics
-
By USH
On the night of February 23, 2025, residents of Tucumán, Argentina witnessed an astonishing sight during a violent thunderstorm. As a powerful lightning bolt tore through the sky, it briefly illuminated a massive, cigar-shaped object hovering in the storm’s center.
Eyewitnesses described the object as dark, elongated, and solid, standing in stark contrast to the swirling storm clouds around it. Unlike a natural weather phenomenon, the shape appeared structured and deliberate, leading many to speculate that it was a UFO of intelligent design, possibly of extraterrestrial origin.
It is not clear whether the object was struck by the lightning but there have been reports of UFOs being hit by lightning yet remaining unaffected, suggesting they may either harness or withstand immense energy levels.
Some researchers believe that certain UFOs absorb energy from lightning as a means of propulsion or power generation. In past cases, similar sightings have been reported in the presence of electrical storms, further fueling theories that such crafts may recharge their systems using natural energy sources.
It is known that theoretical physics explores the concept of extracting energy from electrical phenomena, such as Tesla’s ideas about wireless energy transmission. If an advanced civilization mastered this, lightning could be a viable energy source.
View the full article
-
By NASA
4 min read
NASA to Launch Three Rockets from Alaska in Single Aurora Experiment
Three NASA-funded rockets are set to launch from Poker Flat Research Range in Fairbanks, Alaska, in an experiment that seeks to reveal how auroral substorms affect the behavior and composition of Earth’s far upper atmosphere.
The experiment’s outcome could upend a long-held theory about the aurora’s interaction with the thermosphere. It may also improve space weather forecasting, critical as the world becomes increasingly reliant on satellite-based devices such as GPS units in everyday life.
Colorful ribbons of aurora sway with geomagnetic activity above the launch pads of Poker Flat Research Range. NASA/Rachel Lense The University of Alaska Fairbanks (UAF) Geophysical Institute owns Poker Flat, located 20 miles north of Fairbanks, and operates it under a contract with NASA’s Wallops Flight Facility in Virginia, which is part of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.
The experiment, titled Auroral Waves Excited by Substorm Onset Magnetic Events, or AWESOME, features one four-stage rocket and two two-stage rockets all launching in an approximately three-hour period.
Colorful vapor tracers from the largest of the three rockets should be visible across much of northern Alaska. The launch window is March 24 through April 6.
The mission, led by Mark Conde, a space physics professor at UAF, involves about a dozen UAF graduate student researchers at several ground monitoring sites in Alaska at Utqiagvik, Kaktovik, Toolik Lake, Eagle, and Venetie, as well as Poker Flat. NASA delivers, assembles, tests, and launches the rockets.
“Our experiment asks the question, when the aurora goes berserk and dumps a bunch of heat in the atmosphere, how much of that heat is spent transporting the air upward in a continuous convective plume and how much of that heat results in not only vertical but also horizontal oscillations in the atmosphere?” Conde said.
Confirming which process is dominant will reveal the breadth of the mixing and the related changes in the thin air’s characteristics.
“Change in composition of the atmosphere has consequences,” Conde said. “And we need to know the extent of those consequences.”
Most of the thermosphere, which reaches from about 50 to 350 miles above the surface, is what scientists call “convectively stable.” That means minimal vertical motion of air, because the warmer air is already at the top, due to absorption of solar radiation.
A technician with NASA’s Wallops Flight Facility sounding rocket office works on one of the payload sections of the rocket that will launch for the AWESOME campaign. NASA/Lee Wingfield When auroral substorms inject energy and momentum into the middle and lower thermosphere (roughly 60 to 125 miles up), it upsets that stability. That leads to one prevailing theory — that the substorms’ heat is what causes the vertical-motion churn of the thermosphere.
Conde believes instead that acoustic-buoyancy waves are the dominant mixing force and that vertical convection has a much lesser role. Because acoustic-buoyancy waves travel vertically and horizontally from where the aurora hits, the aurora-caused atmospheric changes could be occurring over a much broader area than currently believed.
Better prediction of impacts from those changes is the AWESOME mission’s practical goal.
“I believe our experiment will lead to a simpler and more accurate method of space weather prediction,” Conde said.
Two two-stage, 42-foot Terrier-Improved Malemute rockets are planned to respectively launch about 15 minutes and an hour after an auroral substorm begins. A four-stage, 70-foot Black Brant XII rocket is planned to launch about five minutes after the second rocket.
The first two rockets will release tracers at altitudes of 50 and 110 miles to detect wind movement and wave oscillations. The third rocket will release tracers at five altitudes from 68 to 155 miles.
Pink, blue, and white vapor traces should be visible from the third rocket for 10 to 20 minutes. Launches must occur in the dawn hours, with sunlight hitting the upper altitudes to activate the vapor tracers from the first rocket but darkness at the surface so ground cameras can photograph the tracers’ response to air movement.
By Rod Boyce
University of Alaska Fairbanks Geophysical Institute
NASA Media Contact: Sarah Frazier
Share
Details
Last Updated Mar 21, 2025 Related Terms
Sounding Rockets Goddard Space Flight Center Heliophysics Heliophysics Division Heliophysics Research Program Science & Research Science Mission Directorate Sounding Rockets Program Uncategorized Wallops Flight Facility Explore More
2 min read Hubble Captures a Neighbor’s Colorful Clouds
Article
7 hours ago
11 min read The Earth Observer Editor’s Corner: January–March 2025
Article
24 hours ago
5 min read Celebrating 25 Years of Terra
Article
24 hours ago
Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By European Space Agency
The European Space Agency is releasing the first catalogue of astronomical data from the Euclid space telescope, including three new enormous image mosaics with zoom-ins. Follow the reveal live on Wednesday 19 March at 11:00 BST / 12:00 CET.
View the full article
-
By USH
On March 26, 2020, a French astronomer Mark Carlotto used a telescope to capture a video showing the moon at night. Dr. M. Carlotto is a specialist in digital video analysis of space objects. The video shows three objects rising above the Moon’s limb, flying across the lunar surface and disappearing in the Moon’s shadow.
The fact that some of these objects are so clearly visible and close enough to the moon to be able to cast noticeable shadows immediately suggests that they are quite large. Using the large Endymion crater as a benchmark, the sizes of the objects were determined.
The size of the object flying over Endymion is about 5 miles long and about 1 to 3 miles wide. The other two objects appear to be comparable in size.
By measuring the displacement of the object it appears that the object is traveling at about 31 mps. It is traveling more than 30 times faster than if it were in lunar orbit.
A paper was recently published that attempts to prove that the original video is a fake. Arxiv.org analyzed the video (not included in the analysis) but extracted and provided three images of the recorded objects for examination, as seen above, and they then conducted calculations to verify its authenticity.
Despite government and space agency denials of UFO existence, photographic evidence and subsequent analysis suggest the presence of large extraterrestrial craft near the Moon and elsewhere in space.View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
NASA / Lillian Gipson NASA has selected three university teams to help solve 21st century aviation challenges that could transform the skies above our communities.
As part of NASA’s University Leadership Initiative (ULI), both graduate and undergraduate students on faculty-led university teams will contribute directly to real-world flight research while gaining hands-on experience working with partners from other universities and industry.
By combining faculty expertise, student innovation, and industry experience, these three teams will advance NASA’s vision for the future of 21st century aviation.
koushik datta
NASA Project Manager
This is NASA’s eighth round of annual ULI awards. Research topics include:
New aviation systems for safer, more efficient flight operations Improved communications frequency usage for more effective and reliable information transfer Autonomous flight capabilities that could advance research in areas such as NASA’s Advanced Air Mobility mission “By combining faculty expertise, student innovation, and industry experience, these three teams will advance NASA’s vision for the future of 21st century aviation,” said Koushik Datta, NASA University Innovation project manager at the Agency’s Ames Research Center in California.
This eighth round of annual ULI selections would lead to awards totaling up to $20.7 million for the three teams during the next three years. For each team, the proposing university will serve as lead. The new ULI selections are:
Florida Institute of Technology, Melbourne, Florida
The team will create a framework for developing trustworthy increasingly autonomous aviation safety systems, such as those that could potentially employ artificial intelligence and machine learning.
Team members include: The Pennsylvania State University in University Park; North Carolina Agricultural and Technical State University in Greensboro; University of Florida in Gainesville; Stanford University in California; Santa Fe Community College in New Mexico; and the companies Collins Aerospace of Charlotte in North Carolina; and ResilienX of Syracuse, New York.
University of Colorado Boulder
This team will investigate tools for understanding and leveraging the complex communications environment of collaborative, autonomous airspace systems.
Team members include: Massachusetts Institute of Technology in Cambridge; The University of Texas at El Paso; University of Colorado in Colorado Springs; Stanford University in California; University of Minnesota Twin Cities in Minneapolis, North Carolina State University in Raleigh; University of California inSanta Barbara; El Paso Community College in Texas; Durham Technical Community College in North Carolina; the Center for Autonomous Air Mobility and Sensing research partnership; the company Aurora Flight Sciences, a Boeing Company, in Manassas, Virginia; and the nonprofit Charles Stark Draper Laboratory in Cambridge, Massachusetts.
Embry-Riddle Aeronautical University, Daytona Beach, Florida
This team will research continuously updating, self-diagnostic vehicle health management to enhance the safety and reliability of Advanced Air Mobility vehicles.
Team members include: Georgia Institute of Technology in Atlanta; The University of Texas at Arlington; University of Southern California in Los Angeles; the company Collins Aerospace of Charlotte, North Carolina; and the Argonne National Laboratory.
NASA’s ULI is managed by the agency’s University Innovation project, which also includes the University Student Research Challenge and the Gateways to Blue Skies competition.
Watch the NASA Aeronautics solicitations page for the announcement of when the next opportunity will be to submit a proposal for consideration during the next round of ULI selections.
About the Author
John Gould
Aeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation.
Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More
2 min read NASA Marks 110 Years Since Founding of Predecessor Organization
Article 1 week ago 3 min read NASA’s X-59 Completes Electromagnetic Testing
Article 2 weeks ago 4 min read NASA University Research Program Makes First Award to a Community College Project
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Artemis
Aeronautics STEM
Explore NASA’s History
Share
Details
Last Updated Mar 10, 2025 EditorJim BankeContactSteven Holzsteven.m.holz@nasa.gov Related Terms
University Leadership Initiative Aeronautics Flight Innovation Transformative Aeronautics Concepts Program University Innovation View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.