Jump to content

Grey Alien photographed walking alongside river in Tarija, Bolivia?


USH

Recommended Posts

An intriguing photograph taken along the banks of the Pilcomayo River in Tarija, Bolivia has ignited a buzz across social media, with speculations swirling about a potentially extraterrestrial being.

grey%20alien%20tarija%20bolivia%20(1).jpg
Image credit: NOTIVISIÓN

Amid the growing uncertainty and the need for clarity regarding the image's authenticity, NOTIVISIÓN sought the perspective of an expert in UFOlogy. The renowned ufologist, Javier Carlos Cordero, known for his experience in the study of extraterrestrial sightings and phenomena, shared his analysis of the enigmatic image reports  news outlet reduno.

Cordero shed light on the possible nature of the mysterious being, stating, "At the edge of the Pilcomayo River, you can observe this figure walking or moving. In the photo, there's a semi-transparent entity with elongated limbs, characteristics that align with what's commonly known as a 'gray being.'" 

However, Cordero approached the matter with caution, refraining from hasty conclusions and emphasized the need for a thorough investigation before reaching any verdicts. “ This image must undergo a process of analysis through a filter that determines its authenticity and whether it has been subjected to digital manipulation. Only then can we discern whether we are dealing with genuine evidence or an edited product,” added Cordero, stressing the importance of a rigorous approach. 

The Tarija region has seen previous instances of unidentified flying objects and inexplicable entities. The area's abundance of minerals and potential dimensional portals may be linked. The historical context is also significant, including the reevaluation of the Mecoya case from May 6, 1978, involving sightings of craft and similar beings. 

grey%20alien%20tarija%20bolivia%20(2).jpg
                                                            Image credit: NOTIVISIÓN

The image of a potential encounter with an extraterrestrial being continues to defy conventional explanation, leaving the community both intrigued and anxious for the conclusions of the ongoing investigation.

 

View the full article

Link to comment
Share on other sites

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By USH
      Reports of alien abductions first became widespread during the 1960s and 70s. Alleged abductees frequently described undergoing experimental procedures performed by extraterrestrial beings. Some even claimed that these aliens had inserted unknown objects into their bodies. 

      In many cases, these so-called "alien implants" are metallic and have been reported to emit radio frequency waves. Often, they are found attached to nerve endings within the body. 
      One of the most prominent figures in this field of research was Dr. Roger Leir, who passed away on March 14, 2014. Along with his surgical team, Dr. Leir performed 17 surgeries on individuals who claimed to have been abducted by aliens, removing 13 distinct objects suspected to be alien implants.

      These objects were subjected to scientific analysis by prestigious laboratories, including Los Alamos National Labs, New Mexico Tech, and the University of California at San Diego. The findings have been puzzling, with some comparisons made to meteorite samples, and isotopic ratios in some tests suggesting materials not of Earthly origin.
      One such case is that of Terry Lovelace, a former Air Force medic, who kept a disturbing secret for 40 years. In 2012, a routine x-ray revealed a small square object about the size of a fingernail which was buried deep in Terry's right leg the doctor had never see anything like it. 
      Then Terry suddenly remembered the terrifying experience he had tried to forget - an event during a camping trip at Devil's Den State Park that he had never spoken of, knowing no one would believe him without proof. Yet the evidence had always been there: a strange metal object embedded in his leg, something that was not man-made. 
      In 1977, Terry and a friend had an extraordinary encounter at Devil's Den State Park, where they witnessed a massive triangular craft. This experience resulted in missing time and unexplained injuries. Years later, Terry was faced with a difficult choice: reveal his story of alien contact or remain silent. His decision led him into conflict with powerful forces and uncovered a conspiracy that extended beyond our world.
      While some remain skeptical, believing these implants are man-made and part of a secretive human agenda, Dr. Leir’s work, along with Terry Lovelace's experience at Devil’s Den and the mysterious object found in his leg, suggests that 'alien' implants may not be mere fiction.
        View the full article
    • By NASA
      14 Min Read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece
      The expedition team and crew prepare to deploy Nereid Under Ice (NUI) into the sea. The following expedition marks the third installment of NASA Astrobiology’s fieldwork series, the newly rebranded Our Alien Earth, streaming on NASA+. Check out all three episodes following teams of astrobiologists from the lava fields of Holuhraun, Iceland, to the Isua Greenstone Belt of Greenland, and finally, the undersea volcanoes of Santorini, Greece. And stay tuned for the lava tubes of Mauna Loa, Hawaii in 2025.
      THE VOYAGE BEGINS
      My career at NASA has always felt like a mad scientist’s concoction of equal parts hard work, perseverance, absurd luck, and happenstance. It was due to this mad blend that I suddenly found myself on the deck of a massive tanker ship in the middle of the Mediterranean sea, watching a team of windburnt scientists, engineers, and sailors through my camera lens as they wrestled with a 5,000lb submersible hanging in the air.
      The expedition team and crew prepare to deploy Nereid Under Ice (NUI) into the sea. “Let it out, Molly, slack off a little bit…” shouts deck boss Mario Fernandez, as he coordinates the dozen people maneuvering the vehicle. It’s a delicate dance as the hybrid remotely operated vehicle (ROV), Nereid Under Ice (NUI), is hoisted off the ship and deployed into the sea. “Tagline slips, line breaks… you’ve got a 5,000lb wrecking ball,” recounts Mario in an interview later that day.
      How did I get here?
      A few years ago I found myself roaming the poster halls of the Astrobiology Science Conference in Bellevue, Washington, struggling to decipher the jargon of a dozen disciplines doing their best to share their discoveries; phrases like lipid biomarkers, anaerobic biospheres, and macromolecular emergence floated past me as I walked. I felt like a Peanuts character listening to an adult speak.
      Until I stumbled upon a poster by Dr. Richard Camilli entitled, Risk-Aware Adaptive Sampling for the Search for Life in Ocean Worlds. I was quickly enthralled in a whirlwind of icy moons, fleets of deep sea submersible vehicles, and life at sea.
      Dr. Richard Camilli, principal investigator of a research expedition to explore undersea volcanoes off the coast of Santorini. “Are you free in November?”
      “Absolutely,” I replied without checking a single calendar.
      Five months and three flights later, I arrived at the port of Lavrio, Greece, as Dr. Camilli and his team were unloading their suite of vehicles from gigantic shipping crates onto the even more massive research vessel. I stocked up on motion sickness tablets, said a silent farewell to land, and boarded the ship destined for the undersea Kolumbo volcano.
      Greece is a great place to study geology, because it’s a kind of supermarket of natural disasters.
      Dr. Paraskevi NomikoU
      University of Athens
      The expedition sets out to sea as the sun sets in the distance. LIFE AT SEA
      Documenting astrobiology fieldwork has taken me to some pretty remote and rough places. Sleeping in wooden shacks in Iceland without running water and electricity, or bundled up in a zero-degree sleeping bag in a tent while being buffeted by gale force winds in the wilderness of Greenland. But life at sea? Life at sea is GOOD.
      Filmmaker Mike Toillion takes a selfie, holding up a peace sign with members of the science team. From left to right: NASA Astrobiology/Mike Toillion Mike Toillion, creator of Our Alien Earth, taking a selfie with members of the glider team. From left to right: Matt Walter and Gideon Billings of the autonomous sampling team inside the ship’s control room.




      I was fortunate to have a personal cabin all to myself: a set of bunk beds, a small bathroom with a shower, and a small desk with plenty of outlets for charging my gear. I would also be remiss if I didn’t mention the mess hall. Aside from a freshly rotated menu of three hot meals a day, it was open 24/7 with a constant lineup of snacks to keep bellies full and morale high. This was luxury fieldwork. The ability to live, work, and socialize all in the same place would make this trip special in its own right, and allowed me to really get to know the team and capture every angle of this incredibly complex and multi-faceted expedition.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      The ship in the port of Lavrio, Greece. The team will spend two full days docked here while preparing for the voyage ahead. NASA Astrobiology/Mike Toillion SEARCHING FOR LIFE ON OCEAN WORLDS
      “The goal of this program is cooperative exploration with under-actuated vehicles in hazardous environments,” explains Dr. Camilli as we stand on the bow of the ship, the sun beginning to set in the distance. “These vehicles work cooperatively in order to explore areas that are potentially too dangerous or too far away for humans to go.”
      This is the problem at hand with exploring icy ocean worlds like Jupiter’s moon, Europa. The tremendous distance between Earth and Europa means we will barely be able to communicate and control vehicles that we send to the surface, and will face even more difficulty once those vehicles dive below the ice. This makes Earth’s ocean a perfect testbed for developing autonomous, intelligent robotic explorers.
      “I’ve always been struck at how parallel ocean exploration and space exploration is,” says Brian Williams, professor from the Computer Science and Artificial Intelligence Laboratory at MIT. “Once you go through the surface, you can’t communicate. So, somehow you have to embody the key insights of a scientist, to be able to look and see: is that evidence of life?”
      One of the gliders, an autonomous scouting vehicle equipped with multple sensors to map the seafloor and report back to the ship. NASA Astrobiology/Mike Toillion MEET THE FLEET
      Exploring anywhere in space begins with a few simple steps: first, you need to get a general map of the area, which is typically done by deploying orbiters around a celestial body. The next step is to get a closer look, by launching lander and rover missions to the surface. Finally, in order to understand the location best, you need to bring samples back to Earth to study in greater detail.
      “So you can think of what we’re doing here as being very parallel, that the ship is like the orbiter and is giving us a broad view of the Kolumbo volcano, right? Once we do that map, then we need to be able to explore interesting places to collect samples. So, the gliders are navigating around places that look promising from what the ship told us. And then, it looks to identify places where we might want to send NUI. NUI is very capable in terms of doing the samples, but it can’t move around nearly as much. And so, we finally put NUI at the places where the gliders thought that they were interesting.”
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      The expedition team works into the night preparing NUI for its upcoming mission to the Kolumbo volcano. NASA Astrobiology/Mike Toillion THE SCIENTIST’S ROBOTIC APPRENTICE
      As the espresso machine in the mess hall whirred away pouring out a much needed shot of caffeine, I sat with Eric Timmons, one of the expedition’s computer science engineers. Eric wears a few hats on the ship, but today we are discussing automated mission planning, the first step to true autonomy in robotic exploration.
      “In any sort of scientific mission, you’re going to have a list of goals, each with their own set of steps, and a limited amount of time to achieve them. And so, Kirk works on automating that.” Kirk is the nickname of one of the many algorithms involved in the team’s automated mission planning. It’s joined by other algorithms, all named after Star Trek characters, collectively known as Enterprise, each responsible for different aspects of planning a mission and actively adapting to new mission parameters.
      Dr. Richard Camilli explains further: “Basically, we have scientists onboard the ship that are feeding policies to these automated planners. [The planners] then take those policies plus historical information, the oceanographic context, and new information being transmitted by the vehicles here and now; they take all that information, and combine it to construct a mission that gets to the scientific deliverables, while also being safe.”
      These are areas that humans aren’t designed to go to. I guess the best analogy would be like hang gliding in Midtown Manhattan at night.
      Dr. richard camilli
      Woods Hole Oceanographic Institution
      OK, let’s recap the story so far: the ship’s sonar and other instruments create a general map of the Kolumbo volcano. That information, along with data from previous missions, is fed to Enterprise’s team of algorithms, which generates a mission for the gliders. The gliders are deployed, and using their sensors, provide higher-fidelity data about the area and transmit that knowledge back to the ship. The automated mission planners take in this new data, and revise their mission plan, ranking potential sites of scientific interest, which are then passed onto NUI, which will conduct its own mission to explore these sites, and potentially sample anything of interest.
      DIVE, DIVE, DIVE
      After a few days on the ship, the routine of donning my steel-toed boots and hard hat when walking around the deck has started to become second nature. My drone skills have greatly improved, as the magnetic field produced by the ship and its instruments forced me to take-off and land manually, carefully guiding the drone in and around the many hazards of the vessel. This morning, however, I’ve been invited to step off the ship for the first time to get a first-hand look at deploying the gliders. Angelos Mallios from the glider team leads me down into the bowels of the ship to the lower decks, as we arrive at a door that opens to the outside of the ship, waves lapping about six feet below. A zodiac pulls up to the door and we descend down a ladder into the small boat.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Riding in the zodiac with the glider team, led by Angelos Mallios. NASA Astrobiology/Mike Toillion Meanwhile, the rest of the glider team is on the main deck of the ship, lifting the gliders with a large, motorized crane, and lowering them onto the surface of the water. The zodiac team approached to detach the glider and safely set it out into the sea, while I dipped a monopod-mounted action camera in and out of the water to capture the process. Unbeknownst to me at the time, this would become some of my favorite footage of the trip, sunlight dancing off the surface of the waves, while the gliders floated and dove beneath.
      Angelos’ radio began to chatter. Eric Timmons was onboard the ship ready to command the gliders to begin their mission plan assigned by Enterprise. A moment passed and the yellow fin of the glider dipped below the water’s surface and disappeared.
      Angelos Mallios from the Woods Hole Oceanographic Institution, leans out of a zodiac to deploy a glider, an autonomous vehicle and the forward scout for the expedition. NUI VERSUS THE VOLCANO
      The following day, it was time to see the star of the show in action; the expedition team was ready to deploy the aforementioned 5,000lb wrecking ball, NUI. The gliders had been exploring the surrounding area day and night, using their suite of sensors to detect areas of scientific interest. Since this mission is about searching for life, the gliders know that warmer areas could indicate hydrothermal vent activity; a literal hotspot for life in the deep ocean. Kirk, along with the science planner algorithm, Spock, determined a list of possible candidates that fit that exact description.
      “There’s always a bit of tension in the operations, where, do you go strike out in an area that is unstudied and potentially come back with nothing? Or do you go to a site that you know and try to understand it a little bit more, that kind of incremental advance?” Dr. Camilli pauses to take a quick swig of sparkling water after a long day of diving operations, as he recounts a moment in the control room earlier that day. All the scientists onboard this expedition are extremely skilled and knowledgable, and this mission is asking them to put aside their instincts, and follow the suggestions of computer algorithms; a hard pill to swallow for some.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Underwater footage from Nereid Under Ice, showing a thriving community on the sea floor, including a never before seen species. NASA Astrobiology/Mike Toillion and WHOI “We stuck with the Spock program, and it paid great dividends. And all of the scientists were amazed at what they saw. The first site that we went to was spectacular. The second site we went to was spectacular. Each of the five sites that it identified as interesting were interesting, and they were each interesting in a different way; totally different environments.”
      Interesting, in this case, was quite the understatement. As the expedition team and I crowded into the ship’s control room to look at the camera feeds transmitted by NUI, now fully deployed to the seafloor, audible gasps erupted from multiple people. Bubbles filled the monitor as live fumaroles, active vents from the volcano, were pouring out heat and chemical-rich fluid into the water. Thick, microbial mats covered the surrounding rock, and multicellular lifeforms dotted the landscape. The expedition team had found a live hydrothermal vent, and life thriving around it.
      SOUVENIRS FROM THE OCEAN FLOOR
      “I’ve never seen anything like that before,” recalls Casey Machado, expedition lead and the main pilot for Nereid Under Ice (NUI). Casey is sitting in an office chair surrounded by glowing monitors, a joystick in their left hand, and a gaming controller in their right. Since NUI is a hybrid ROV, it can be controlled manually from the ship by remote, or receive autonomous instructions from the Enterprise mission planners. Today, the team plans on manually controlling NUI to retrieve samples from the first site of interest.
      NUI is a strange looking vehicle. Only a small section of its body is watertight, where many of its critical components are housed. The remainder is fairly open, and upon arriving at the first site recommended by Spock, the front of the ROV opens up its front double doors to reveal a multi-jointed manipulator arm, stereo camera set, and other instruments. I’m instantly reminded of the space shuttle mission to repair the Hubble Space Telescope, which had a similar mechanism.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      Casey Machado, pilot of the hybrid ROV Nereid Under Ice (NUI), pilots the manipulator arm to take a rock sample. NASA Astrobiology/Mike Toillion Casey deftly maneuvers each joint of the arm to approach a rock covered in microbial mats. The end of NUI’s arm is equipped with two sampling instruments: a claw-like grabbing mechanism and a vacuum-like hose called the “slurp gun”. The end of the arm twists and turns as Machado aligns it with the rock, eventually opening and closing it around the target. With a gentle pull, the rock comes loose, and with a few more careful manipulations places it delicately into NUI’s sample cache. I offer a high-five, which Casey nonchalantly returns like the whole task was nothing.
      TEACHING A ROBOT TO FISH
      At this point, the expedition team has collected dozens of samples and achieved multiple engineering milestones, enough to fill years’ worth of scientific papers, but they are far from finished. A true mission to an ocean world will have to be pilotless, as Dr. Gideon Billings from MIT explains: “They need to operate without any human intervention. They need to be able to understand the scene through perception and then make a decision about how they want to manipulate to take a sample or achieve a task.”
      Gideon sits in the control room to the left of the piloting station, working alongside Casey as they prepare to demonstrate NUI’s automated sampling capabilities. His laptop screen shows a live 3D-model of the craft, its doors open, arm extended. Projected around the craft is a 3D reconstruction, or point cloud, of the seafloor created from the stereo camera pair mounted inside the vehicle. Similarly to how our brains take the two visual feeds from both of our eyes to see three-dimensionally, a stereo camera pair uses two cameras to achieve the same effect. By clicking on the model and moving its position in the software, NUI performs the same action thousands of meters under the ocean.
      Shared autonomy between the automated sampling team and the ROV Nereid Under Ice. “That is shared autonomy, where you could imagine a pilot indicating a desired pose
      for the arm to move to, but then a planner taking over and coming up with the path that the arm should move to reach that goal. And then, the pilot just essentially hitting a button and the arm following that path.”
      Over the course of multiple dives, Gideon tested various sampling techniques, directing the manipulator arm to use its claw-like device to grab different tools and perform a variety of tasks. “We were able to project the point cloud into that scene, and then command the arm to grab a push core and move it into a location within that 3D reconstruction. We verified that that location matched up. That showed the viability of an autonomous system.” This seemingly small victory is a huge step towards exploring planets beyond Earth. Since this expedition, the engineering team has not only improved this shared autonomy system, but has also implemented a natural language interface, allowing a user to use their normal speaking voice to give commands to the ROV, further blurring the lines between reality and science fiction.
      To view this video please enable JavaScript, and consider upgrading to a web browser that
      supports HTML5 video
      The sun rises over the Mediterranean Sea on the final day of the research cruise. NASA Astrobiology/Mike Toillion SOMEWHERE BEYOND THE SEA
      I cannot help but envy the life of those who chose to make the ocean their place of work. The time I’ve spent with oceanographers has me questioning all my life choices; clearly they knew something I didn’t.
      Watching the sunrise every morning, peering through the murky depths of the deep sea, unlocking the secrets of Earth’s final frontier. All in a day’s work for Dr. Richard Camilli and his team of intrepid explorers.
      Watch Our Alien Earth and The Undersea Volcanoes of Santorini, Greece on NASA+ and follow the full story of this incredible expedition.

      Watch Our Alien Earth on NASA+

      Panorama of a sunrise at sea. View the full article
    • By USH
      In our article from 2013 'Scientific proof human race was created by aliens' we have written about the various scientific studies that indicate that the so-called 97% non-coding sequences originally known as "junk DNA" in human DNA is no less than genetic code of extraterrestrial life forms. The overwhelming majority of Human DNA is "Off-world" in origin and the complete 'program' was positively not written on Earth and that the mathematical code in human DNA cannot be explained by evolution. 

      In the next video of Ancient Aliens episode 'Dark Secrets of Alien-Human Genetics' more evidence is provided that all humans are the result of alien genetic manipulation. 
      Transcript: In the middle of the night in 2008, 20-year-old Charmaine de Roserio Sage was sleeping when she was abruptly awakened by a terrifying sight: a reptilian humanoid standing over her. Charmaine describes the encounter vividly: "I woke up, and a reptilian entered the room. We went to an underground cave where a group of reptilians surrounded me. Each one placed a hand on my body, and I began to change. It was an extraordinary but bizarre experience to watch my body morph from a human form into a reptilian one, with my smooth skin transforming into scales and a tail emerging." 
      Charmaine claims that during this experience, she learned that all humans are the result of alien genetic manipulation, although some people are more affected than others. She believes that different extraterrestrial races have visited Earth throughout history and have selectively manipulated certain groups of humans. According to her, these alien interventions are part of an ongoing war between various intelligent species, fighting over territory and involving the creation and manipulation of life forms. 
      In 2010, biologists led by Sante Pääbo of the Max Planck Institute for Evolutionary Anthropology made a remarkable discovery. They found that early humans not only coexisted with other primitive hominids but also interbred with them. Even more astonishing was the suggestion that another, unidentified species might also be represented in human DNA. This finding challenges the traditional view of human evolution as a straightforward progression from earlier hominids to modern humans. 
      Dr. John Hawks, an anthropologist from the University of Wisconsin, conducted a comprehensive analysis of human DNA and discovered that the rate of genetic evolution in the past 5,000 years has been 100 times faster than in any previous 5,000-year period. This raises the question: what caused such rapid changes in human DNA? Is it possible that extraterrestrial beings interbred with humans within the last 5,000 years, leading to these significant genetic alterations? 
      One notable case occurred in Sydney, Australia, in July 1992. Peter Khoury awoke one night to find himself paralyzed and unable to speak, with a strange, milky-white-skinned woman with large eyes and sharp features straddling his body. Another woman, with Asian features, stood nearby. The blonde woman touched her stomach, pointed to the sky, and then both women disappeared, leaving behind a single strand of blonde hair. 
      Khoury took the hair to a laboratory for DNA analysis, and the results were surprising. The hair was optically clear, unlike any human hair, and contained a rare combination of Chinese and Celtic DNA. While it didn't conclusively prove an alien origin, it did indicate something highly unusual. 
      In May 2013, mathematician Vladimir Shcherbak and astrobiologist Maxim Makukov published a study suggesting that the human genome contains a hidden code with precise mathematical patterns and an unknown symbolic language. Their research led them to believe that an extraterrestrial "stamp" might be embedded in our DNA, pointing to deliberate manipulation by alien beings in the distant past. 
      For ancient astronaut theorists, this finding supports the idea that extraterrestrials targeted human DNA with artificial mutations, potentially creating a form of organic robots—intelligent beings designed by advanced alien civilizations. This theory also raises the possibility that our own drive to create cybernetically enhanced versions of ourselves might be a continuation of the same agenda initiated by our extraterrestrial creators. 
      In 1966, scientists made a groundbreaking discovery by deciphering the genetic code, revealing that DNA is structured in clusters of three molecules known as codons or triplets. This discovery was revolutionary because it hinted at the possibility that the ultimate proof of extraterrestrial involvement in our past might be found within our own DNA, rather than in physical artifacts like crashed spaceships. 
      Ancient astronaut theorists argue that this triplet structure in DNA might be evidence of extraterrestrial tampering, suggesting that the number three holds a key to understanding our genetic language and our connection to otherworldly beings. 
      Could this be the ultimate proof that humanity's origins are not solely earthly but are intertwined with extraterrestrial influences?
        View the full article
    • By NASA
      5 Min Read ‘Current’ Events: NASA and USGS Find a New Way to Measure River Flows
      The River Observing System (RiOS) tracking the motion of water surface features from above a section of the Sacramento River in Northern California in 2023. Credits: NASA/USGS/Joe Adams and Chris Gazoorian A team of scientists and engineers at NASA and the U.S. Geological Survey (USGS) collaborated to see if a small piloted drone, equipped with a specialized payload, could help create detailed maps of how fast water is flowing. Rivers supply fresh water to our communities and farms, provide homes for a variety of creatures, transport people and goods, and generate electricity. But river flows can also carry pollutants downstream or suddenly surge, posing dangers to people, wildlife, and property. As NASA continues its ongoing commitment to better understand our home planet, researchers are working to answer the question of how do we stay in-the-know about where and how quickly river flows change?   
      NASA and USGS scientists have teamed up to create an instrument package – about the size of a gallon of milk – called the River Observing System (RiOS). It features thermal and visible cameras for tracking the motion of water surface features, a laser to measure altitude, navigation sensors, an onboard computer, and a wireless communications system. In 2023, researchers took RiOS into the field for testing along a section of the Sacramento River in Northern California, and plan to return for a third and final field test in the fall of 2024.
      The River Observing System (RiOS) tracking the motion of water surface features from above a section of the Sacramento River in Northern California in 2023. “Deploying RiOS above a river to evaluate the system’s performance in a real-world setting is incredibly important,” said Carl Legleiter, USGS principal investigator of the joint NASA-USGS StreamFlow project. “During these test flights we demonstrated that the onboard payload can be used to make calculations – do the analysis – in nearly real-time, while the drone is flying above the river. This was one of our top-tier goals: to enable minimal latency between the time we acquire images and when we have detailed information on current speeds and flow patterns within the river.”
      To realize this vision for onboard computing, the team uses open-source software, combined with their own code, to produce maps of water surface velocities, or flow field, from a series of images taken over time. 
      “You might think that we need to be able to see discrete, physical objects – like sticks or silt or other debris as they move downstream – to estimate the flow velocity, but that’s not always the case, nor is it always possible,” said Legleiter. “Using a highly-sensitive infrared camera, we instead detect the movement of subtle differences in the temperature of water carried downstream.” 
      Those same tiny temperature differences also appear wherever there are undulations – like at the boundary between the air and the water or ice below. Knowing this, NASA members of the StreamFlow team used this phenomenon to their advantage when developing methods for possible future landed planetary missions to navigate at distant and hard-to-see environments, including Europa, the icy moon orbiting Jupiter.
      Our technology can precisely track the static surface of icy terrain while flying over it, or a moving surface, like water, while hovering above it to keep the spacecraft safe while gathering valuable data
      uland wong
      Co-investigator and NASA lead of the StreamFlow Project
      “Icy surfaces present challenging visual conditions such as lack of contrast,” said Uland Wong, co-investigator and NASA lead of the StreamFlow project at NASA’s Ames Research Center in California’s Silicon Valley. “Our technology can precisely track the static surface of icy terrain while flying over it, or a moving surface, like water, while hovering above it to keep the spacecraft safe while gathering valuable data.”  
      To prepare for the Sacramento River field tests, the NASA team built a robotics simulator to run thousands of virtual drone flights over the Sacramento River test site using flow fields modeled by USGS. These simulations are helping the team create intelligent software capable of selecting the best routes for the drone to fly and ensuring efficient use of limited battery power. 
      The next step in the partnership is for NASA to develop techniques for making the system more autonomous. The researchers want to use calculations of river flows – performed onboard in real time – to guide where the drone should fly next.
      “Does the drone drop down to get better resolution data about a particular location or stay high and capture a wide-angle view,” posed Wong. “If it identifies areas that are flowing particularly fast or slow, could the drone more quickly detect areas of flooding?” 
      The USGS currently operates an extensive network of thousands of automated stream gauges and fixed cameras installed on bridges and riverbanks to monitor river flows in real-time across the country. 
      “Drones could enable us to make measurements in so many more areas, potentially allowing our network to be larger, more robust, and safer for our technicians to monitor and maintain,” said Paul Kinzel, StreamFlow co-investigator at USGS. “Drones could help keep our people and equipment out of harm’s way in addition to telling us how the environment is changing over time in as many locations as possible.”
      A drone with the StreamFlow thermal mapping payload flying above the Sacramento River in Northern California.NASA/Massimo Vespignani For more information about how NASA improves life on Earth through climate and technological innovations, visit: 
      http://www.nasa.gov/earth
      The StreamFlow project is a collaboration between researchers with the USGS’s Hydrologic Remote Sensing Branch, Unmanned Aircraft Systems engineers with the USGS National Innovation Center, and scientists in the Intelligent Robotics Group at NASA Ames. The Streamflow payload concept was demonstrated through research initially seeded by a grant from the USGS National Innovation Center and is now supported by NASA’s Advanced Information Systems Technology program, which is managed by the agency’s Earth Science Technology Office. The field tests were conducted in collaboration with the National Oceanographic and Atmospheric Administration (NOAA) Southwest Fisheries Science Center, which helped collect direct field measurements of the river’s flow velocity and granted access to the field site, which is owned by the Nature Conservancy.
      Share
      Details
      Last Updated Aug 05, 2024 Related Terms
      Earth Science Division Ames Research Center Applied Sciences Program Drones & You General USGS (United States Geological Survey) Keep Exploring Discover More Topics From NASA
      Ames Research Center
      Earth Science – Technology
      Rivers on Earth, Titan, and Mars
      One of the more distinctive things about Earth among the planets is that we have plate tectonics. In other words,…
      Climate Change
      NASA is a global leader in studying Earth’s changing climate.
      View the full article
    • By USH
      Over the years, much has been published about the strange things that happen on the dark side of the moon. 

      The far side of the moon has been a mystery since the dawn of the space age. But is it just a barren, crater-filled wasteland? 
      Shocking claims from astronauts, whistleblowers, and classified documents suggest there's more to the story. Eerie sounds, inexplicable sightings, and covert missions point to something astounding hidden from public view. 
      Before delving into the evidence, which ranges from Apollo-era transcripts to insights from modern military insiders, it's worth noting an intriguing paper recently released by Harvard. Titled "The Cryptoterrestrial Hypothesis. This paper proposes among other themes that UAPs (Unidentified Aerial Phenomena) might be the result of activities by intelligent beings hidden here on Earth eventually underground or in nearby areas such as the moon. (Notion: The dark of the side of the moon could be an excellent place to hide.) 
      But the Harvard paper has suddenly disappeared... though we saved you a copy: https://bit.ly/4b1xk11 
      The implications are staggering, hinting at a secret history beyond our world.
        View the full article
  • Check out these Videos

×
×
  • Create New...