Members Can Post Anonymously On This Site
Solar Orbiter discovers tiny jets that could power the solar wind
-
Similar Topics
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Yang.pdf
Shuolong Yang
University of Chicago
This effort will leverage the latest developments in superconductors to build a power transmission cable that can operate in the extreme cold temperatures found on the Moon with very low electrical losses. The team will use novel manufacturing techniques to grow alternating layers of FeSe SrTiO3 films onto a substrate and the resulting, superconducting tape can be fashioned into electrical transmission lines. The project will culminate with a demonstration 1-meter-long superconducting transmission line which supports 1 amp of power transmission at 1,000 volts.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart McGuirk.pdf
Christopher McGuirk
Colorado School of Mines
This project will investigate and develop improved storage methods for the fuels needed to generate electrical power in places where sunlight is not available. The effort will focus on particularly tailored materials called Metal Oxide Frameworks, or MOFs, that can be used to store methane and oxygen. The methane and oxygen can be reacted in a solid oxide fuel cell to generate electricity, and storing them in a MOF could potentially result in significant mass and cost savings over traditional storage tanks which also require active pressure and thermal regulation. The team will use a number of computational and experimental tools to develop a MOF structure suitable for this application.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Boles.pdf
Jessica Boles
University of California, Berkeley
This project will develop piezoelectric-based power conversion for small power systems on the lunar surface. These piezoelectric systems can potentially offer high power density to significantly reduce size, weight, and cost. They can also offer high efficiency as well as resistance to the extreme lunar environment with its expected prolonged exposure to extreme cold and radiation. The effort will build and test prototype piezoelectric DC-to-DC power converters and DC-to-DC power supplies.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By NASA
1 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
ECF 2024 Quadchart Arya.pdf
Manan Arya
Stanford University
This grant will design and develop lightweight, low-cost modular solar reflectors that can be stowed for transport in a compact volume. These reflectors can potentially be used to reflect and concentrate sunlight into a permanently shadowed area of the Moon where it could power photovoltaics. These reflectors could also potentially be used for concentrated photovoltaics for deep-space missions, solar thermal propulsion, or for thermal mining. The team will use recently developed origami design algorithms to allow for compact and reversible stowage of paraboloidal shell structures without any cuts or slits.
Back to ECF 2024 Full List
Share
Details
Last Updated Apr 18, 2025 EditorLoura Hall Related Terms
Early Career Faculty (ECF) Space Technology Research Grants View the full article
-
By NASA
3 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
One of several NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation sits in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.NASA/Genaro Vavuris NASA engineers began using a network of ground sensors in March to collect data from an experimental air taxi to evaluate how to safely integrate such vehicles into airspace above cities – in all kinds of weather.
Researchers will use the campaign to help improve tools to assist with collision avoidance and landing operations and ensure safe and efficient air taxi operations in various weather conditions.
For years, NASA has looked at how wind shaped by terrain, including buildings in urban areas, can affect new types of aircraft. The latest test, which is gathering data from a Joby Aviation demonstrator aircraft, looks at another kind of wind – that which is generated by the aircraft themselves.
Joby flew its air taxi demonstrator over NASA’s ground sensor array near the agency’s Armstrong Flight Research Center in Edwards, California producing air flow data. The Joby aircraft has six rotors that allow for vertical takeoffs and landings, and tilt to provide lift in flight. Researchers focused on the air pushed by the propellers, which rolls into turbulent, circular patterns of wind.
NASA aeronautical meteorologist Luke Bard adjusts one of several wind lidar (light detection and ranging) sensors near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025, in preparation to collect data from Joby Aviation’s experimental air taxi aircraft. NASA is collecting information during this study to help advance weather-tolerant air taxi operations for the entire industryNASA/Genaro Vavuris This rolling wind can affect the aircraft’s performance, especially when it’s close to the ground, as well as others flying in the vicinity and people on the ground. Such wind turbulence is difficult to measure, so NASA enhanced its sensors with a new type of lidar – a system that uses lasers to measure precise distances – and that can map out the shapes of wind features.
“The design of this new type of aircraft, paired with the NASA lidar technology during this study, warrants a better understanding of possible wind and turbulence effects that can influence safe and efficient flights,” said Grady Koch, lead for this research effort, from NASA’s Langley Research Center in Hampton, Virginia.
Data to Improve Aircraft Tracking
NASA also set up a second array of ground nodes including radar, cameras, and microphones in the same location as the sensors to provide additional data on the aircraft. These nodes will collect tracking data during routine flights for several months.
The agency will use the data gathered from these ground nodes to demonstrate the tracking capabilities and functions of its “distributed sensing” technology, which involves embedding multiple sensors in an area where aircraft are operating.
One of multiple NASA distributed sensing ground nodes is set up in the foreground while an experimental air taxi aircraft owned by Joby Aviation hovers in the background near NASA’s Armstrong Flight Research Center in Edwards, California, on March 12, 2025. NASA is collecting information during this study to help advance future air taxi flights, especially those occurring in cities, to track aircraft moving through traffic corridors and around landing zones.NASA/Genaro Vavuris This technology will be important for future air taxi flights, especially those occurring in cities by tracking aircraft moving through traffic corridors and around landing zones. Distributed sensing has the potential to enhance collision avoidance systems, air traffic management, ground-based landing sensors, and more.
“Our early work on a distributed network of sensors, and through this study, gives us the opportunity to test new technologies that can someday assist in airspace monitoring and collision avoidance above cities,” said George Gorospe, lead for this effort from NASA’s Ames Research Center in California’s Silicon Valley.
Using this data from an experimental air taxi aircraft, NASA will further develop the technology needed to help create safer air taxi flights in high-traffic areas. Both of these efforts will benefit the companies working to bring air taxis and drones safely into the airspace.
The work is led by NASA’s Transformational Tools and Technologies and Convergent Aeronautics Solutions projects under the Transformative Aeronautics Concepts program in support of NASA’s Advanced Air Mobility mission. NASA’s Advanced Air Mobility mission seeks to deliver data to guide the industry’s development of electric air taxis and drones.
Share
Details
Last Updated Apr 17, 2025 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related Terms
Armstrong Flight Research Center Advanced Air Mobility Ames Research Center Convergent Aeronautics Solutions Drones & You Flight Innovation Glenn Research Center Langley Research Center Transformational Tools Technologies Transformative Aeronautics Concepts Program Explore More
3 min read NASA’s Curiosity Rover May Have Solved Mars’ Missing Carbonate Mystery
Article 3 hours ago 1 min read Recognizing Employee Excellence
Article 8 hours ago 3 min read Testing in the Clouds: NASA Flies to Improve Satellite Data
Article 23 hours ago Keep Exploring Discover More Topics From NASA
Armstrong Flight Research Center
Humans in Space
Climate Change
Solar System
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.