Jump to content

Recommended Posts

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

  • Similar Topics

    • By NASA
      NASA Science Live: Asteroid Bennu Originated from World with Ingredients and Conditions for Life
    • By NASA
      In this video frame, Jason Dworkin holds up a vial that contains part of the sample from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission in 2023. Dworkin is the mission’s project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.Credit: NASA/James Tralie Studies of rock and dust from asteroid Bennu delivered to Earth by NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification and Security–Regolith Explorer) spacecraft have revealed molecules that, on our planet, are key to life, as well as a history of saltwater that could have served as the “broth” for these compounds to interact and combine.
      The findings do not show evidence for life itself, but they do suggest the conditions necessary for the emergence of life were widespread across the early solar system, increasing the odds life could have formed on other planets and moons.
      “NASA’s OSIRIS-REx mission already is rewriting the textbook on what we understand about the beginnings of our solar system,” said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Asteroids provide a time capsule into our home planet’s history, and Bennu’s samples are pivotal in our understanding of what ingredients in our solar system existed before life started on Earth.”
      In research papers published Wednesday in the journals Nature and Nature Astronomy, scientists from NASA and other institutions shared results of the first in-depth analyses of the minerals and molecules in the Bennu samples, which OSIRIS-REx delivered to Earth in 2023.
      Detailed in the Nature Astronomy paper, among the most compelling detections were amino acids – 14 of the 20 that life on Earth uses to make proteins – and all five nucleobases that life on Earth uses to store and transmit genetic instructions in more complex terrestrial biomolecules, such as DNA and RNA, including how to arrange amino acids into proteins.
      Scientists also described exceptionally high abundances of ammonia in the Bennu samples. Ammonia is important to biology because it can react with formaldehyde, which also was detected in the samples, to form complex molecules, such as amino acids – given the right conditions. When amino acids link up into long chains, they make proteins, which go on to power nearly every biological function.
      These building blocks for life detected in the Bennu samples have been found before in extraterrestrial rocks. However, identifying them in a pristine sample collected in space supports the idea that objects that formed far from the Sun could have been an important source of the raw precursor ingredients for life throughout the solar system.
      “The clues we’re looking for are so minuscule and so easily destroyed or altered from exposure to Earth’s environment,” said Danny Glavin, a senior sample scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and co-lead author of the Nature Astronomy paper. “That’s why some of these new discoveries would not be possible without a sample-return mission, meticulous contamination-control measures, and careful curation and storage of this precious material from Bennu.”
      While Glavin’s team analyzed the Bennu samples for hints of life-related compounds, their colleagues, led by Tim McCoy, curator of meteorites at the Smithsonian’s National Museum of Natural History in Washington, and Sara Russell, cosmic mineralogist at the Natural History Museum in London, looked for clues to the environment these molecules would have formed. Reporting in the journal Nature, scientists further describe evidence of an ancient environment well-suited to kickstart the chemistry of life.
      Ranging from calcite to halite and sylvite, scientists identified traces of 11 minerals in the Bennu sample that form as water containing dissolved salts evaporates over long periods of time, leaving behind the salts as solid crystals.
      Similar brines have been detected or suggested across the solar system, including at the dwarf planet Ceres and Saturn’s moon Enceladus.
      Although scientists have previously detected several evaporites in meteorites that fall to Earth’s surface, they have never seen a complete set that preserves an evaporation process that could have lasted thousands of years or more. Some minerals found in Bennu, such as trona, were discovered for the first time in extraterrestrial samples.
      “These papers really go hand in hand in trying to explain how life’s ingredients actually came together to make what we see on this aqueously altered asteroid,” said McCoy.
      For all the answers the Bennu sample has provided, several questions remain. Many amino acids can be created in two mirror-image versions, like a pair of left and right hands. Life on Earth almost exclusively produces the left-handed variety, but the Bennu samples contain an equal mixture of both. This means that on early Earth, amino acids may have started out in an equal mixture, as well. The reason life “turned left” instead of right remains a mystery.
      “OSIRIS-REx has been a highly successful mission,” said Jason Dworkin, OSIRIS-REx project scientist at NASA Goddard and co-lead author on the Nature Astronomy paper. “Data from OSIRIS-REx adds major brushstrokes to a picture of a solar system teeming with the potential for life. Why we, so far, only see life on Earth and not elsewhere, that’s the truly tantalizing question.”
      NASA Goddard provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. NASA Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA’s Johnson Space Center in Houston. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s (Japan Aerospace Exploration Agency) Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.
      For more information on the OSIRIS-REx mission, visit:
      https://www.nasa.gov/osiris-rex
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Rani Gran
      Goddard Space Flight Center, Greenbelt, Maryland
      301-286-2483
      rani.c.gran@nasa.gov
      Share
      Details
      Last Updated Jan 29, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Asteroids Bennu Goddard Space Flight Center Science Mission Directorate

      View the full article
    • By European Space Agency
      The European Space Agency (ESA) Planetary Defence Office is closely monitoring the recently discovered asteroid 2024 YR4, which has a very small chance of impacting Earth in 2032.
       This page was last updated on 29 January 2025.
      View the full article
    • By NASA
      During the Artemis II mission to the Moon, NASA astronauts Reid Wiseman and Victor Glover will take control and manually fly Orion for the first time, evaluating the handling qualities of the spacecraft during a key test called the proximity operations demonstration. This is how to fly Orion.
      On NASA’s Artemis II test flight, the first crewed mission under the agency’s Artemis campaign, astronauts will take the controls of the Orion spacecraft and periodically fly it manually during the flight around the Moon and back. The mission provides the first opportunity to ensure the spacecraft operates as designed with humans aboard, ahead of future Artemis missions to the Moon’s surface.

      The first key piloting test, called the proximity operations demonstration, will take place after the four crew members — NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen — are safely in space, about three hours into the mission. To evaluate the spacecraft’s manual handling qualities, the crew will pilot Orion to approach and back away from the detached upper stage of the SLS (Space Launch System) rocket.

      Crew members participating in the demonstration will use two different controllers, called rotational and translational hand controllers, to steer the spacecraft. Three display screens provide the astronauts with data, and another device, called the cursor control device, allows the crew to interact with the displays.

      Astronauts will use the rotational hand controller (RHC), gripped in the right hand, to rotate the spacecraft. It controls Orion’s attitude, or the direction the spacecraft is pointing. If the crew wants to point Orion’s nose left, the RHC is twisted left – for nose right, they will twist the RHC right. Similarly, the RHC can control the nose to pitch up or down or roll right or left. “On Artemis II, most of the time the spacecraft will fly autonomously, but having humans aboard is a chance to help with future mission success,” said Reid Wiseman. “If something goes wrong, a crewmember can jump on the controls and help fix the problem. One of our big goals is to check out this spacecraft and have it completely ready for our friends on Artemis III.”

      The commander and pilot seats are each equipped with a rotational hand controller (RHC), gripped in the right hand, to rotate the spacecraft. It controls Orion’s attitude, or the direction the spacecraft is pointing. If the crew wants to point Orion’s nose left, the RHC is twisted left — for nose right, they will twist the RHC right. Similarly, the RHC can control the nose to pitch up or down or roll right or left.

      The translational hand controller (THC), located to the right or left of the display screens, will move Orion from one point to another. To move the spacecraft forward, the crew pushes the controller straight in — to back up, they will pull the controller out. And similarly, the controller can be pushed up or down and left or right to move in those directions.

      When the crew uses one of the controllers, their command is detected by Orion’s flight software, run by the spacecraft’s guidance, navigation, and control system. The flight software was designed, developed, and tested by Orion’s main contractor, Lockheed Martin.
      The crew will use translational hand controller (THC), located to the right or left of the display screens, will move Orion from one point to another. To move the spacecraft forward, the crew pushes the controller straight in – to back up, they will pull the controller out. And similarly, the controller can be pushed up or down and left or right to move in those directions. “We’re going to perform flight test objectives on Artemis II to get data on the handling qualities of the spacecraft and how well it maneuvers,” said Jeffrey Semrau, Lockheed Martin’s manual controls flight software lead for Artemis missions. “We’ll use that information to upgrade and improve our control systems and facilitate success for future missions.”

      Depending on what maneuver the pilot has commanded, Orion’s software determines which of its 24 reaction control system thrusters to fire, and when. These thrusters are located on Orion’s European-built service module. They provide small amounts of thrust in any direction to steer the spacecraft and can provide torque to allow rotation control.

      The cursor control device allows the crew to interact with the three display screens that show spacecraft data and information. This device allows the crew to interact with Orion even under the stresses of launch or entry when gravitational forces can prevent them from physically reaching the screens.
      The cursor control device allows the crew to interact with the three display screens that show spacecraft data and information. This device allows the crew to interact with Orion even under the stresses of launch or entry when gravitational forces can prevent them from physically reaching the screens. Next to Orion’s displays, the spacecraft also has a series of switches, toggles, and dials on the switch interface panel. Along with switches the crew will use during normal mission operations, there is also a backup set of switches they can use to fly Orion if a display or hand controller fails.

      “This flight test will simulate the flying that we would do if we were docking to another spacecraft like our lander or to Gateway, our lunar space station,” said Victor Glover. “We’re going to make sure that the vehicle flies the way that our simulators approximate. And we’re going to make sure that it’s ready for the more complicated missions ahead.”

      The approximately 10-day Artemis II flight will test NASA’s foundational human deep space exploration capabilities, the SLS rocket, Orion spacecraft, and supporting ground systems, for the first time with astronauts and will pave the way for lunar surface missions.
      View the full article
    • By NASA
      Jason Dworkin, project scientist for OSIRIS-REx at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, views a portion of the asteroid Bennu sample in the center’s astrobiology lab under microscope in November 2023, shortly after it arrived from the curation team at the agency’s Johnson Space Center in Houston.Credit: NASA/Molly Wasser NASA will brief media at 11 a.m. EST Wednesday, Jan. 29, to provide an update on science results from NASA’s OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security – Regolith Explorer) mission, which delivered a sample of asteroid Bennu to Earth in September 2023.
      Audio of the media call will stream live on the agency’s website.
      Participants in the teleconference include:
      Nicky Fox, associate administrator, Science Mission Directorate, NASA Headquarters, Washington Danny Glavin, senior scientist for sample return, NASA’s Goddard Space Flight Center Greenbelt, Maryland Jason Dworkin, OSIRIS-REx project scientist, NASA Goddard Tim McCoy, curator of meteorites, Smithsonian Natural History Museum, Washington  Sara Russell, cosmic mineralogist, Natural History Museum, London Media interested in participating by phone must RSVP no later than two hours prior to the start of the call to: molly.l.wasser@nasa.gov. A copy of NASA’s media accreditation policy is online.
      After the teleconference, NASA Goddard will host a limited onsite media availability for reporters local to the greater Washington area. The availability will include opportunities to tour the center’s astrobiology lab, which contributed to the study of the Bennu sample. Interested reporters should request participation by Sunday, Jan. 26, to: rob.garner@nasa.gov.
      Launched on Sept. 8, 2016, OSIRIS-REx was the first U.S. mission to collect a sample from an asteroid in space. The spacecraft traveled to near-Earth asteroid Bennu and collected a sample of rocks and dust from the surface in 2020. It delivered the sample to Earth on Sept. 24, 2023.
      To learn more about OSIRIS-REx, visit:
      https://science.nasa.gov/mission/osiris-rex/
      -end-
      Karen Fox / Molly Wasser
      Headquarters, Washington
      202-358-1600
      karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov
      Share
      Details
      Last Updated Jan 24, 2025 EditorJessica TaveauLocationNASA Headquarters Related Terms
      OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Asteroids Bennu Goddard Space Flight Center Johnson Space Center Near-Earth Asteroid (NEA) Planetary Science Division Science Mission Directorate View the full article
  • Check out these Videos

×
×
  • Create New...