Members Can Post Anonymously On This Site
Landslides at the foot of Olympus Mons
-
Similar Topics
-
By NASA
NASA’s UAVSAR airborne radar instrument captured data in fall 2024 showing the mo-tion of landslides on the Palos Verdes Peninsula following record-breaking rainfall in Southern California in 2023 and another heavy-precipitation winter in 2024. Darker red indicates faster motion.NASA Earth Observatory Analysis of data from NASA radar aboard an airplane shows that the decades-old active landslide area on the Palos Verdes Peninsula has expanded.
Researchers at NASA’s Jet Propulsion Laboratory in Southern California used data from an airborne radar to measure the movement of the slow-moving landslides on the Palos Verdes Peninsula in Los Angeles County. The analysis determined that, during a four-week period in the fall of 2024, land in the residential area slid toward the ocean by as much as 4 inches (10 centimeters) per week.
Portions of the peninsula, which juts into the Pacific Ocean just south of the city of Los Angeles, are part of an ancient complex of landslides and has been moving for at least the past six decades, affecting hundreds of buildings in local communities. The motion accelerated, and the active area expanded following record-breaking rainfall in Southern California in 2023 and heavy precipitation in early 2024.
To create this visualization, the Advanced Rapid Imaging and Analysis (ARIA) team used data from four flights of NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) that took place between Sept. 18 and Oct. 17. The UAVSAR instrument was mounted to a Gulfstream III jet flown out of NASA’s Armstrong Flight Research Center in Edwards, California, and the four flights were planned to estimate the speed and direction of the landslides in three dimensions.
In the image above, colors indicate how fast parts of the landslide complex were moving in late September and October, with the darkest reds indicating the highest speeds. The arrows represent the direction of horizontal motion. The white solid lines are the boundaries of the active landslide area as defined in 2007 by the California Geological Survey.
“In effect, we’re seeing that the footprint of land experiencing significant impacts has expanded, and the speed is more than enough to put human life and infrastructure at risk,” said Alexander Handwerger, the JPL landslide scientist who performed the analysis.
The insights from the UAVSAR flights were part of a package of analyses by the ARIA team that also used data from ESA’s (the European Space Agency’s) Copernicus Sentinel-1A/B satellites. The analyses were provided to California officials to support the state’s response to the landslides and made available to the public at NASA’s Disaster Mapping Portal.
Handwerger is also the principal investigator for NASA’s upcoming Landslide Climate Change Experiment, which will use airborne radar to study how extreme wet or dry precipitation patterns influence landslides. The investigation will include flights over coastal slopes spanning the California coastline.
More About ARIA, UAVSAR
The ARIA mission is a collaboration between JPL and Caltech, which manages JPL for NASA, to leverage radar and optical remote-sensing, GPS, and seismic observations for science as well as to aid in disaster response. The project investigates the processes and impacts of earthquakes, volcanoes, landslides, fires, subsurface fluid movement, and other natural hazards.
UAVSAR has flown thousands of radar missions around the world since 2007, studying phenomena such as glaciers and ice sheets, vegetation in ecosystems, and natural hazards like earthquakes, volcanoes, and landslides.
News Media Contacts
Andrew Wang / Jane J. Lee
Jet Propulsion Laboratory, Pasadena, Calif.
626-379-6874 / 818-354-0307
andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov
2025-012
Share
Details
Last Updated Jan 31, 2025 Related Terms
Earth Science Airborne Science Armstrong Flight Research Center Earth Earth Science Division Explore More
3 min read NASA Tests Air Traffic Surveillance Technology Using Its Pilatus PC-12 Aircraft
Article 1 week ago 5 min read How New NASA, India Earth Satellite NISAR Will See Earth
Article 1 week ago 6 min read NASA International Space Apps Challenge Announces 2024 Global Winners
Article 2 weeks ago Keep Exploring Discover More Topics From NASA
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By USH
The huge anomaly, showed up on Ventusky.com ocean monitoring system, does appear to originate from the Antarctica area deep down in the the southern hemisphere on April 9th the day after the eclipse of 2024 around 2 pm. and on April 11th it suddenly disappears off the map.
This thing which is the size of Texas traveled down here between South America and Antarctica and then up through the the Atlantic Ocean implying that there is a very large field of waves measuring about 80 foot.
Speculation runs rampant regarding the nature of this anomaly. Could it be the aftermath of a meteor impact in the ocean, or perhaps the result of an undocumented seismic event?
Another theory posits the involvement of an Unidentified Submerged Object (USO), a colossal underwater craft. This hypothesis suggests that the anomaly may not be a rogue wave but rather a massive object emitting signals mimicking the characteristics of an 80-foot wave.
Notably, the absence of any tsunami warnings along the trajectory of this peculiar object adds to the mystery.
Once again, the presence of an inexplicable energy form hints at the existence of a large underwater object lurking within the depths of the southern hemisphere of our planet.
View the full article
-
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.