Members Can Post Anonymously On This Site
Getting ready for Huginn
-
Similar Topics
-
By NASA
2 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Farms in California’s Sacramento-San Joaquin River Delta face strict reporting requirements for water usage because the delta supplies most of the state’s freshwater. This Landsat image uses infrared wavelengths to depict vegetation.Credit: U.S. Geological Survey The 30-acre pear orchard in the Sacramento-San Joaquin River Delta has been in Brett Baker’s family since the end of the Gold Rush. After six generations, though, California’s most precious resource is no longer gold – it’s water. And most of the state’s freshwater is in the delta.
Landowners there are required to report their water use, but methods for monitoring were expensive and inaccurate. Recently, however, a platform called OpenET, created by NASA, the U.S. Geological Survey (USGS), and other partners, has introduced the ability to calculate the total amount of water transferred from the surface to the atmosphere through evapotranspiration. This is a key measure of the water that’s actually being removed from a local water system. It’s calculated based on imagery from Landsat and other satellites.
“It’s good public policy to start with a measure everyone can agree upon,” Baker said.
OpenET is only one of the latest uses researchers and businesses continue finding for Landsat over 50 years after the program started collecting continuous imagery of Earth’s surface. NASA has built and launched all nine of the satellites before handing them over to USGS, which manages the program.
Some of the most pressing questions people ask about Earth are about the food it’s producing. Agriculture and adjacent industries are among the heaviest users of Earth-imaging data, which can help assess crop health and predict yields.
The latest Landsat satellite, Landsat 9, went into orbit in fall of 2021. NASA and the USGS are already developing options for the next iteration of Landsat, currently known as Landsat Next.Credit: NASA Even in this well-established niche, though, new capabilities continue to emerge. One up-and-coming company is using Landsat to validate sustainable farming practices by measuring carbon stored in the ground, which can be detected in the reflectance rate in certain wavelengths. This is how Perennial Inc. is enabling emerging markets for carbon credits, through which farmers get paid for maximizing their land’s storage of carbon.
The company is also discovering interest among food companies that want to reduce their environmental impact by choosing eco-conscious suppliers, as well as companies in the fertilizer, farm equipment, and agricultural lending businesses.
Landsat also enables countless map-based apps, studies of changes in Earth’s surface cover over half a century, and so much more.
Read More Share
Details
Last Updated Oct 16, 2024 Related Terms
Technology Transfer & Spinoffs Spinoffs Technology Transfer Explore More
2 min read Controlled Propulsion for Gentle Landings
A valve designed for NASA rover landings enables effective stage separations for commercial spaceflight
Article 5 days ago 2 min read Tech Today: Spraying for Food Safety
Article 1 week ago 2 min read The Science of the Perfect Cup for Coffee
Material research is behind the design of a temperature-regulating mug
Article 3 weeks ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
5 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
A SpaceX Falcon Heavy rocket with the Europa Clipper spacecraft aboard is seen at Launch Complex 39A as preparations continue for the mission, Sunday, Oct. 13, at NASA’s Kennedy Space Center in Florida. NASA Find details about the launch sequences for the orbiter, which is targeting an Oct. 14 liftoff on its mission to search for ingredients of life at Jupiter’s moon Europa.
In less than 24 hours, NASA’s Europa Clipper spacecraft is slated to launch from the agency’s Kennedy Space Center in Florida aboard a Falcon Heavy rocket. Its sights are set on Jupiter’s ice-encased moon Europa, which the spacecraft will fly by 49 times, coming as close as 16 miles (25 kilometers) from the surface as it searches for ingredients of life.
Launch is set for 12:06 p.m. EDT on Monday, Oct. 14, with additional opportunities through Nov 6. Each opportunity is instantaneous, meaning there is only one exact time per day when launch can occur. Plans to launch Europa Clipper on Oct. 10 were delayed due to impacts of Hurricane Milton.
NASA’s Europa Clipper is the first mission dedicated to studying Jupiter’s icy moon Europa, one of the most promising places in our solar system to find an environment suitable for life outside of Earth. With its massive solar arrays extended, Europa Clipper could span a basketball court (100 feet, or 30.5 meters, tip to tip). In fact, it’s the largest spacecraft NASA has ever built for a planetary mission. The journey to Jupiter is a long one — 1.8 billion miles (2.9 billion kilometers) — and rather than taking a straight path there, Europa Clipper will loop around Mars and then Earth, gaining speed as it swings past.
The spacecraft will begin orbiting Jupiter in April 2030, and in 2031 it will start making those 49 science-focused flybys of Europa while looping around the gas giant. The orbit is designed to maximize the science Europa Clipper can conduct and minimize exposure to Jupiter’s notoriously intense radiation.
But, of course, before any of that can happen, the spacecraft has to leave Earth behind. The orbiter’s solar arrays are folded and stowed for launch. Testing is complete on the spacecraft’s various systems and its payload of nine science instruments and a gravity science investigation. Loaded with over 6,060 pounds (2,750 kilograms) of the propellant that will get Europa Clipper to Jupiter, the spacecraft has been encapsulated in the protective nose cone, or payload fairing, atop a SpaceX Falcon Heavy rocket, which is poised for takeoff from historic Launch Complex 39A.
Launch Sequences
The Falcon Heavy has two stages and two side boosters. After the side boosters separate, the core stage will be expended into the Atlantic Ocean. Then the second stage of the rocket, which will help Europa Clipper escape Earth’s gravity, will fire its engine.
Technicians encapsulated NASA’s Europa Clipper spacecraft inside payload fairings on Wednesday, Oct. 2, at NASA’s Kennedy Space Center in Florida. The fairings will protect the spacecraft during launch as it begins its journey to explore Jupiter’s icy moon Europa. NASA/Ben Smegelsky Once the rocket is out of Earth’s atmosphere, about 50 minutes after launch, the payload fairing will separate from its ride, split into two halves, and fall safely back to Earth, where it will be recovered and reused. The spacecraft will then separate from the upper stage about an hour after launch. Stable communication with the spacecraft is expected by about 19 minutes after separation from the rocket, but it could take somewhat longer.
About three hours after launch, Europa Clipper will deploy its pair of massive solar arrays, one at a time, and direct them at the Sun.
Mission controllers will then begin to reconfigure the spacecraft into its planned operating mode. The ensuing three months of initial checkout include a commissioning phase to confirm that all hardware and software is operating as expected.
While Europa Clipper is not a life-detection mission, it will tell us whether Europa is a promising place to pursue an answer to the fundamental question about our solar system and beyond: Are we alone?
Scientists suspect that the ingredients for life — water, chemistry, and energy — could exist at the moon Europa right now. Previous missions have found strong evidence of an ocean beneath the moon’s thick icy crust, potentially with twice as much liquid water as all of Earth’s oceans combined. Europa may be home to organic compounds, which are essential chemical building blocks for life. Europa Clipper will help scientists confirm whether organics are there, and also help them look for evidence of energy sources under the moon’s surface.
This artist’s concept depicts NASA’s Europa Clipper spacecraft in orbit at Jupiter as it passes over the gas giant’s icy moon Europa (lower right). Scheduled to arrive at Jupiter in April 2030, the mission will be the first to specifically target Europa for detailed science investigation. NASA/JPL-Caltech More About Europa Clipper
Europa Clipper’s three main science objectives are to determine the thickness of the moon’s icy shell and its interactions with the ocean below, to investigate its composition, and to characterize its geology. The mission’s detailed exploration of Europa will help scientists better understand the astrobiological potential for habitable worlds beyond our planet.
Managed by Caltech in Pasadena, California, NASA’s Jet Propulsion Laboratory leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland; NASA’s Marshall Space Flight Center in Huntsville, Alabama; and NASA’s Langley Research Center in Hampton, Virginia. The Planetary Missions Program Office at Marshall executes program management of the Europa Clipper mission.
NASA’s Launch Services Program, based at Kennedy, manages the launch service for the Europa Clipper spacecraft, which will launch on a SpaceX Falcon Heavy rocket from Launch Complex 39A at Kennedy.
Find more information about Europa here:
europa.nasa.gov
8 Things to Know About Europa Clipper Europa Clipper Teachable Moment NASA’s Europa Clipper Gets Its Giant Solar Arrays Kids Can Explore Europa With NASA’s Space Place Get the Europa Clipper Press Kit News Media Contacts
Meira Bernstein / Karen Fox
NASA Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / karen.c.fox@nasa.gov
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-287-4115
gretchen.p.mccartney@jpl.nasa.gov
2024-139
Share
Details
Last Updated Oct 13, 2024 Related Terms
Europa Clipper Astrobiology Europa Jet Propulsion Laboratory Jupiter Jupiter Moons Explore More
6 min read Can Life Exist on an Icy Moon? NASA’s Europa Clipper Aims to Find Out
Article 16 hours ago 4 min read First Greenhouse Gas Plumes Detected With NASA-Designed Instrument
Article 3 days ago 5 min read Does Distant Planet Host Volcanic Moon Like Jupiter’s Io?
Article 3 days ago Keep Exploring Discover Related Topics
Missions
Humans in Space
Climate Change
Solar System
View the full article
-
By NASA
4 min read
Preparations for Next Moonwalk Simulations Underway (and Underwater)
Starfish Space has been awarded SBIR Phase III funding for a mission to inspect defunct satellites to increase opportunities to mitigate space debris. An artist’s concept image shows the company’s Otter spacecraft, which is capable of inspecting and deorbiting defunct spacecraft, in orbit.Starfish Space NASA is advancing an innovative approach to enabling commercial inspection of defunct, or inoperable, satellites in low Earth orbit, a precursor to capturing and repairing or removing the satellites.
The agency has awarded Starfish Space of Seattle, Washington, a Phase III Small Business Innovation Research (SBIR) contract to complete the Small Spacecraft Propulsion and Inspection Capability (SSPICY) mission. The award follows a Phase III study, which funded four U.S. small businesses including Starfish to develop mission concepts. Starfish Space will receive $15 million over three years to execute the mission.
The ability to inspect defunct spacecraft and identify opportunities for repair or deorbiting is critical to maintaining a safe orbital environment for spacecraft and humans. Orbital debris mitigation is a key component of NASA’s Space Sustainability Strategy.
“The SSPICY mission is designed to mature technologies needed for U.S. commercial capabilities for satellite servicing and logistics or disposal,” said Bo Naasz, senior technical lead for in-space servicing, manufacturing, and assembly in NASA’s Space Technology Mission Directorate. “In-space inspection helps us characterize the physical state of a satellite, gather data on what may leave spacecraft stranded, and improve our understanding of fragmentations and collisions, a difficult but critical factor in a sustainable space operating environment.”
The Starfish-led mission uses the company’s Otter spacecraft, a small satellite about the size of an oven, which is designed to inspect, dock with, and service or deorbit other satellites. Otter’s electric propulsion system will not only help it efficiently travel to multiple satellites, but the SSPICY demonstration also will mature the spacecraft’s ability to perform inspections using electric propulsion, an important enabling technology not typically used for rendezvous and proximity operations.
During the SSPICY mission, Otter will visit and inspect multiple U.S. owned defunct satellites that have agreed to be visited and inspected – a delicate and challenging task, as satellites move quickly and are kept far apart from each other for safety. Otter will approach within hundreds of meters of each satellite to conduct inspections during mission operations. During the inspection, Otter will gather key information about each of the debris objects including their spin rate, spin axes, and current conditions of the objects’ surface materials.
The SSPICY mission is the first commercial space debris inspection funded by NASA and supports the agency’s efforts to extend the life of satellites while reducing space debris. Satellites that are no longer in use can break apart or collide with one another, creating debris clouds that pose risk to human spaceflight, science and robotic missions in Earth’s orbit, and missions to other planets in the solar system. Data from inspections like those planned during the SSPICY demonstration will play a critical role in understanding the nature of defunct satellites and advancing solutions for reuse or disposal.
“We are excited to expand our partnership with NASA, building on our shared commitment to advancing in-space manufacturing and assembly capabilities,” said Trevor Bennett, co-founder of Starfish Space. “It’s an honor for Starfish to lead the first commercial debris inspection mission funded by NASA. We look forward to collaborating on this and future satellite servicing missions to enable a new paradigm for humanity in space.”
The Otter spacecraft is expected to launch in late 2026 and will begin performing inspections in 2027.
The SSPICY demonstration is funded and managed by NASA’s Small Spacecraft Technology program based at NASA’s Ames Research Center in California’s Silicon Valley. The award is enabled by NASA’s SBIR program, which is open to U.S. small businesses to develop an innovation or technology. These programs are part of NASA’s Space Technology Mission Directorate.
Learn more at:
https://www.nasa.gov/space-technology-mission-directorate
Share
Details
Last Updated Sep 25, 2024 Related Terms
Ames Research Center Small Business Innovation Research / Small Business Small Satellite Missions Small Spacecraft Technology Program Space Sustainability Space Technology Mission Directorate Explore More
3 min read NASA’s Record-Breaking Laser Demo Completes Mission
Article 5 hours ago 4 min read Robotic Moving ‘Crew’ Preps for Work on Moon
Article 7 hours ago 4 min read NASA Expands Small Business, Industry Engagement Resources
Article 2 days ago Keep Exploring Discover Related Topics
About Ames
Space Technology Mission Directorate
Ames Research Center SBIR/STTR Program Office
NASA’s Space Sustainability Strategy
View the full article
-
By NASA
Lunar geologist Zachary Morse scrabbles over Earth’s rocky landscapes to test equipment for future missions to the Moon and Mars.
Name: Zachary Morse
Title: Assistant Research Scientist in Planetary Geology
Organization: The Planetary Geology, Geophysics and Geochemistry Laboratory, Science Directorate (Code 698)
Zachary Morse is an assistant research scientist in planetary geology at NASA’s Goddard Space Flight Center in Greenbelt, Md. Photo courtesy of Zachary Morse What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission?
I work with teams that integrate field instrumentation into future lunar and Mars exploration missions. We go to analog field sites, places on Earth that are geologically similar to the Moon or Mars, to test field instruments. I also support the development of science operations for crewed exploration of the lunar surface.
Why did you become a geologist? What is your educational background?
I always knew that I wanted to study space. In college I started in engineering, but switched to geology because much of the science NASA does on the Moon or Mars involves studying the rocks.
In 2013, I got a B.S. in geology from West Virginia University. In 2018, I got a Ph.D. in planetary science from Western University in London, Ontario.
“I work with teams that integrate field instrumentation into future lunar and Mars exploration missions,” said Zachary. “We go to analog field sites, places on Earth that are geologically similar to the Moon or Mars, to test field instruments.”Photo courtesy of Zachary Morse What brought you to Goddard?
In January 2020, I came to Goddard to do a post-doctoral fellowship because I wanted to work on the Remote, In Situ, and Synchrotron Studies for Science and Exploration 2 (Rise2) project. We go into the field to test handheld geologic instruments that could later be incorporated into missions.
What have been some of your favorite trips into the field?
Iceland, Hawaii, and the New Mexico desert, which is our primary field site for Rise2. These were organized as part of the Goddard Instrument Field Team, a group that hosts trips each year to different analog field sites.
The Iceland trip was my favorite because the place we got to explore looked almost exactly like pictures of the Moon’s surface. It was beautiful and the right setting to learn about the Earth and the Moon. Our team was about 40 people. We were there for two weeks. We mostly camped.
It was definitely a unique experience, one hard to put in words. On Earth, you would normally go camping in a lush forest. But there were no trees, just rock and dust. It was absolutely beautiful in its own way.
The Hawaii trip was also unique. Our team of about 30 people spent almost the entire 10 days in the lava tubes. Not many people get to go into lava tubes. It was very exciting. The biggest part of the lava tube was about 20 feet high and about 10 feet wide. The smallest was so small we had to crawl through.
How do you document field work?
In addition to scientific data, we always take pictures of the rocks and outcrops. It is important to document what a site is like before people interact with it. Sometimes we collect rock samples to bring back to the lab, but we leave the place as we found it.
“I always knew that I wanted to study space,” said Zachary. “In college I started in engineering, but switched to geology because much of the science NASA does on the Moon or Mars involves studying the rocks.”Photo courtesy of Zachary Morse Where do you see yourself in five years?
I hope to remain at Goddard; I love it. The team is great and the science is fascinating and important. I want to keep pursuing opportunities for field work. My main goal is to get involved in a lunar mission and support Artemis lunar exploration.
What do you do for fun?
I love the outdoors. I love kayaking on lakes, rivers, and streams. My favorite place is in the Adirondacks. I also love hiking, which I do all over, especially in West Virginia.
Who is your mentor and what did your mentor teach you?
Kelsey Young is my supervisor and mentor. She has taught me so many things including how missions will function and how we can best test equipment in the field for future missions. She taught me how to be organized and focused.
Kelsey Young Dives Into Fieldwork With Aplomb Who inspires you?
Jack Schmitt is an Apollo 17 astronaut who inspired me because he is a geologist. He was the first and only professional geologist who walked on the surface of the Moon during the Apollo missions. I have heard him speak many times and have personally met him.
I would jump at the chance to be the next geologist-astronaut!
What rock formations in the world would you like to explore?
Top of my list would be to explore Acadia National Park in Maine. There is a ton of diverse geology in a small area and the pictures all look stunning. I would also love to visit Glacier National Park to experience the glacier before it melts.
What is your “six-word memoir”? A six-word memoir describes something in just six words.
Exploring Earth to prepare lunar missions.
By Elizabeth M. Jarrell
NASA’s Goddard Space Flight Center, Greenbelt, Md.
Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage.
Share
Details
Last Updated Sep 03, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related Terms
People of Goddard Goddard Space Flight Center People of NASA Explore More
5 min read Aaron Vigil Helps Give SASS to Roman Space Telescope
Article 5 days ago 7 min read Tyler Parsotan Takes a Long Look at the Transient Universe with NASA’s Swift
Article 2 weeks ago 7 min read Xiaoyi Li Engineers Instruments and the Teams that Get Them Done
Instrument Systems Engineer Xiaoyi Li leads technical teams united by a common vision to achieve…
Article 3 weeks ago View the full article
-
Check out these Videos
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.