Jump to content

HubbleSite

Members
  • Posts

    1,236
  • Joined

  • Last visited

    Never

Everything posted by HubbleSite

  1. At the center of the Crab Nebula, located in the constellation Taurus, lies a celestial "beating heart" that is an example of extreme physics in space. The tiny object blasts out blistering pulses of radiation 30 times a second with unbelievable clock-like precision. Astronomers soon figured out that it was the crushed core of an exploded star, called a neutron star, which wildly spins like a blender on puree. The burned-out stellar core can do this without flying apart because it is 10 billion times stronger than steel. This incredible density means that the mass of 1.4 suns has been crushed into a solid ball of neutrons no bigger than the width of a large city. This Hubble image captures the region around the neutron star. It is unleashing copious amounts of energy that are pushing on the expanding cloud of debris from the supernova explosion — like an animal rattling its cage. This includes wave-like tsunamis of charged particles embedded in deadly magnetic fields. On July 4, 1054, Chinese astronomers recorded the supernova that formed the Crab Nebula. The ultimate celestial firework, this "guest star" was visible during the daytime for 23 days, shining six times brighter than the planet Venus. The supernova was also recorded by Japanese, Arabic, and Native American stargazers. While searching for a comet that was predicted to return in 1758, French astronomer Charles Messier discovered a hazy nebula in the direction of the long-vanished supernova. He would later add it to his celestial catalog as "Messier 1." Because M1 didn't move across the sky like a comet, Messier simply ignored it other than just marking it as a "fake comet." Nearly a century later the British astronomer William Parsons sketched the nebula. Its resemblance to a crustacean led to M1's other name, the Crab Nebula. In 1928 Edwin Hubble first proposed associating the Crab Nebula to the Chinese "guest star" of 1054. View the full article
  2. Astronomers are using NASA's Hubble Space Telescope to study auroras — stunning light shows in a planet's atmosphere — on the poles of the largest planet in the solar system, Jupiter. The auroras were photographed during a series of Hubble Space Telescope Imaging Spectrograph far-ultraviolet-light observations taking place as NASA's Juno spacecraft approaches and enters into orbit around Jupiter. The aim of the program is to determine how Jupiter's auroras respond to changing conditions in the solar wind, a stream of charged particles emitted from the sun. Auroras are formed when charged particles in the space surrounding the planet are accelerated to high energies along the planet's magnetic field. When the particles hit the atmosphere near the magnetic poles, they cause it to glow like gases in a fluorescent light fixture. Jupiter's magnetosphere is 20,000 times stronger than Earth's. These observations will reveal how the solar system's largest and most powerful magnetosphere behaves. The full-color disk of Jupiter in this image was separately photographed at a different time by Hubble's Outer Planet Atmospheres Legacy (OPAL) program, a long-term Hubble project that annually captures global maps of the outer planets. View the full article
  3. The German Astronomical Society (AG) has announced that the most prestigious prize in Germany in the field of astronomy and astrophysics, the Karl Schwarzschild Medal, will be awarded this year to Robert Williams of the Space Telescope Science Institute (STScI) in Baltimore, Maryland. In Robert Williams the AG honors not only an outstanding scientist, but also a man with a dedication to scientific training and astronomical outreach. His name is inseparably linked to the most celebrated observation target of the Hubble Space Telescope (HST): the famous Hubble Deep Field (HDF). The German Astronomical Society will award the Karl Schwarzschild Medal, whose previous recipients include five Nobel laureates, to Robert Williams on September 13, 2016, during the opening ceremony of the annual conference of the AG in Bochum, Germany. The award is named after the German physicist and astronomer Karl Schwarzschild (1863-1916), one of the pioneers of modern astrophysics. View the full article
  4. As we celebrate the Fourth of July by watching dazzling fireworks shows, another kind of fireworks display is taking place in a small, nearby galaxy. A stellar fireworks show is lighting up one end of the diminutive galaxy Kiso 5639. The dwarf galaxy is shaped like a flattened pancake, but because it is tilted edge-on, it resembles a skyrocket, with a brilliant blazing head and a long, star-studded tail. Kiso 5639 is a rare, nearby example of elongated galaxies seen in abundance in the early universe. Astronomers suggest that the frenzied star birth is sparked by intergalactic gas raining on one end of the galaxy as it drifts through space. View the full article
  5. Pancake-shaped clouds not only appear in the children's book "Cloudy With a Chance of Meatballs," but also 3 billion miles away on the gaseous planet Neptune. When they appeared in July 2015, witnessed by amateur astronomers and the largest telescopes, scientists suspected that these clouds were bright companions to an unseen, dark vortex. The dark vortex is a high-pressure system where the flow of ambient air is perturbed and diverted upward over the vortex. This forms huge, lens-shaped clouds, that resemble clouds that sometimes form over mountains on Earth. When NASA's Voyager 2 spacecraft flew by Neptune in 1989, astronomers were surprised to see such a gaping, dark hole at southern latitudes in the giant planet's cyan-colored atmosphere. The dark spot later disappeared. But the Hubble Space Telescope captured a new northern dark spot of comparable size in 1994. Hubble captured the appearance of a new dark spot on May 16, 2016. The spot would span the width of the continental United States. View the full article
  6. In 1936, astronomers observed signs that the young star FU Orionis had begun gobbling material from its surrounding disk of gas and dust with a sudden voraciousness. During a three-month binge, as matter turned into energy, the star became 100 times brighter, heating the disk around it to temperatures of up to 12,000 degrees Fahrenheit. The brightening is the most extreme event of its kind that has been confirmed around a star the size of the sun, and may have implications for how stars and planets form. The intense baking of the star's surrounding disk likely changed its chemistry, permanently altering material that could one day turn into planets. FU Orionis is still devouring gas to this day, although not as quickly. Visible-light observations of FU Orionis, which is about 1,500 light-years away from Earth, in the constellation Orion, have shown astronomers that the star's extreme brightness began slowly fading after its initial 1936 burst. But to understand the relationship between the star and the surrounding disk, and to find out what the star was still snacking on, astronomers combined infrared data from NASA's Spitzer Space Telescope and the Stratospheric Observatory for Infrared Astronomy (SOFIA), the world's largest airborne observatory, which is jointly owned by NASA and the German Aerospace Center. They found that FU Orionis had continued its ravenous snacking after the initial brightening event, eating the equivalent of 18 Jupiters over the next 80 years. They also predict that FU Orionis will have run out of hot material to nosh on within a few hundred years. At that point, the star will return to the state it was in before the dramatic 1936 brightening event. View the full article
  7. Water is a hot topic in the study of exoplanets, including "hot Jupiters," whose masses are similar to that of Jupiter, but lie much closer to their parent star than Jupiter is to the sun. They are estimated to be a scorching 2,000 degrees Fahrenheit, meaning any water they host would take the form of water vapor. Astronomers have found many hot Jupiters with water in their atmospheres, but other hot Jupiters appear to have none. In a new study, scientists used exoplanet data from a single instrument on NASA's Hubble Space Telescope to uniformly characterize a group of 19 hot Jupiters previously studied with Hubble. They found that as much as half of the water in the atmospheres of the exoplanets may be blocked by these clouds or hazes. The new findings suggest that clouds or haze layers could be preventing a substantial amount of atmospheric water from being detected by space telescopes. The study is the first to quantify how much of the atmosphere would be shielded as a result of clouds or haze. View the full article
  8. When astronomer Edwin Hubble discovered nearly 100 years ago that the universe was uniformly expanding in all directions, the finding was a big surprise. Then, in the mid-1990s, another shocker occurred: astronomers found that the expansion rate was accelerating perhaps due to a repulsive property called "dark energy." Now, the latest measurements of our runaway universe suggest that it is expanding faster than astronomers thought. The consequences could be very significant for our understanding of the shadowy contents of our unruly universe. It may mean that dark energy is shoving galaxies away from each other with even greater – or growing – strength. Or, the early cosmos may contain a new type of subatomic particle referred to as "dark radiation." A third possibility is that "dark matter," an invisible form of matter that makes up the bulk of our universe, possesses some weird, unexpected characteristics. Finally, Einstein's theory of gravity may be incomplete. These unnerving scenarios are based on the research of a team led by Nobel Laureate Adam Riess, who began a quest in 2005 to measure the universe's expansion rate to unprecedented accuracy with new, innovative observing techniques. The new measurement reduces the rate of expansion to an uncertainty of only 2.4 percent. That's the good news. The bad news is that it does not agree with expansion measurements derived from probing the fireball relic radiation from the big bang. So it seems like something's amiss – possibly sending cosmologists back to the drawing board. View the full article
  9. Using data from three of NASA's Great Observatories (the Hubble Space Telescope, Chandra X-ray Observatory, and Spitzer Space Telescope), scientists have found the best evidence to date that supermassive black holes in the early universe were produced by the direct collapse of a gas cloud. If confirmed, this result could lead to new insight into how black holes were formed and grew billions of years ago. This artist's illustration depicts a possible "seed" for the formation of a supermassive black hole. The inset boxes contain Chandra (top) and Hubble (bottom) images of one of two candidate seeds, where the properties in the data matched those predicted by sophisticated models produced by researchers of the direct-collapse mechanism. View the full article
  10. On May 12, 2016, astronomers using NASA's Hubble Space Telescope captured this striking image of Mars, when the planet was 50 million miles from Earth. The photo reveals details as small as 20 miles to 30 miles across. This observation was made just a few days before Mars opposition on May 22, when the sun and Mars will be on exact opposite sides of Earth. Mars also will be 47.4 million miles from Earth. On May 30, Mars will be the closest it has been to Earth in 11 years, at a distance of 46.8 million miles. Mars is especially photogenic during opposition because it can be seen fully illuminated by the sun as viewed from Earth. View the full article
  11. For thousands of years, humans have recorded sightings of mysterious comets sweeping across the nighttime skies. These celestial wanderers, "snowballs" of dust and ice, are swift-moving visitors from the cold depths of space. Some of them periodically visit the inner solar system during their journeys around the sun. Astronomers using NASA's Hubble Space Telescope captured images of Comet 252P/LINEAR just after it swept by Earth on March 21. The visit was one of the closest encounters between a comet and our planet. The comet traveled within 3.3 million miles of Earth, or about 14 times the distance between our planet and the moon. The images reveal a narrow, well-defined jet of dust ejected by the comet's icy, fragile nucleus. The jet also appears to change direction in the images, which is evidence that the comets nucleus is spinning. The spinning nucleus makes the jet appear to rotate like the water jet from a rotating lawn sprinkler. These observations also represent the closest celestial object Hubble has observed, other than the moon. The comet will return to the inner solar system again in 2021. View the full article
  12. Makemake is one of several dwarf planets that reside in the frigid outer realm of our solar system called the Kuiper Belt, a "junkyard" of countless icy bodies left over from our solar system's formation. After discovering Makemake in 2005, astronomers had searched several times for a companion orbiting the icy world. Now, the Hubble Space Telescope has uncovered a tiny moon around Makemake that is estimated to be 100 miles wide. Nicknamed MK 2, the moon is more than 1,300 times fainter than Makemake, which is 870 miles across. MK 2 is 13,000 miles away from the dwarf planet. View the full article
  13. Twenty-six candles grace NASA's Hubble Space Telescope's birthday cake this year, and now one giant space "balloon" will add to the festivities. Just in time for the 26th anniversary of Hubble's launch on April 24, 1990, the telescope has photographed an enormous, balloon-like bubble being blown into space by a super-hot, massive star. Astronomers trained the iconic telescope on this colorful feature, called the Bubble Nebula, or NGC 7635. The bubble is 7 light-years across – about one-and-a-half times the distance from our sun to its nearest stellar neighbor, Alpha Centauri. The Bubble Nebula lies 7,100 light-years from Earth in the constellation Cassiopeia. View the full article
  14. Imagine driving through a small town containing modest-sized buildings and seeing a 100-story skyscraper. Astronomers found the equivalent monstrosity in space: a near-record supermassive black hole that weighs 17 billion suns and lives in a cosmic backwater community of a few galaxies. Until now, extremely massive black holes have been found at the cores of very large galaxies in regions of the universe packed with other large galaxies. This is not just coincidence. Like a cosmic Pac-Man, a monster black hole gobbles smaller black holes when two galaxies collide. This game of bumper cars is common in large galaxy clusters. In fact, the current black hole record holder tips the scale at 21 billion suns and resides in the crowded Coma galaxy cluster, located 330 million light-years away. The newly discovered supersized black hole resides in the center of a massive elliptical galaxy, NGC 1600, located in a small grouping of about 20 galaxies. Astronomers estimate that these smaller galactic groupings are about 50 times more abundant than spectacular galaxy clusters like the Coma cluster. Based on this discovery, astronomers are now asking, Is this the tip of an iceberg? Maybe there are more monster black holes out there that don't live in a skyscraper in Manhattan, but in a tall building somewhere in the Midwestern plains. View the full article
  15. Hubble's infrared vision pierced the dusty heart of our Milky Way galaxy to reveal more than half a million stars at its core. Except for a few blue, foreground stars, the stars are part of the Milky Way's nuclear star cluster, the most massive and densest stellar cluster in our galaxy. Located 27,000 light-years away, this region is so packed with stars, it is equivalent to having a million suns crammed into the volume of space between us and our closest stellar neighbor, Alpha Centauri, 4.3 light-years away. At the very hub of our galaxy, this star cluster surrounds the Milky Way's central supermassive black hole, which is about 4 million times the mass of our sun. View the full article
  16. NASA has selected 36 fellows for its prestigious Einstein, Hubble, and Sagan Fellowships. Each postdoctoral fellowship provides three years of support to awardees to pursue independent research in astronomy and astrophysics. The new fellows will begin their programs in the fall of 2016 at a host university or research center of their choosing in the United States. View the full article
  17. An international team of astronomers using the ultraviolet capabilities of NASA's Hubble Space Telescope has identified nine monster stars with masses over 100 times the mass of the sun in the star cluster R136. This makes for the largest sample of very massive stars identified to date. The results, which will be published in the Monthly Notices of the Royal Astronomical Society, raise many new questions about the formation of massive stars. R136 is only a few light-years across and is located in the Tarantula Nebula within the Large Magellanic Cloud, about 170,000 light-years away from Earth. The young cluster hosts many extremely massive, hot, and luminous stars whose energy is mostly radiated in the ultraviolet. View the full article
  18. To learn more about galaxy clusters, including how they grow via collisions, astronomers have used some of the world's most powerful telescopes, looking at different types of light. They have focused long observations with these telescopes on a half-dozen galaxy clusters. The name for the galaxy cluster project is the "Frontier Fields." Two of these Frontier Fields galaxy clusters, MACS J0416.1-2403 (abbreviated MACS J0416) in the right panel and MACS J0717.5+3745 (MACS J0717 for short) in the left panel, are featured here in a pair of multiwavelength images. Located about 4.3 billion light-years from Earth, MACS J0416 is a pair of colliding galaxy clusters that will eventually combine to form an even bigger cluster. MACS J0717, one of the most complex and distorted galaxy clusters known, is the site of a collision between four clusters. It is located about 5.4 billion light-years away from Earth. These new images of MACS J0416 and MACS J0717 contain data from three different telescopes: NASA's Chandra X-ray Observatory (diffuse emission in blue), Hubble Space Telescope (red, green, and blue), and the National Science Foundation's Karl G. Jansky Very Large Array (diffuse emission in pink). Where the X-ray and radio emission overlap the image appears purple. Astronomers also used data from the Giant Metrewave Radio Telescope in India in studying the properties of MACS J0416. View the full article
  19. NASA's Hubble Space Telescope is an amazing time machine; by looking back through space, astronomers actually look back through time. Now, by pushing Hubble to its limits, an international team of astronomers has shattered the cosmic distance record by viewing the farthest galaxy ever seen. Named GN-z11, this surprisingly bright, infant galaxy is seen as it was 13.4 billion years in the past. The astronomers saw it as it existed just 400 million years after the big bang, when the universe was only three percent of its current age. At a spectroscopically confirmed redshift of 11.1, the galaxy is even farther away than originally thought. It existed only 200 million to 300 million years after the time when scientists believe the very first stars started to form. At a billion solar masses, it is producing stars surprisingly quickly for such an early time. This new record will most likely stand until the launch of Hubble's successor, the James Webb Space Telescope, which will look even deeper into the universe for early galaxies. View the full article
  20. Though nearly 2,000 planets have been found around other stars, the light from only a handful of them has ever been collected by the world's most powerful telescopes. Ironically, a lot of them are detected by the shadows they cast, as they pass in front of their parent stars. Follow-up observations measure the planet's feeble, but telltale, gravitational tug on its parent star. Now, Hubble Space Telescope astronomers have been able to pick up the faint infrared glow of a giant planet located 170 light-years away from Earth. Not only is it glowing, but also rhythmically flickering as the planet spins on its axis like a top. The interpretation is that the subtle changes in the planet's brightness are due to a variegated cloud cover of comparatively bright and dark patches coming and going. These measurements have led to an estimate of how fast the planet is spinning through direct observation – a first for exoplanet astronomers. The gaseous world completes one rotation approximately every 10 hours, which, coincidentally, is the same rotation rate as Jupiter. The planet is dubbed a "super-Jupiter" because it is four times the mass of Jupiter, the largest known planet in our solar system. Because the planet is a comparative newborn, it is still hot as it contracts under gravity. These characteristics allow for infrared observations. The planet orbits a faint brown dwarf, designated 2M1207. The dwarf is too small to shine as stars do through nuclear fusion. The dwarf is so dim and far from the planet astronomers were able to isolate the planet's glow. View the full article
  21. After years of preparatory studies, NASA is formally starting an astrophysics mission designed to help unlock the secrets of the universe the Wide-Field Infrared Survey Telescope (WFIRST). WFIRST will image large regions of the sky in near-infrared light to answer fundamental questions about dark energy and the structure and evolution of the universe. It will also find and characterize planets beyond our solar system, and as a general-purpose observatory, revolutionize many other astrophysical topics. WFIRST will have a mirror the same size as Hubble's, but it will have a 100 times wider view of space. Slated for launch in the mid-2020s, it will complement the capabilities of NASA's other major astrophysical observatories. WFIRST is managed at NASA's Goddard Space Flight Center in Greenbelt, Maryland, with participation by the Jet Propulsion Laboratory (JPL) in Pasadena, California; the Space Telescope Science Institute (STScI) in Baltimore, Maryland; the Infrared Processing and Analysis Center (IPAC), also in Pasadena; and a science team comprised of members from U.S. research institutions across the country. STScI will be a partner on the WFIRST science operations and will focus during the mission formulation phase on the observation scheduling system, wide-field imaging data processing system, and the data archive. View the full article
  22. The old adage "what goes up must come down" even applies to an immense cloud of hydrogen gas outside our Milky Way galaxy. First discovered in the 1960s, the comet-shaped cloud is 11,000 light-years long and 2,500 light-years across. If the cloud could be seen in visible light, it would span the sky with an apparent diameter 30 times greater than the size of the full moon. The cloud, which is invisible at optical wavelengths, is plummeting toward our galaxy at nearly 700,000 miles per hour. Hubble was used to measure the chemical composition of the cloud as a means of assessing where it came from. Hubble astronomers were surprised to find that the cloud, which is largely composed of hydrogen, also has heavier elements that could only come from stars. This means the cloud came from the star-rich disk of our galaxy. The Smith Cloud is following a ballistic trajectory and will plow back into the Milky Way's disk in about 30 million years. When it does, astronomers believe it will ignite a spectacular burst of star formation, perhaps providing enough gas to make 2 million suns. View the full article
  23. Some of the Milky Way's "celebrity stars" — opulent, attention-getting, and short-lived — can be found in this Hubble Space Telescope image of the glittering star cluster called Trumpler 14. It is located 8,000 light-years away in the Carina Nebula, a huge star-formation region in our galaxy. Because the cluster is only 500,000 years old, it has one of the highest concentrations of massive, luminous stars in the entire Milky Way. Like some Hollywood celebrities, the stars will go out in a flash. Within just a few million years they will burn out and explode as supernovae. But the story's not over. The blast waves will trigger the formation of a new generation of stars inside the nebula in an ongoing cycle of star birth and death. View the full article
  24. Astronomers have made the most detailed study yet of an extremely massive young galaxy cluster using three of NASA's Great Observatories. This multiwavelength image shows this galaxy cluster, called IDCS J1426.5+3508 (IDCS 1426 for short), in X-rays recorded by the Chandra X-ray Observatory in blue, visible light observed by the Hubble Space Telescope in green, and infrared light from the Spitzer Space Telescope in red. This rare galaxy cluster, which is located 10 billion light-years from Earth, is almost as massive as 500 trillion suns. This object has important implications for understanding how these megastructures formed and evolved early in the universe. Astronomers have observed IDCS 1426 when the universe was less than a third of its current age. It is the most massive galaxy cluster detected at such an early age. View the full article
  25. Eta Carinae, the most luminous and massive stellar system located within 10,000 light-years of Earth, is best known for an enormous eruption seen in the mid-19th century that hurled an amount of material at least 10 times the sun's mass into space. Still shrouded by this expanding veil of gas and dust, Eta Carinae is the only object of its kind known in our galaxy. Now a study using archival data from NASA's Spitzer and Hubble space telescopes has found five similar objects in other galaxies for the first time. View the full article
×
×
  • Create New...