Members Can Post Anonymously On This Site
-
Posts
1,236 -
Joined
-
Last visited
Never
Content Type
Profiles
Forums
Events
Videos
Everything posted by HubbleSite
-
When some people get in the kitchen, they create a delicious meal but leave behind a chaotic mess of splattered food and dirty dishes. Cosmic cookery can be just as messy. While a star can create chemical elements as heavy as iron within its core, anything heavier needs a more powerful source like a stellar explosion or the collision of two neutron stars. Colliding neutron stars can yield gold, plutonium, and a variety of other elements. Theoretically, they also generate gravitational waves as they spiral together at breakneck speed before merging. The first gravitational wave signal from a neutron star merger was detected on August 17. It was accompanied by gamma rays and other light, allowing astronomers to locate a gravitational wave source for the first time. Hubble photographed the glow from this titanic collision, shining within the galaxy NGC 4993 at a distance of 130 million light-years. Hubble also obtained an infrared spectrum that may yield signs of exotic, radioactive elements. The analysis will continue while astronomers wait for the gravitational wave source to emerge from behind the Sun from Earth’s point of view, where it slipped just days after discovery. View the full article
-
A solitary frozen traveler has been journeying for millions of years toward the heart of our planetary system. The wayward vagabond, a city-sized snowball of ice and dust called a comet, was gravitationally kicked out of the Oort Cloud, its frigid home at the outskirts of the solar system. This region is a vast comet storehouse, composed of icy leftover building blocks from the construction of the planets 4.6 billion years ago. The comet is so small, faint, and far away that it eluded detection. Finally, in May 2017, astronomers using the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) in Hawaii spotted the solitary intruder at a whopping 1.5 billion miles away — between the orbits of Saturn and Uranus. The Hubble Space Telescope was enlisted to take close-up views of the comet, called C/2017 K2 PANSTARRS (K2). The comet is record-breaking because it is already becoming active under the feeble glow of the distant Sun. Astronomers have never seen an active inbound comet this far out, where sunlight is merely 1/225th its brightness as seen from Earth. Temperatures, correspondingly, are at a minus 440 degrees Fahrenheit. Even at such bone-chilling temperatures, a mix of ancient ices on the surface — oxygen, nitrogen, carbon dioxide, and carbon monoxide — is beginning to sublimate and shed as dust. This material balloons into a vast 80,000-mile-wide halo of dust, called a coma, enveloping the solid nucleus. Astronomers will continue to study K2 as it travels into the inner solar system, making its closest approach to the Sun in 2022. View the full article
-
Astronomers categorize the minor bodies in the solar system according to their location and physical composition. Comets are a loose collection of ice and dust that fall in toward the Sun from beyond the orbits of the major planets, and grow long tails of dust and gas along the way. Asteroids are rocky or metallic and are relegated to a zone between Mars and Jupiter. But nature isn't that tidy. The Hubble Space Telescope photographed a pair of asteroids orbiting each other that have a tail of dust, which is definitely a comet-like feature. The odd object, called 2006 VW139/288P, is the first known binary asteroid that is also classified as a main-belt comet. Roughly 5,000 years ago, 2006 VW139/288P probably broke into two pieces due to a fast rotation. View the full article
-
Don't go looking for the proverbial black cat eating licorice in a coal bin on the planet WASP-12b. Twice the size of any planet found in our solar system, the world is as black as fresh asphalt. Unlike other planets in its class, WASP-12b has the unique capability to trap at least 94 percent of the visible starlight falling into its atmosphere. The temperature of the atmosphere is a seething 4,600 degrees Fahrenheit, which prevents the formation of reflective clouds on the day side. The planet orbits so close to its host that it is tidally locked, which means that it keeps the same side always facing the star. The exoplanet isn't dining alone. Its host star is also having a feast: gobbling up material swirling off the exoplanet's super-heated atmosphere. This oddball exoplanet is one of a class of so-called "hot Jupiters" that orbit very close to their host star and are heated to extreme temperatures. WASP-12b circles a Sun-like star 1,400 light-years from Earth. View the full article
-
Only when we fly in a commercial jet at an altitude of about 33,000 feet do we enter Earth's stratosphere, a cloudless layer of our atmosphere that blocks ultraviolet light. Astronomers were fascinated to find evidence for a stratosphere on a planet orbiting another star. As on Earth, the planet's stratosphere is a layer where temperatures increase with higher altitudes, rather than decrease. However, the planet (WASP-121b) is anything but Earth-like. The Jupiter-sized planet is so close to its parent star that the top of the atmosphere is heated to a blazing 4,600 degrees Fahrenheit (2,500 degrees Celsius), hot enough to rain molten iron! This new Hubble Space Telescope observation allows astronomers to compare processes in exoplanet atmospheres with the same processes that happen under different sets of conditions in our own solar system. View the full article
-
While photographing Mars, NASA’s Hubble Space Telescope captured a cameo appearance of the tiny moon Phobos on its trek around the Red Planet. Discovered in 1877, the diminutive, potato-shaped moon is so small that it appears star-like in the Hubble pictures. Phobos orbits Mars in just 7 hours and 39 minutes, which is faster than Mars rotates. The moon’s orbit is very slowly shrinking, meaning it will eventually shatter under Mars’ gravitational pull, or crash into the planet. Hubble took 13 separate exposures over 22 minutes to create a time-lapse video showing the moon’s orbital path. View the full article
-
When the universe was young, stars formed at a much higher rate than they do today. By peering across billions of light-years of space, Hubble can study this early era. But at such distances, galaxies shrink to smudges that hide key details. Astronomers have teased out those details in one distant galaxy by combining Hubble’s sharp vision with the natural magnifying power of a gravitational lens. The result is an image 10 times better than what Hubble could achieve on its own, showing dense clusters of brilliant, young stars that resemble cosmic fireworks. View the full article
-
Astronomers combined the power of a “natural lens” in space with the capability of NASA’s Hubble Space Telescope to make a surprising discovery—the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang. Researchers say that finding such a galaxy so early in the history of the universe challenges the current understanding of how massive galaxies form and evolve. Astronomers expected to see a chaotic ball of stars formed through galaxies merging together. Instead, they saw evidence that the stars were born in a pancake-shaped disk. The galaxy, called MACS 2129-1, is considered “dead” because it is no longer making stars. This new insight is forcing astronomers to rethink their theories of how galaxies burn out early on and evolve into local elliptical-shaped galaxies. “Perhaps we have been blind to the fact that early ‘dead’ galaxies could in fact be disks, simply because we haven’t been able to resolve them,” said study leader Sune Toft of the Dark Cosmology Center at the Niels Bohr Institute, University of Copenhagen. View the full article
-
Albert Einstein reshaped our understanding of the fabric of space. In his general theory of relativity in 1915, he proposed the revolutionary idea that massive objects warp space, due to the effects of gravity. Until that time, Isaac Newton's theory of gravity from two centuries earlier held sway: that space was unchanging. Einstein's theory was experimentally verified four years later when a team led by British astronomer Sir Arthur Eddington measured how much the sun's gravity deflected the image of a background star as its light grazed the sun during a solar eclipse. Astronomers had to wait a century, however, to build telescopes powerful enough to detect this gravitational warping phenomenon caused by a star outside our solar system. The amount of deflection is so small only the sharpness of the Hubble Space Telescope could measure it. Hubble observed the nearby white dwarf star Stein 2051 B as it passed in front of a background star. During the close alignment, the white dwarf's gravity bent the light from the distant star, making it appear offset by about 2 milliarcseconds from its actual position. This deviation is so small that it is equivalent to observing an ant crawl across the surface of a quarter from 1,500 miles away. View the full article
-
Astronomers were fascinated in the 1980s with the discovery of nearby dust-enshrouded galaxies that glowed thousands of times brighter than our Milky Way galaxy in infrared light. Dubbed ultra-luminous infrared galaxies, they were star-making factories, churning out a prodigious amount of stars every year. What wasn't initially clear was what powered these giant infrared light bulbs. Observations by the Hubble Space Telescope helped astronomers confirm the source of the galaxies' light output. Many of them reside within "nests" of galaxies engaged in multiple pile-ups of three, four or even five galaxies. The dust is produced by the firestorm of star birth, which glows fiercely in infrared light. Now Hubble is illuminating the bright galaxies' distant dust-enshrouded cousins. Boosted by natural magnifying lenses in space, Hubble has captured unique close-up views of the universe's brightest infrared galaxies. The galaxies are ablaze with runaway star formation, pumping out more than 10,000 new stars a year. This unusually rapid star birth is occurring at the peak of the universe's star-making boom more than 8 billion years ago. The star-birth frenzy creates lots of dust, which enshrouds the galaxies, making them too faint to detect in visible light. But they glow fiercely in infrared light, shining with the brilliance of 10 trillion to 100 trillion suns. The galaxy images, magnified through a phenomenon called gravitational lensing, reveal a tangled web of misshapen objects punctuated by exotic patterns such as rings and arcs. The odd shapes are due largely to the foreground lensing galaxies' powerful gravity distorting the images of the background galaxies. Two possibilities for the star-making frenzy are galaxy collisions or gas spilling into the galaxies. View the full article
-
Solar flares and associated eruptions can trigger auroras on Earth or, more ominously, damage satellites and power grids. Could flares on cool, red dwarf stars cause even more havoc to orbiting planets, even rendering them uninhabitable? To help answer that question, astronomers sought to find out how many flares such stars typically unleash. A new study of archival ultraviolet observations from the Galaxy Evolution Explorer (GALEX) spacecraft detected dozens of flares from red dwarf stars. Some flares were weaker than any previously detected. Since smaller flares tend to occur more frequently, these tiny flares might have big implications for planetary habitability. View the full article
-
Hubble's Tale of Two Exoplanets: Nature vs. Nurture
HubbleSite posted a topic in Astronomy and Stars
Astronomers once thought that the family of planets that orbit our sun were typical of what would eventually be found around other stars: a grouping of small rocky planets like Earth huddled close to their parent star, and an outer family of monstrous gaseous planets like Jupiter and Saturn. But ever since the discovery of the first planet around another star (or exoplanet) the universe looks a bit more complicated — if not downright capricious. There is an entire class of exoplanets called "hot Jupiters." They formed like Jupiter did, in the frigid outer reaches of their planetary system, but then changed Zip code! They migrated inward to be so close to their star that temperatures are well over 1,000 degrees Fahrenheit. Astronomers would like to understand the weather on these hot Jupiters and must tease out atmospheric conditions by analyzing how starlight filters through a planet's atmosphere. If the spectral fingerprint of water can be found, then astronomers conclude the planet must have relatively clear skies that lets them see deep into the atmosphere. If the spectrum doesn't have any such telltale fingerprints, then the planet is bland-looking with a high cloud deck. Knowing the atmospheres on these distant worlds yields clues to how they formed and evolved around their parent star. In a unique experiment, astronomers aimed the Hubble Space Telescope at two "cousin" hot Jupiters that are similar in several respects. However, the researchers were surprised to learn that one planet is very cloudy, and the other has clear skies. View the full article -
Every second a star somewhere out in the universe explodes as a supernova. But some super-massive stars go out with a whimper instead of a bang. When they do, they can collapse under the crushing tug of gravity and vanish out of sight, only to leave behind a black hole. The doomed star, named N6946-BH1, was 25 times as massive as our sun. It began to brighten weakly in 2009. But, by 2015, it appeared to have winked out of existence. By a careful process of elimination, based on observations by the Large Binocular Telescope and the Hubble and Spitzer space telescopes, the researchers eventually concluded that the star must have become a black hole. This may be the fate for extremely massive stars in the universe. View the full article
-
Hubble Spots Moon Around Third Largest Dwarf Planet
HubbleSite posted a topic in Astronomy and Stars
Beyond the orbit of Neptune lies a frigid, dark, vast frontier of countless icy bodies left over from the solar system's construction 4.6 billion years ago. This region, called the Kuiper Belt, was hypothesized by astronomer Gerard Kuiper in 1951. But it took another four decades for astronomers to confirm its existence. The largest bodies are called dwarf planets, with Pluto being the biggest member. Pluto is so big, in fact, that it was discovered 60 years before other Kuiper worlds were detected. Moons around dwarf planets are elusive, though. Pluto's moon Charon wasn't found until the mid-1970s. Now, astronomers have uncovered a moon around another dwarf planet by using the combined power of three space observatories, including archival images from the Hubble Space Telescope. Called 2007 OR10, it is the third-largest dwarf planet in the Kuiper Belt. With this moon's discovery, most of the known dwarf planets in the Kuiper Belt larger than 600 miles across have companions. These bodies provide insight into how moons formed in the young solar system. In fact, there is an emerging view that collisions between planetary bodies can result in the formation of moons. Based on moon rock samples from NASA's Apollo mission, astronomers believe that Earth's only natural satellite was born out of a collision with a Mars-sized object 4.4 billion years ago. View the full article -
Observatories Combine to Crack Open the Crab Nebula
HubbleSite posted a topic in Astronomy and Stars
In the summer of the year 1054 AD, Chinese astronomers saw a new "guest star," that appeared six times brighter than Venus. So bright in fact, it could be seen during the daytime for several months. Halfway around the world, Native Americans made pictographs of a crescent moon with the bright star nearby that some think may also have been a record of the supernova. This "guest star" was forgotten about until 700 years later with the advent of telescopes. Astronomers saw a tentacle-like nebula in the place of the vanished star and called it the Crab Nebula. Today we know it as the expanding gaseous remnant from a star that self-detonated as a supernova, briefly shining as brightly as 400 million suns. The explosion took place 6,500 light-years away. If the blast had instead happened 50 light-years away it would have irradiated Earth, wiping out most life forms. In the late 1960s astronomers discovered the crushed heart of the doomed star, an ultra-dense neutron star that is a dynamo of intense magnetic field and radiation energizing the nebula. Astronomers therefore need to study the Crab Nebula across a broad range of electromagnetic radiation, from X-rays to radio waves. This composite picture from five observatories captures the complexity of this tortured-looking supernova remnant. View the full article -
Like the quirky characters in the upcoming film Guardians of the Galaxy Vol. 2, NASA's Hubble Space Telescope has some amazing superpowers, specifically when it comes to observing galaxies across time and space. One stunning example is galaxy cluster Abell 370, which contains a vast assortment of several hundred galaxies tied together by the mutual pull of gravity. That's a lot of galaxies to be guarding, and just in this one cluster! Photographed in a combination of visible and near-infrared light, the immense cluster is a rich mix of galaxy shapes. Entangled among the galaxies are mysterious-looking arcs of blue light. These are actually distorted images of remote galaxies behind the cluster. These far-flung galaxies are too faint for Hubble to see directly. Instead, the gravity of the cluster acts as a huge lens in space, magnifying and stretching images of background galaxies like a funhouse mirror. Abell 370 is located approximately 4 billion light-years away in the constellation Cetus, the Sea Monster. It is the last of six galaxy clusters imaged in the recently concluded Frontier Fields project — an ambitious, community-developed collaboration among NASA's Great Observatories and other telescopes that harnessed the power of massive galaxy clusters and probed the earliest stages of galaxy development. View the full article
-
When the Hubble Space Telescope launched aboard the Space Shuttle Discovery on April 24, 1990, astronomers could only dream what they might see. Now, 27 years and more than a million observations later, the telescope delivers yet another magnificent view of the universe — this time, a striking pair of spiral galaxies much like our own Milky Way. These island cities of stars, which are approximately 55 million light-years away, give astronomers an idea of what our own galaxy would look like to an outside observer. The edge-on galaxy is called NGC 4302, and the tilted galaxy is NGC 4298. Although the pinwheel galaxies look quite different because they are angled at different positions on the sky, they are actually very similar in terms of their structure and contents. View the full article
-
When Galileo discovered Jupiter's moon Europa in 1610, along with three other satellites whirling around the giant planet, he could have barely imagined it was such a world of wonder. This revelation didn't happen until 1979, when NASA's Voyager 1 and 2 flew by Jupiter and found evidence that Europa's interior, encapsulated under a crust of ice, has been kept warm over billions of years. The warmer temperature is due to gravitational tidal forces that flex the moon's interior — like squeezing a rubber ball — keeping it warm. At the time, one mission scientist even speculated that the Voyagers might catch a snapshot of geysers on Europa. Such activity turned out to be so elusive that astronomers had to wait over three decades for the peering eye of Hubble to monitor the moon for signs of venting activity. A newly discovered plume seen towering 62 miles above the surface in 2016 is at precisely the same location as a similar plume seen on the moon two years earlier by Hubble. These observations bolster evidence that the plumes are a real phenomenon, flaring up intermittently in the same region on the satellite. The location of the plumes corresponds to the position of an unusually warm spot on the moon's icy crust, as measured in the late 1990s by NASA's Galileo spacecraft. Researchers speculate that this might be circumstantial evidence for material venting from the moon's subsurface. The material could be associated with the global ocean that is believed to be present beneath the frozen crust. The plumes offer an opportunity to sample what might be in the ocean, in the search for life on that distant moon. View the full article
-
Named after the Roman king of the gods, the immense planet Jupiter is undoubtedly king of the solar system. Containing more mass than all the other planets combined, Jupiter's immense gravitational field deflects wayward comets that otherwise might slam into Earth, wreaking havoc. This dazzling Hubble Space Telescope photo of Jupiter was taken when it was comparatively close to Earth, at a distance of 415 million miles. Hubble reveals the intricate, detailed beauty of Jupiter's clouds as arranged into bands of different latitudes, known as tropical regions. These bands are produced by air flowing in different directions at various latitudes. Lighter colored areas, called zones, are high-pressure where the atmosphere rises. Darker low-pressure regions where air falls are called belts. The planet's trademark, the Great Red Spot, is a long-lived storm roughly the diameter of Earth. Much smaller storms appear as white or brown-colored ovals. Such storms can last as little as a few hours or stretch on for centuries. View the full article
-
Of all the varieties of exploding stars, the ones called Type Ia are perhaps the most intriguing. Their predictable brightness lets astronomers measure the expansion of the universe, which led to the discovery of dark energy. Yet the cause of these supernovae remains a mystery. Do they happen when two white dwarf stars collide? Or does a single white dwarf gorge on gases stolen from a companion star until bursting? If the second theory is true, the normal star should survive. Astronomers used NASA's Hubble Space Telescope to search the gauzy remains of a Type Ia supernova in a neighboring galaxy called the Large Magellanic Cloud. They found a sun-like star that showed signs of being associated with the supernova. Further investigations will be needed to learn if this star is truly the culprit behind a white dwarf's fiery demise. View the full article
-
NASA has selected 28 Fellows for its prestigious Einstein, Hubble, and Sagan fellowships. Each post-doctoral fellowship provides three years of support to awardees to pursue independent research in astronomy and astrophysics. The new Fellows will begin their programs in the fall of 2017 at a host university or research center of their choosing in the United States. View the full article
-
Normally, hefty black holes anchor the centers of galaxies. So researchers were surprised to discover a supermassive black hole speeding through the galactic suburbs. Black holes cannot be observed directly, but they are the energy source at the heart of quasars — intense, compact gushers of radiation that can outshine an entire galaxy. NASA's Hubble Space Telescope made the discovery by finding a bright quasar located far from the center of the host galaxy. Researchers estimate that it took the equivalent energy of 100 million supernovas exploding simultaneously to jettison the black hole. What could pry this giant monster from its central home? The most plausible explanation for this propulsive energy is that the monster object was given a kick by gravitational waves unleashed by the merger of two black holes as a result of a collision between two galaxies. First predicted by Albert Einstein, gravitational waves are ripples in the fabric of space that are created when two massive objects collide. View the full article
-
In the 1400s, two power struggles were taking place quadrillions of miles apart. In England, two rival branches of the royal House of Plantagenet were battling each other for control of the country's throne. And, in a nebula far, far away, a cluster of stars was waging a real-life star wars, with the stellar members battling each other for supremacy in the Orion Nebula. The gravitational tussle ended with the system breaking apart and at least three stars being ejected in different directions. Astronomers spotted two of the speedy, wayward stars over the past few decades. They traced both stars back 540 years to the same location and suggested they were part of a now-defunct multiple-star system. But the duo's combined energy, which is propelling them outward, didn't add up. The researchers reasoned there must be at least one other culprit that robbed energy from the stellar toss-up. Now NASA's Hubble Space Telescope has helped astronomers find the final piece of the puzzle by nabbing a third runaway star, which was a member of the same system as the two previously known stars. The stars reside in a small region of young stars called the Kleinmann-Low Nebula, near the center of the vast Orion Nebula complex, located 1,300 light-years from Earth. View the full article
-
About 6 million years ago, when our very remote ancestors began to evolve away from chimpanzees, our Milky Way galaxy's hefty black hole was enjoying a sumptuous feast. It gulped down a huge clump of interstellar hydrogen. Now, eons later, we see the result of the black hole feast. The black hole "burped" hot plasma that is now towering far above and below the plane of our galaxy. These invisible bubbles, weighing the equivalent of millions of suns, are called the Fermi Bubbles. Their energetic gamma-ray glow was first discovered in 2010 by NASA's Fermi Gamma-ray Space Telescope. (Enrico Fermi was an Italian physicist who created the world's first nuclear reactor.) Astronomers have wondered how long ago the gaseous lobes were created, and if the process was slow or rapid. Hubble observations of the northern bubble have solved the question by determining a more precise age for the bubbles. Hubble was used to measure the speed of the gasses in the billowing bubbles, and astronomers could then calculate back to the time when they were born in a fast, energetic event. View the full article
-
Twenty years ago, astronauts on the second servicing mission to the Hubble Space Telescope installed the Space Telescope Imaging Spectrograph (STIS) aboard Hubble. This pioneering instrument combines a camera with a spectrograph, which provides a "fingerprint" of a celestial object's temperature, chemical composition, density, and motion. STIS also reveals changes in the evolving universe and leads the way in the field of high-contrast imaging. The versatile instrument is sensitive to a wide range of wavelengths of light, from ultraviolet through the optical and into the near-infrared. From studying black holes, monster stars, and the intergalactic medium, to analyzing the atmospheres of worlds around other stars, STIS continues its epic mission to explore the universe. View the full article