Members Can Post Anonymously On This Site
-
Posts
1,236 -
Joined
-
Last visited
Never
Content Type
Profiles
Forums
Events
Videos
Everything posted by HubbleSite
-
Astronomers searching archival data from NASA's Kepler exoplanet hunting mission identified a previously unknown dwarf nova that underwent a super-outburst, brightening by a factor of 1,600 times in less than a day. While the outburst itself has a theoretical explanation, the slow rise in brightness that preceded it remains a mystery. Kepler's rapid cadence of observations were crucial for recording the entire event in detail. The dwarf nova system consists of a white dwarf star with a brown dwarf companion. The white dwarf is stripping material from the brown dwarf, sucking its essence away like a vampire. The stripped material forms an accretion disk around the white dwarf, which is the source of the super-outburst. Such systems are rare and may go for years or decades between outbursts, making it a challenge to catch one in the act. View the full article
-
To date astronomers have discovered over 4,000 planets orbiting other stars. Statistically, there should be over 100 billion planets in our Milky Way galaxy. They come in a wide range of sizes and characteristics, largely unimagined before exoplanets were first discovered in the mid-1990s. The biggest motivation for perusing these worlds is to find "Genesis II," a planet where life has arisen and evolved beyond microbes. The ultimate payoff would be finding intelligent life off the Earth. A major step in searching for habitable planets is finding suitable stars that could foster the emergence of complex organisms. Because our Sun has nurtured life on Earth for nearly 4 billion years, conventional wisdom would suggest that stars like it would be prime candidates. But stars like our Sun represent only about 10% of the Milky Way population. What's more, they are comparatively short-lived. Our Sun is halfway through its estimated 10 billion-year lifetime. Complex organisms arose on Earth only 500 million years ago. And, the modern form of humans has been here only for the blink of an eye on cosmological timescales: 200,000 years. The future of humanity is unknown. But what is for certain is that Earth will become uninhabitable for higher forms of life in a little over 1 billion years, as the Sun grows warmer and desiccates our planet. Therefore, stars slightly cooler than our Sun — called orange dwarfs — are considered better hang-outs for advanced life. They can burn steadily for tens of billions of years. This opens up a vast timescape for biological evolution to pursue an infinity of experiments for yielding robust life forms. And, for every star like our Sun there are three times as many orange dwarfs in the Milky Way. The only type of star that is more abundant are red dwarfs. But these are feisty little stars. They are so magnetically active they pump out 500 times as much radiation in the form of X-rays and ultraviolet light as our Sun does. Planets around these stars take a beating. They would be no place to call home for organisms like us. An emerging idea, bolstered by stellar surveys performed by Hubble and other telescopes, is that the orange dwarfs are "Goldilocks stars" — not too hot, not too cool, and above all, not too violent to host life-friendly planets over a vast horizon of cosmic time. View the full article
-
People use the phrase "Holy Cow" to express excitement. Playing with that phrase, researchers from an international collaboration developed an acronym—H0LiCOW—for their project's name that expresses the excitement over their Hubble Space Telescope measurements of the universe's expansion rate. Knowing the precise value for how fast the universe expands is important for determining the age, size, and fate of the cosmos. Unraveling this mystery has been one of the greatest challenges in astrophysics in recent years. Members of the H0LiCOW (H0 Lenses in COSMOGRAIL's Wellspring) team used Hubble and a technique that is completely independent of any previous method to measure the universe's expansion, a value called the Hubble constant. This latest value represents the most precise measurement yet using the gravitational lensing method, where the gravity of a foreground galaxy acts like a giant magnifying lens, amplifying and distorting light from background objects. The study new not rely on the traditional "cosmic distance ladder" technique to measure accurate distances to galaxies by using various types of stars as "milepost markers." Instead, the researchers employed the exotic physics of gravitational lensing to calculate the universe's expansion rate. The researchers' result further strengthens a troubling discrepancy between the expansion rate calculated from measurements of the local universe and the rate as predicted from background radiation in the early universe, a time before galaxies and stars even existed. The new study adds evidence to the idea that new theories may be needed to explain what scientists are finding. View the full article
-
When searching for dark matter, astronomers must go on a sort of "ghost hunt." That's because dark matter is an invisible substance that cannot be seen directly. Yet it makes up the bulk of the universe's mass and forms the scaffolding upon which galaxies are built. Dark matter is the gravitational "glue" that holds galaxies as well as galaxy clusters together. Astronomers can detect its presence indirectly by measuring how its gravity affects stars and galaxies. The mysterious substance is not composed of the same stuff that makes up stars, planets, and people. That material is normal "baryonic" matter, consisting of electrons, protons, and neutrons. However, dark matter might be some sort of unknown subatomic particle that interacts weakly with normal matter. A popular theory holds that dark matter particles don't move very fast, which makes it easier for them to clump together. According to this idea, the universe contains a broad range of dark matter concentrations, from small to large. Astronomers have detected dark matter clumps around large- and medium-sized galaxies. Now, using Hubble and a new observing technique, astronomers have found that dark matter forms much smaller clumps than previously known. The researchers searched for small concentrations of dark matter in the Hubble data by measuring how the light from faraway quasars is affected as it travels through space. Quasars are the bright black-hole-powered cores of very distant galaxies. The Hubble images show that the light from these quasars images is warped and magnified by the gravity of massive foreground galaxies in an effect called gravitational lensing. Astronomers used this lensing effect to detect the small dark matter clumps. The clumps are located along the telescope’s line of sight to the quasars, as well as in and around the foreground lensing galaxies. View the full article
-
Galaxies are like snowflakes. Though the universe contains innumerable galaxies flung across time and space, no two ever look alike. One of the most photogenic is the huge spiral galaxy UGC 2885, located 232 million light-years away in the northern constellation, Perseus. It's a whopper even by galactic standards. The galaxy is 2.5 times wider than our Milky Way and contains 10 times as many stars, about 1 trillion. This galaxy has lived a quiescent life by not colliding with other large galaxies. It has gradually bulked up on intergalactic hydrogen to make new stars at a slow and steady pace over many billions of years. The galaxy has been nicknamed "Rubin's galaxy," after astronomer Vera Rubin (1928 – 2016). Rubin used the galaxy to look for invisible dark matter. The galaxy is embedded inside a vast halo of dark matter. The amount of dark matter can be estimated by measuring its gravitational influence on the galaxy's rotation rate. View the full article
-
In the year 1054 AD, Chinese sky watchers witnessed the sudden appearance of a "new star" in the heavens, which they recorded as six times brighter than Venus, making it the brightest observed stellar event in recorded history. This "guest star," as they described it, was so bright that people saw it in the sky during the day for almost a month. Native Americans also recorded its mysterious appearance in petroglyphs. Observing the nebula with the largest telescope of the time, Lord Rosse in 1844 named the object the "Crab" because of its tentacle-like structure. But it wasn't until the 1900s that astronomers realized the nebula was the surviving relic of the 1054 supernova, the explosion of a massive star. Now, astronomers and visualization specialists from the NASA's Universe of Learning program have combined the visible, infrared, and X-ray vision of NASA's Great Observatories to create a three-dimensional representation of the dynamic Crab Nebula. The multiwavelength computer graphics visualization is based on images from the Chandra X-ray Observatory and the Hubble and Spitzer space telescopes. The approximately four-minute video dissects the intricate nested structure that makes up this stellar corpse, giving viewers a better understanding of the extreme and complex physical processes powering the nebula. The powerhouse "engine" energizing the entire system is a pulsar, a rapidly spinning neutron star, the super-dense crushed core of the exploded star. The tiny dynamo is blasting out blistering pulses of radiation 30 times a second with unbelievable clockwork precision. View the full article
-
NASA's upcoming Wide Field Infrared Survey Telescope (WFIRST), scheduled for launch in the mid-2020s, will have the power to survey the sky 1,000 times faster than the Hubble Space Telescope, with Hubble-quality detail, in the near-infrared. A simulated image of a 34,000-light-year swath across our neighboring galaxy Andromeda showcases WFIRST’s unique detector configuration, expansive field of view and high resolution. The image was generated using data collected by Hubble, and shows the red and infrared light of more than 50 million individual stars in Andromeda, as they would appear with WFIRST. WFIRST is designed to address key questions across a wide range of topics, including dark energy, exoplanets, and general astrophysics spanning from our solar system to the most distant galaxies in the observable universe. WFIRST is expected to amass more than 4 petabytes of information per year, all of which will be non-proprietary and immediately accessible to the public. The simulated image, which represents the staggering amount of data that could be captured in a single pointing over just 90 minutes, demonstrates the power of WFIRST for examining large-scale structures that are otherwise too time-consuming to image. Astronomers are currently using simulations like this to plan future observations. View the full article
-
When astronomers look around the solar system, they find that planets can be made out of almost anything. Terrestrial planets like Earth, Mars, and Venus have dense iron cores and rocky mantles. The massive outer planets like Jupiter and Saturn are mostly gaseous and liquid. Astronomers can't peel back their cloud layers to look inside, but their composition is deduced by comparing the planet's mass (as calculated from its orbital motion) to its size. The result is that Jupiter has the density of water, and Saturn has an even lower density (it could float in a huge bathtub). These gas giants are just 1/5th the density of rocky Earth. Now astronomers have uncovered a completely new class of planet unlike anything found in our solar system. Rather than a "terrestrial" or "gas giant" they might better be called "cotton candy" planets because their density is so low. These planets are so bloated they are nearly the size of Jupiter, but are just 1/100th of its mass. Three of them orbit the Sun-like star Kepler 51, located approximately 2,600 light-years away. The puffed-up planets might represent a brief transitory phase in planet evolution, which would explain why we don't see anything like them in the solar system. The planets may have formed much farther from their star and migrated inward. Now their low-density hydrogen/helium atmospheres are bleeding off into space. Eventually, much smaller planets might be left behind. View the full article
-
The American Association for the Advancement of Science (AAAS) Council has elected Kathryn Flanagan of the Space Telescope Science Institute (STScI) and Colin Norman of STScI and Johns Hopkins University, and 441 other AAAS members as Fellows of the AAAS. Dr. Flanagan is cited by the AAAS for her lead role calibrating grating spectrometers for NASA's Chandra X-ray Observatory mission; X-ray observations of astrophysical plasmas; and leadership in the James Webb Space Telescope project. Dr. Norman is cited by the AAAS for distinguished contributions to an array of subjects in theoretical astrophysics, especially in the areas of the interstellar medium, galaxy dynamics, star formation, and galaxy clusters. For more information about this announcement, visit the AAAS website. View the full article
-
When astronomers see something in the universe that at first glance seems like one-of-a-kind, it's bound to stir up a lot of excitement and attention. Enter comet 2I/Borisov. This mysterious visitor from the depths of space is the first identified comet to arrive here from another star. We don't know from where or when the comet started heading toward our Sun, but it won't hang around for long. The Sun's gravity is slightly deflecting its trajectory, but can't capture it because of the shape of its orbit and high velocity of about 100,000 miles per hour. Telescopes around the world have been watching the fleeting visitor. Hubble has provided the sharpest views as the comet skirts by our Sun. Since October the space telescope has been following the comet like a sports photographer following horses speeding around a racetrack. Hubble revealed that the heart of the comet, a loose agglomeration of ices and dust particles, is likely no more than about 3,200 feet across, about the length of nine football fields. Though comet Borisov is the first of its kind, no doubt there are many other comet vagabonds out there, plying the space between stars. Astronomers will eagerly be on the lookout for the next mysterious visitor from far beyond. View the full article
-
The Star Wars film trilogies are known best for the iconic "Death Star," an alien battle station that shoots out beams of directed energy powerful enough to blow up planets. The real universe makes much more extraordinary beams that can unleash in a few seconds as much energy as our sun will generate over its 10-billion-year lifetime. These beams blast out of imploding stars at over 99% the speed of light. They carry most of their energy in the form of gamma-rays—a lethal form of radiation that can penetrate bone and tear apart living cells. If our planet got caught in a nearby gamma-ray burst (GRB) the atmosphere would be largely stripped away. The current record for a super-powerful GRB goes to a January 2019 outburst. The eruption came from a galaxy located so far away that the explosion actually happened 5 billion years ago. When the diluted radiation finally arrived at Earth, it was seen by our satellite sentries that monitor the sky for such fireworks: NASA’s Swift and Fermi telescopes, in addition to the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) telescopes on the Canary islands. Hubble can't detect gamma-rays, but its sharp vision was used to see where the burst came from. The host galaxy of the GRB is actually one of a pair of colliding galaxies. The galaxy interactions may have contributed to the blast. View the full article
-
Supermassive black holes, weighing millions or even billions of times our Sun's mass, are still only a tiny fraction of the mass of the galaxies they inhabit. But in some cases, the central black hole is the tail wagging the dog. It seems that black holes can run hot or cold when it comes to either enhancing or squelching star birth inside a cluster of galaxies. Typically, giant black holes, pumping out energy via jets, keep interstellar gas too warm to condense and form stars. Now, astronomers have found a cluster of galaxies, called the Phoenix cluster, where stars are forming at a furious rate because of the black hole's influence. This stellar turboboost is apparently linked to less energetic jets from a central black hole that do not pump up the gas temperature. Instead, the gas loses energy as it glows in X-rays. The gas cools to where it can form large numbers of stars at a breathtaking rate. Where our Milky Way forms one star per year on average, newborn stars are popping out of this cool gas at a rate of about 500 solar masses per year in the Phoenix cluster. Unraveling this mystery required the combined power of NASA's Hubble Space Telescope, NASA's Chandra X-ray Observatory, and the Very Large Array (VLA) radio observatory near Socorro, New Mexico. The VLA radio data reveals jets blasting out from the vicinity of the central black hole. These jets inflated bubbles in the hot gas that are detected in X-rays by Chandra. Hubble resolves bright blue filaments of newborn stars in cavities between the hot jet and gas clouds. As the black hole has grown more massive and more powerful, its influence has been increasing. View the full article
-
NASA's Hubble Captures a Dozen Galaxy Doppelgangers
HubbleSite posted a topic in Astronomy and Stars
The “funhouse mirror” has delighted carnival-goers for more than a century by twisting peoples’ images into wildly distorted shapes. Its prolific inventor, Charles Frances Ritchel, called it the "Ritchel's Laugh-O-Graphs.” However, there was nothing funny – but instead practical – about warped images as far as Albert Einstein was concerned. In developing his general theory of relativity, Einstein imagined the universe as a grand funhouse mirror caused by wrinkles in the very fabric of space. This recent picture from Hubble shows a galaxy nicknamed the "Sunburst Arc" that has been split into a kaleidoscope illusion of no fewer than 12 images formed by a massive foreground cluster of galaxies 4.6 billion light-years away. This beautifully demonstrates Einstein's prediction that gravity from massive objects in space should bend light in a manner analogous to a funhouse mirror. His idea of space warping was at last proven in 1919 by observations of a solar eclipse where the sun’s bending of space could be measured. A further prediction was that the warping would create a so-called “gravitational lens” that, besides distortion, would increase the apparent size and brightness of distant background objects. It wasn’t until 1979 that the first such gravitational lens was confirmed. An otherwise obscure galaxy split and amplified the light of a distant quasar located far behind it into a pair of images. Far more than a space-carnival novelty, gravitational lensing observations today are commonly used to find planets around other stars, zoom in on very distant galaxies, and map the distribution of otherwise invisible “dark matter” in the universe. View the full article -
The universe is a bubbling cauldron of matter and energy that have mixed together over billions of years to create a witches' brew of birth and destruction. Firestorms of star birth sweeping across the heavens. Dying stars rattling the very fabric of space in titanic explosions. Death Star-like beams of energy blasting out of overfed black holes at nearly the speed of light. Large galaxies devouring smaller companions, like cosmic Pac-Men. Colossal collisions between galaxies flinging stars around like breaking pool balls. Hubble has seen them all. This compulsive mayhem in space can produce weird-looking shapes that resemble creepy creatures seemingly conjured up in stories of the paranormal. Among them is the object in this new Hubble image. The snapshot reveals what looks like an uncanny pair of glowing eyes glaring menacingly in our direction. The piercing "eyes" are the most prominent feature of what resembles the face of an otherworldly creature. This frightening object is actually the result of a titanic head-on collision between two galaxies. Each "eye" is the bright core of a galaxy, the result of one galaxy slamming into another. The outline of the face is a ring of young blue stars. Other clumps of new stars form a nose and mouth. The system is catalogued as Arp-Madore 2026-424, from the Arp-Madore "Catalogue of Southern Peculiar Galaxies and Associations." Although galaxy collisions are common—especially back in the young universe—most of them are not head-on smashups, like the collision that likely created this Arp-Madore system. The violent encounter gives the system an arresting "ring" structure for only a short amount of time, about 100 million years. The two galaxies will merge completely in about 1 to 2 billion years, hiding their messy past. View the full article
-
You’ve probably never noticed it, but our solar system is moving along at quite a clip. Stars in the outer reaches of the Milky Way, including our Sun, orbit at an average speed of 130 miles per second. But that’s nothing compared to the most massive spiral galaxies. “Super spirals,” which are larger, brighter, and more massive than the Milky Way, spin even faster than expected for their mass, at speeds up to 350 miles per second. Their rapid spin is a result of sitting within an extraordinarily massive cloud, or halo, of dark matter – invisible matter detectable only through its gravity. The largest “super spiral” studied here resides in a dark matter halo weighing at least 40 trillion times the mass of our Sun. The existence of super spirals provides more evidence that an alternative theory of gravity known as Modified Newtonian Dynamics, or MOND, is incorrect. View the full article
-
No one knows where it came from. No one knows how long it has been drifting through the empty, cold abyss of interstellar space. But this year an object called comet 2I/Borisov came in from the cold. It was detected falling past our Sun by a Crimean amateur astronomer. This emissary from the black unknown captured the attention of worldwide astronomers who aimed all kinds of telescopes at it to watch the comet sprout a dust tail. The far visitor is only the second known object to enter our solar system coming from elsewhere in the galaxy, based on its speed and trajectory. Like a racetrack photographer trying to capture a speeding derby horse, Hubble took a series of snapshots as the comet streaked along at 110,000 miles per hour. Hubble provided the sharpest image to date of the fleeting comet, revealing a central concentration of dust around an unseen nucleus. The comet was 260 million miles from Earth when Hubble took the photo. In 2017, the first identified interstellar visitor, an object formally named 'Oumuamua, swung within 24 million miles of the Sun before racing out of the solar system. Unlike comet 2I/Borisov, 'Oumuamua still defies any simple categorization. It did not behave like a comet, and it has a variety of unusual characteristics. Comet 2I/Borisov looks a lot like the traditional comets found inside our solar system, which sublimate ices, and cast off dust as they are warmed by the Sun. The wandering comet provides invaluable clues to the chemical composition, structure, and dust characteristics of planetary building blocks presumably forged in an alien star system. View the full article
-
Astronomers have discovered an unexplained surplus of gas flowing into our Milky Way after conducting a galaxy-wide audit of outflowing and inflowing gas. Rather than a gas equilibrium and "balanced books," 10 years of data from NASA's Hubble Space Telescope show there is more gas coming in than going out. It is no secret that the Milky Way is frugal with its gas. The valuable raw material is recycled over billions of years—thrown out into the galactic halo via supernovas and violent stellar winds, and then used to form new generations of stars once it falls back to the galactic plane. The surplus of inflowing gas, however, was a surprise. Hubble distinguished between outflowing and inflowing clouds using its sensitive Cosmic Origins Spectrograph (COS), which detects the movement of the invisible gas. As the gas moves away it appears redder, while gas falling back toward the Milky Way is bluer. The source of the excess gas inflow remains a mystery. Astronomers theorize that the gas could be coming from the intergalactic medium, as well as the Milky Way raiding the gas "bank accounts" of its small satellite galaxies using its considerably greater gravitational pull. View the full article
-
To date, approximately 4,000 planets have been found orbiting other stars. The majority are extremely hostile to any chances for life: with exotic atmospheres, wide temperature extremes, and oddball orbits. Astronomers have now made an important step toward the ultimate goal of finding an exoplanet with an atmosphere more like Earth's, and having moderate temperatures. Water vapor has been identified in the atmosphere of a planet called K2-18b, located 110 light-years away. And, where there's water there could be clouds and rain. The planet is also at the right distance from its star to have a temperate climate where the water doesn't evaporate or freeze. But don't go looking for real estate yet. The planet is in a category not found in our solar system. It is larger than Earth but smaller than Neptune. It might have a rocky surface, but it is more likely a giant ball of liquid and gas, like Neptune. Hundreds of known exoplanets fall into this mass range. So, it's important for astronomers to characterize the worlds and assess the chances for supporting life as we know it. View the full article
-
Saturn is so beautiful that astronomers cannot resist using the Hubble Space Telescope to take yearly snapshots of the ringed world when it is near its closest distance to Earth. These images, however, are more than just beauty shots. They reveal a planet with a turbulent, dynamic atmosphere. This year's Hubble offering, for example, shows that a large storm visible in the 2018 Hubble image in the north polar region has vanished. Smaller storms pop into view like popcorn kernels popping in a microwave oven before disappearing just as quickly. Even the planet's banded structure reveals subtle changes in color. But the latest image shows plenty that hasn't changed. The mysterious six-sided pattern, called the "hexagon," still exists on the north pole. Caused by a high-speed jet stream, the hexagon was first discovered in 1981 by NASA's Voyager 1 spacecraft. Saturn's signature rings are still as stunning as ever. The image reveals that the ring system is tilted toward Earth, giving viewers a magnificent look at the bright, icy structure. Hubble resolves numerous ringlets and the fainter inner rings. This image reveals an unprecedented clarity only seen previously in snapshots taken by NASA spacecraft visiting the distant planet. Astronomers will continue their yearly monitoring of the planet to track shifting weather patterns and identify other changes. The second in the yearly series, this image is part of the Outer Planets Atmospheres Legacy (OPAL) project. OPAL is helping scientists understand the atmospheric dynamics and evolution of our solar system's gas giant planets. View the full article
-
Like batches of cookies, stars are born together in groups. These star clusters, containing as many as 1 million members, evolve over time largely through a gravitational pinball where more massive stars are segregated from lower mass stars. Heavy stars tend to progressively sink toward the central region of the star cluster, while low-mass stars can escape from the system. For the first time, the Hubble Space Telescope has been used to measure the effects of this dynamical aging on star clusters. They are all located 160,000 light-years from Earth in a satellite galaxy, the Large Magellanic Cloud (LMC). The diminutive galaxy is an ideal target because it hosts a selection of easily observed star clusters covering a wide range of ages. Francesco Ferraro of the University of Bologna in Italy and his team used Hubble to observe five aging LMC star clusters — all born at about the same time but with different sizes — and succeeded in ranking them in terms of the level of dynamical evolution, which affects their shape. View the full article
-
Jupiter is the king of the solar system, more massive than all of the other solar-system planets combined. Although astronomers have been observing the gas-giant planet for hundreds of years, it still remains a mysterious world. Astronomers don't have definitive answers, for example, of why cloud bands and storms change colors, or why storms shrink in size. The most prominent long-lasting feature, the Great Red Spot, has been downsizing since the 1800s. However, the giant storm is still large enough to swallow Earth. The Red Spot is anchored in a roiling atmosphere that is powered by heat welling up from the monster planet's deep interior, which drives a turbulent atmosphere. In contrast, sunlight powers Earth's atmosphere. From Jupiter, however, the Sun is much fainter because the planet is much farther away from it. Jupiter's upper atmosphere is a riot of colorful clouds, contained in bands that whisk along at different wind speeds and in alternating directions. Dynamic features such as cyclones and anticyclones (high-pressure storms that rotate counterclockwise in the southern hemisphere) abound. Attempting to understand the forces driving Jupiter's atmosphere is like trying to predict the pattern cream will make when it is poured into a hot cup of coffee. Researchers are hoping that Hubble's yearly monitoring of the planet—as an interplanetary weatherman—will reveal the shifting behavior of Jupiter's clouds. Hubble images should help unravel many of the planet's outstanding puzzles. This new Hubble image is part of that yearly study, called the Outer Planets Atmospheres Legacy program, or OPAL. View the full article
-
The scorching hot exoplanet WASP-121b represents a new twist on the phrase "heavy metal." There are no loud electric guitar riffs, characteristic of heavy metal music, streaming into space. What is escaping the planet is iron and magnesium gas, dubbed heavy metals, because they are heavier than lightweight hydrogen and helium. The observations by the Hubble Space Telescope represent the first time heavy metal gas has been detected floating away from an exoplanet. A scorching planet, WASP-121b orbits precariously close to a star that is even hotter than our Sun. The intense radiation heats the planet's upper atmosphere to a blazing 4,600 degrees Fahrenheit. Apparently, the lower atmosphere is still so hot that iron and magnesium remain in gaseous form and stream to the upper atmosphere, where they escape into space on the coattails of hydrogen and helium gas. The sizzling planet is also so close to its star that it is on the cusp of being ripped apart by the star's intense pull. This hugging distance means that the planet is stretched into a football shape due to gravitational tidal forces. View the full article
-
In 1924, American astronomer Edwin Hubble announced that he discovered galaxies outside of our Milky Way by using the powerful new Hooker telescope perched above Los Angeles. By measuring the distances to these galaxies, he realized the farther away a galaxy is, the faster it appears to be receding from us. This was incontrovertible evidence the universe is uniformly expanding in all directions. For nearly a decade Albert Einstein refused to accept the observational evidence. His theory of general relativity described a static universe. But this could only be accomplished by invoking a "cosmological constant," which he described as repulsive property of space that would counterbalance the pull of gravity and prevent the universe from imploding. The expansion rate is the basis of the Hubble constant. It is a sought-after value because it yields clues to the origin, age, evolution, and future fate of our universe. For nearly the past century astronomers have worked meticulously to precisely measure the Hubble constant. Before the Hubble Space Telescope was launched in 1990, the universe's age was thought to lie between 10 and 20 billion years, based on different estimates of the Hubble constant. Improving this value was one of the biggest justifications for building the Hubble telescope. This paid off in the early 1990s when a team led by Wendy Freedman of the University of Chicago greatly refined the Hubble constant value to a precision of 10%. This was possible because the Hubble telescope is so sharp at finding and measuring Cepheid variable stars as milepost markers — just as Edwin Hubble did 70 years earlier. But astronomers strive for ever greater precision, and this requires further refining yardsticks for measuring vast intergalactic distances of billions of light-years. Freedman's latest research looks at aging red giant stars in nearby galaxies. They are also milepost markers because they all reach the same peak brightness at a critical stage of their late evolution. This can be used to calculate distances. Freedman's research is one of several recent studies that point to a nagging discrepancy between the universe's modern expansion rate and predictions based on the universe as it was more than 13 billion years ago, as measured by the European Space Agency's Planck satellite. This latest measurement offers new evidence suggesting that there may be something fundamentally flawed in the current model of the universe. View the full article
-
Astronomers are always tickled when they find something they didn't expect to be there. Peering deep into the heart of the majestic spiral galaxy NGC 3147, researchers uncovered a swirling gas disk precariously close to a black hole weighing about 250 million times the mass of our Sun. The surprise is that they thought the black hole was so malnourished, it shouldn’t have such a structure around it. It's basically a "Mini-Me" version of more powerful disks seen in very active galaxies. What's especially intriguing is that the disk is so deeply embedded in the black hole's intense gravitational field, its light is being stretched and intensified by the black hole's powerful grasp. It's a unique, real-world demonstration of Einstein's laws of relativity, formulated a century ago. Hubble clocked material whirling around the black hole as moving at more than 10% of the speed of light. And, the gas astronomers measured is so entrenched in the gravitational well that light is struggling to climb out, and therefore appears stretched to redder wavelengths. View the full article
-
NASA has awarded a contract to the Space Telescope Science Institute (STScI) in Baltimore, Maryland, for the Science Operations Center (SOC) of the Wide Field Infrared Survey Telescope (WFIRST) mission. WFIRST is a NASA observatory designed to settle essential questions in a wide-range of science areas, including dark energy and dark matter, and planets outside our solar system. View the full article