Jump to content

NASA

Publishers
  • Posts

    4,764
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. NASA/Sam Lott Engineers and technicians at NASA’s Marshall Space Flight Center in Huntsville, Alabama, recently installed a key component called the frangible joint assembly onto the adapter that connects the core stage to the upper part of the NASA’s SLS (Space Launch System) rocket. The cone-shaped stage adapter, called the launch vehicle stage adapter, will be part of the SLS mega rocket that will power NASA’s Artemis III mission to the Moon. The frangible joint sits atop the adapter and operates as a separation mechanism. The frangible joint is designed to break apart upon command, allowing the upper part of the rocket, NASA’s Orion spacecraft, and the crew inside Orion to quickly separate from the SLS core stage and adapter. Frangible joint assemblies are widely used across the space industry in a variety of crewed and uncrewed spacecraft to efficiently separate fairings or stages during launch, during ascent, in orbit and during payload deployment. The stage adapter used for Artemis III is set to be the last of its kind as SLS evolves into a larger and more powerful configuration for future Artemis missions, beginning with Artemis IV. The adapter is fully assembled at Marshall by NASA and lead contractor Teledyne Brown, which is also based in Huntsville. The cone-shaped launch vehicle stage adapter, seen in yellow, is in a production area.NASA/Sam Lott SLS is part of NASA’s backbone for deep space exploration, along with Orion and the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. For more on NASA SLS, visit: https://www.nasa.gov/sls News Media Contact Corinne Beckinger Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 corinne.m.beckinger@nasa.gov View the full article
  2. If spacecraft are to visit the outer solar system, they must cross the asteroid belt between Mars and Jupiter. The Pioneer mission was faced with the question of just how dangerous this asteroid belt would be to a spacecraft passing through it.NASA This illustration made on Nov. 26, 1974, by Rick Giudice shows the Pioneer 10 spacecraft traveling through the asteroid belt between Mars and Jupiter, the largest planet in the solar system. At the time, it was uncertain whether it would traverse it safely since the density of particles large enough to damage the craft was not yet known, but Pioneer 10 became the first satellite to enter and pass through the asteroid belt. The mission’s primary goal was to explore Jupiter, its satellites, its magnetic field, and trapped radiation belts. On Nov. 6, 1973, while still 16 million miles from Jupiter, Pioneer 10 began to image the giant planet with its photopolarimeter, and shortly thereafter began to take measurements with its other instruments as well. Twenty days later, the spacecraft passed the front of Jupiter’s bowshock, where the solar wind clashed with the planet’s magnetosphere. By Dec. 1, the spacecraft was returning images of the planet exceeding the best pictures from Earth. Pioneer 10 sent its last signal on Jan. 23, 2003, when it was 7.6 billion miles (12.23 billion kilometers) away from Earth. Learn about Pioneer and other planetary exploration and scientific satellite research planned for the 1970s in the Seeds of Discovery documentary on NASA+. Image Credit: NASA View the full article
  3. 1 min read Artificial Intelligence Plus Your Cell Phone Means Better Maps of Earth! GLOBE Observer data from various locations showing four directional views: west, north, south, and east. Credit: Huang et al. 2023, International Journal of Applied Earth Observation and Geoinformation, Volume 122, 103382 In 2019, the GLOBE Land Cover project began asking volunteers to help map planet Earth by taking photos of their surroundings facing multiple directions, including north, south, east and west. Now, a new paper by Huang et al. demonstrates how to combine these images using Artificial Intelligence (AI). The paper compares this “multi-view” approach with the old single-view approach–and finds that the multi-view capabilities of the GLOBE Observer app, processed with AI, enable much more accurate mapping. “We are thrilled about our recent discovery! We’ve observed that the current AI model is increasingly exhibiting human-like behavior, adept at integrating multiple perspectives, synthesizing them, and striving to derive meaning from these views.” Xiao Huang The paper’s lead author “We are thrilled about our recent discovery!” said Xiao Huang, the paper’s lead author. “We’ve observed that the current AI model is increasingly exhibiting human-like behavior, adept at integrating multiple perspectives, synthesizing them, and striving to derive meaning from these views.” The most detailed satellite-based maps of our whole planet still can’t show details smaller than hundreds of meters [about 330 feet]. That means that a park in a city may be too small to show up on the global map. When you use the GLOBE Observer: Land Cover app, you help scientists fill in local gaps and contribute to consistent, detailed global maps that should us how our world is changing. Grab your smartphone and join the project! Facebook logo @DoNASAScience @DoNASAScience Share Details Last Updated Dec 04, 2023 Related Terms Citizen Science Earth Science View the full article
  4. “Trying to do stellar observations from Earth is like trying to do birdwatching from the bottom of a lake.” James B. Odom, Hubble Program Manager 1983-1990. The discovery after its launch that the Hubble Space Telescope’s primary mirror suffered from a flaw disappointed scientists who could not obtain the sharp images they had expected. But thanks to the Hubble’s built-in feature of on-orbit servicing, NASA devised a plan to correct the telescope’s optics during the first planned repair mission. The agency assigned one of its most experienced crews to undertake the complex tasks, naming Richard O. Covey, Kenneth D. Bowersox, Kathryn C. Thornton, Claude Nicollier of the European Space Agency, Jeffrey A. Hoffman, F. Story Musgrave, and Thomas D. Akers to the STS-61 first Hubble Servicing Mission. The first all veteran crew since the STS-26 return to flight mission in 1988 had a cumulative 16 previous missions among them and all had previous spacewalking experience. During their 11-day flight in December 1993, they repaired the telescope during an unprecedented five spacewalks in a single space shuttle mission, rendering it more capable than originally designed. Left: The STS-61 crew of Kenneth D. Bowersox, sitting left, Kathryn C. Thornton, F. Story Musgrave, and Claude Nicollier of the European Space Agency; Richard O. Covey, standing left, Jeffrey A. Hoffman, and Thomas D. Akers. Middle: The STS-61 crew patch. Right: Endeavour rolls over from Launch Pad 39A to 39B at NASA’s Kennedy Space Center in Florida. The first Hubble servicing mission proved to be one of the most complex up to that time. With that in mind, on March 16, 1992, NASA named Musgrave, an astronaut since 1967 and a veteran of four previous missions including conducting the first spacewalk of the shuttle era, as the payload commander and one of the four spacewalkers for STS-61. On Aug. 28, NASA named Hoffman, Akers, and Thornton as the other three spacewalkers who in teams of two would carry out the five spacewalks on alternating days. Finally, on Dec. 3, NASA named Covey, Bowersox, and Nicollier as the commander, pilot, and flight engineer, respectively, for the mission. Nicollier also served as the prime operator of the Remote Manipulator System (RMS), or robotic arm, with Bowersox as his backup. The seven-person crew trained intensely for the next year preparing for the complex tasks ahead, including simulating the spacewalks at the Neutral Buoyancy Simulator at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and the Weightless Environment Training Facility at NASA’s Johnson Space Center in Houston. Meanwhile, at NASA’s Kennedy Space Center in Florida, workers prepared space shuttle Endeavour for its fifth journey into space. They rolled the shuttle, assembled with its external tank and solid rocket booster, to Launch Pad 39A on Oct. 28. However, following a wind storm on Oct. 30 that contaminated the payload changeout room with sandy grit, managers decided to move Endeavour to neighboring Pad B on Nov. 15, in only the second roll around in shuttle history. Left: Schematic of the Hubble Space Telescope’s major components. Middle: Workers inspect the Hubble Space Telescope’s 94-inch diameter primary mirror prior to assembly. Right: Astronauts release the Hubble Space Telescope in April 1990 during the STS-31 mission. The first concrete plan for placing an optical telescope in space, above the obscuring and distorting effects of the Earth’s atmosphere, originated with Princeton University astronomer Lyman S. Spitzer in 1946. In 1972, NASA first proposed a plan to launch a Large Space Telescope (LST) and five years later Congress approved the funding. As envisioned, the LST would contain a 94-inch diameter primary mirror and launch on the space shuttle, then still under development, in 1983. With an expected on-orbit lifetime of 15 years, the LST’s instruments would make observations primarily in the visible and ultraviolet parts of the electromagnetic spectrum. In 1983, managers abandoned the original plan to use the space shuttle to return the telescope to Earth for refurbishment and relaunch in favor of in-orbit maintenance and upgrades by astronauts during spacewalks in the shuttle’s payload bay. The same year, NASA renamed the LST after astronomer Edwin P. Hubble and set the launch for October 1986. The Challenger accident in January 1986 delayed the launch of the Hubble Space Telescope until April 24, 1990, during Discovery’s STS-31 mission. The shuttle flew to an unusually high 380-mile orbit to ensure that Hubble would operate above as much of the Earth’s atmosphere as possible. After initial on-orbit activation and checkout of the telescope’s systems, it was time for the much-anticipated “first light” images. The initial images, however, puzzled scientists as they showed stars not as single well-focused points of light but as blurred and fuzzy. Investigators learned that the telescope’s primary mirror suffered from a production error, its edges too flat by 0.003 mm, resulting in an optical problem called spherical aberration. While this significantly degraded the capability of several of Hubble’s instruments to return exceptionally detailed photographs, the telescope still produced some good images. NASA put in place a plan to fix the Hubble’s optical problems without resorting to repairing the mirror. With the spherical aberration well-defined, engineers designed a set of mirrors that astronauts could place aboard Hubble during the previously planned first servicing mission. Left: Liftoff of space shuttle Endeavour on the STS-61 mission to repair the Hubble Space Telescope. Middle: The Hubble Space Telescope as seen from Endeavour during the rendezvous, with the end of the Remote Manipulator System (RMS), or robotic arm, visible at lower right. Right: On the shuttle’s flight deck, European Space Agency astronaut Claude Nicollier operates the RMS to grapple Hubble. Planning for the first servicing mission to Hubble began in 1988, two years before the launch of the telescope. With the post-launch discovery of spherical aberration, the scope of the first servicing mission changed dramatically. The primary goal now focused on correcting the telescope’s optics to ensure that its onboard instruments could function as planned. Engineers developed the Corrective Optics Space telescope Axial Replacement (COSTAR), a tool to correct Hubble’s blurry vision, consisting of five pairs of corrective mirrors placed in front of the Faint Object Camera, the Faint Object Spectrograph, and the Goddard High Resolution Spectrograph (GHRS) instruments. Installing COSTAR required the removal of the High-Speed Photometer, the sacrifice of one instrument outweighed by the saving of the other three. The astronauts also replaced the original Wide Field Planetary Camera (WFPC) with the more advanced WFPC2 to improve the telescope’s ultraviolet performance. The WFPC2 carried its own corrective optics. The astronauts also replaced fuses and the telescope’s two solar arrays, one of which imparted vibrations that prevented precise pointing. On Dec. 2, 1993, space shuttle Endeavour lifted off from Pad 39B at 4:27 a.m. EST, after a one-day weather delay. Following insertion into an unusually high 360-mile orbit to reach Hubble, the astronauts began their initial on-orbit operations by opening the payload bay doors. The next day, Covey and Bowersox performed several engine burns as part of the rendezvous maneuvers. The astronauts checked out the rendezvous radar, the Ku-band antenna, the Canadian-built Remote Manipulator System (RMS) or robotic arm, and the spacesuits, and reduced the pressure inside the shuttle from 14.7 pounds per square inch (psi) to 10.2 psi in preparation for the upcoming spacewalks to reduce the pre-breathe time required to prevent decompression sickness or the bends. Left: Endeavour continues its approach to the Hubble Space Telescope. Middle: Hubble secured onto its flight support structure in Endeavour’s payload bay. Right: The STS-61 crew poses on Endeavour’s flight deck, with Hubble visible through the windows. On the third day, Covey brought Endeavour to within 30 feet of Hubble so Nicollier could grapple it with the RMS. Covey radioed Houston, “Endeavour has a firm handshake with Mr. Hubble’s telescope.” Nicollier berthed the giant telescope onto its turntable-like Flight Support System (FSS) in the shuttle’s payload bay. Nicollier then used the RMS cameras to perform an inspection of Hubble. First spacewalk. Left: European Space Agency astronaut Claude Nicollier operates the shuttle’s Remote Manipulator System (RMS) or robotic arm in support of the spacewalks. Middle: Astronaut F. Story Musgrave works on the Hubble. Right: Near the end of the first spacewalk, Musgrave releases bolts on the replacement solar arrays. With Nicollier operating the RMS as he did for all five spacewalks, Hoffman and Musgrave conducted the mission’s first excursion on flight day four. They replaced two sets of Rate Sensing Units that contain gyroscopes to orient the telescope and replaced electrical control units and fuse plugs, providing the telescope with six healthy gyroscopes. Musgrave and Hoffman prepared for the next day’s spacewalk by loosening bolts on the replacement solar arrays, stored in the forward part of the payload bay. The pair spent 7 hours and 54 minutes outside on this first spacewalk. The ground commanded the two existing solar arrays on the telescope to retract, and while one did so the second one did not due to a bent support rod. Second spacewalk. Left: Astronaut Kathryn C. Thornton, on the end of the Remote Manipulator System, releases Hubble’s old solar array that failed to retract properly. Middle: The solar array drifting away from space shuttle Endeavour. Right: Thornton disconnects Hubble’s retracted solar array. On flight day five, Thornton and Akers stepped outside for the mission’s second spacewalk, lasting 6 hours 36 minutes. The primary tasks revolved around replacing the telescope’s two solar arrays. First, they disconnected the array that would not retract as planned, working only at night since the array generated electricity when exposed to sunlight. With Thornton on the end of the RMS, she released the partially open array as Nicollier pulled her away. Bowersox fired thrusters to separate from the array, the plumes impinging on it causing it to flap like a giant bird. Thornton and Akers then connected one of the new arrays, rotated the telescope on its FSS, disconnected the other array, stowing it in the payload bay for return to Earth, and replaced it with a new one. Third spacewalk. Left: Astronauts Jeffrey A. Hoffman, left, and F. Story Musgrave have removed the old Wide Field Planetary Camera (WFPC) from Hubble, the black rectangle at upper left shows its former location. Middle: With European Space Agency astronaut Claude Nicollier operating the Remote Manipulator System from inside the shuttle, Hoffman guides the new WFPC2 into position, with Musgrave ready to assist. Right: Musgrave, left, and Hoffman have installed WFPC2, the white triangle in the middle of the telescope, with Hoffman about to pick up WFPC1 temporarily stowed on the side of the payload bay and place it in its permanent location for return to Earth. On the sixth day, Hoffman and Musgrave took their turn outside for the mission’s third spacewalk. Their primary task involved the replacement of the original WFPC with the more advance WFPC2 instrument. With Nicollier controlling the RMS, Hoffman removed the WFPC1 from the telescope and temporarily stowed it on the side of the payload bay. He then removed WFPC2 from its stowage location and he and Musgrave installed it into the telescope. After stowing WFPC1 in the payload bay for return to Earth, Hoffman replaced two magnetometers, essentially compasses the telescope uses to determine its orientation in space. This third spacewalk lasted 6 hours 47 minutes. Fourth spacewalk. Left: Astronaut Kathryn C. Thornton works in shuttle Endeavour’s payload bay. Middle: With European Space Agency astronaut Claude Nicollier controlling the Remote Manipulator System, Thornton, top, removes the Corrective Optics Space telescope Axial Replacement (COSTAR) from its storage location. Right: Astronaut Thomas D. Akers, inside the Hubble Space Telescope prepares to install the COSTAR. For Akers and Thornton, the primary tasks of the fourth spacewalk on the mission’s seventh day focused on the removal of the HSP instrument and replacing it with the COSTAR system to correct the telescope’s optics. Akers opened the telescope’s shroud doors and with Thornton removed the HSP, temporarily stowing it on the side of the payload bay. Nicollier then maneuvered the RMS with Thornton to pick up COSTAR from its storage location and translate them to Hubble where Akers awaited to help with the installation. After closing the door and stowing the HSP, and installing an electronics package with additional computer memory, Akers and Thornton finished the 6-hour 50-minut spacewalk. Fifth spacewalk. Left: Remote Manipulator System operator European Space Agency astronaut Claude Nicollier translates Jeffrey A. Hoffman and F. Story Musgrave to the top of the Hubble Space Telescope. Middle: The second of two solar arrays unfurls as Hoffman and Musgrave continue working. Right: Hoffman celebrates the first Hannukah in space, with a spinning dreidel floating nearby. On the morning of the eighth day, Bowersox used Endeavour’s thrusters to slightly raise and circularize Hubble’s orbit. Hoffman and Musgrave stepped outside for the mission’s fifth and final spacewalk. When the two newly installed solar arrays failed to deploy after ground commanding, they manually deployed them, and the arrays unfurled without incident. They next replaced the solar array drive electronics and fitted an electronic connection box on the GHRS instrument. Hoffman and Musgrave’s final task involved installing covers, manufactured by Bowersox and Nicollier on board the shuttle, on the telescope’s magnetometers. The final spacewalk lasted 7 hours 21 minutes, bringing the mission’s total spacewalk time to 35 hours 28 minutes. Once back inside Endeavour, Hoffman celebrated the first Hanukkah in space during a televised broadcast, displaying a traveling menorah, unlit of course, and a spinning dreidel. Left: European Space Agency astronaut Claude Nicollier grapples the Hubble Space Telescope, with its high-gain antenna deployed, just prior to release. Middle: After its release, Hubble slowly drifts away from Endeavour. Right: A distant view of Hubble, right, with a crescent Moon. On flight day nine, Nicollier grappled Hubble with the RMS for the final time and lifted it above the payload bay. Ground controllers commanded its aperture door to open, and Nicollier released the telescope. Bowersox fired Endeavour’s thrusters to slowly back away from the telescope. The next day, the astronauts enjoyed a well-deserved day of rest. They returned the shuttle’s cabin pressure to 14.7 psi and tidied up the spacecraft. On the mission’s 11th day, Covey and Bowersox tested Endeavour’s flight control surfaces and practiced touchdowns using a laptop computer, all in preparation for deorbit, entry, and landing the following day. Left: Astronaut Richard O. Covey guides Endeavour to a landing at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Workers at KSC continue to safe Endeavour following its landing. Right: Images of M100 galactic nucleus before, left, and after the first servicing mission showing the improved optical qualities. On Dec. 13, 1993, their 12th and final day in space, the astronauts donned their pressure suits and prepared for the return to Earth. Due to predicted worsening weather conditions at KSC, Mission Control elected to bring them home one orbit earlier than planned. Covey guided Endeavour to a smooth landing at night at KSC, concluding a flight of 10 days, 19 hours, 59 minutes. They circled the Earth 163 times. Within a month, new images from Hubble indicated the repairs returned the telescope to its expected capabilities, providing astronomers with a unique observation platform. The lessons learned from planning and executing the complex series of spacewalks, with extensive coordination with teams on the ground, proved highly useful not only for future Hubble servicing mission but also for the difficult spacewalks required to assemble and maintain the International Space Station. Left: Timeline of the Hubble Space Telescope’s instruments and their replacements during servicing missions. Right: Hubble as it appeared after its release during the final servicing mission in 2009. Although the STS-61 crew’s work left the Hubble Space Telescope in better condition than originally designed, over the years it required additional servicing to ensure it met its expected 15-year on-orbit life. Four additional shuttle crews serviced the telescope between 1997 and 2009, and today it carries a suite of instruments far more advanced than its original complement. During the five servicing missions, 16 space walking astronauts conducted 23 spacewalks totaling more than 165 hours, or just under 7 days, to make repairs or improvements to the telescope’s capabilities. To summarize the discoveries made by scientists using data from the Hubble Space Telescope is well beyond the scope of this article. Suffice it to say that during its more than 30 years of operation, information and images returned by Hubble continue to revolutionize astronomy, literally causing scientists to rewrite textbooks, and have dramatically altered how the public views the wonders of the universe. On the technical side, the launch of Hubble and the servicing missions to maintain and upgrade its capabilities have proven conclusively the value of maintainability of space-based scientific platforms. Watch the STS-61 crew narrate a video of their Hubble servicing mission. Share Details Last Updated Dec 04, 2023 Related TermsNASA HistorySTS-61 Explore More 10 min read 40 Years Ago: STS-9, the First Spacelab Science Mission Article 6 days ago 9 min read Spacelab 1: A Model for International Cooperation Article 7 days ago 10 min read Thanksgiving Celebrations in Space Article 2 weeks ago View the full article
  5. Visualization of total carbon dioxide in the Earth’s atmosphere in 2021NASA NASA Administrator Bill Nelson, U.S. Environmental Protection Agency (EPA) Administrator Michael Regan, and other United States government leaders unveiled the U.S. Greenhouse Gas Center Monday during the 28th annual United Nations Climate Conference (COP28). “NASA data is essential to making the changes needed on the ground to protect our climate. The U.S. Greenhouse Gas Center is another way the Biden-Harris Administration is working to make critical data available to more people – from scientists running data analyses, to government officials making decisions on climate policy, to members of the public who want to understand how climate change will affect them,” said Nelson. “We’re bringing space to Earth to benefit communities across the country.” The U.S. Greenhouse Gas Center will serve as a hub for collaboration between agencies across the U.S. government as well as non-profit and private sector partners. Data, information, and computer models from observations from the International Space Station, various satellite and airborne missions, and ground stations are available online. As the lead implementing agency of the center, NASA partnered with the EPA, National Institute of Standards and Technology, and National Oceanic and Atmospheric Administration. Science experts from each of these U.S. federal agencies curated this catalog of greenhouse gas datasets and analysis tools. “A goal of the U.S. Greenhouse Gas Center is to accelerate the collaborative use of Earth science data,” said Argyro Kavvada, center program manager at NASA Headquarters in Washington. “We’re working to get the right data into the hands of people who can use it to manage and track greenhouse gas emissions.” The center’s data catalog includes a curated collection of data sets that provide insights into greenhouse gas sources, sinks, emissions, and fluxes. Initial information in the center website is focused on three areas: Estimates of greenhouse gas emissions from human activities Naturally occurring greenhouse gas sources and sinks on land and in the ocean. Large methane emission event identification and quantification, leveraging aircraft and space-based data An example of a dataset is the methane gas information detected by NASA’s EMIT (Earth Surface Mineral Dust Source Investigation) mission. Located on the International Space Station, EMIT is an imaging spectrometer that measures light in visible and infrared wavelengths and thus can measure release of methane on Earth. Built on open-source principles, the U.S. Greenhouse Gas Center’s datasets, related algorithms, and supporting code are fully open sourced. This allows anyone to test the data, algorithms, and results. The center also includes user support and an analysis hub for users to perform advanced data analysis with computational resources and an interactive, visual interface for storytelling. NASA encourages feedback and ideas on the center’s evolution. The center is part of a broader administration effort to enhance greenhouse gas information, outlined in the recently released National Strategy to Advance an Integrated U.S. Greenhouse Gas Measurement, Monitoring, and Information System. For more information on NASA, visit: https://www.nasa.gov -end- Jackie McGuinness / Karen Fox Headquarters, Washington 202-358-1600 jackie.mcguiness@nasa.gov / karen.fox@nasa.gov View the full article
  6. In Search of Cleaner Fuel for Aviation on Earth on This Week @NASA – December 1, 2023
  7. NASA During a ceremony in Washington Nov. 30, Angola became the 33rd country to sign the Artemis Accords. The Artemis Accords establish a practical set of principles to guide space exploration cooperation among nations, including those participating in NASA’s Artemis program. NASA, in coordination with the U.S. Department of State, established the Artemis Accords in 2020 together with seven other original signatories. Since then, the Accords signatories have held focused discussions on how best to implement the Artemis Accords principles. The Artemis Accords reinforce and implement key obligations in the 1967 Outer Space Treaty. They also strengthen the commitment by the United States and signatory nations to the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior NASA and its partners have supported, including the public release of scientific data. More countries are expected to sign the Artemis Accords in the months and years ahead, as NASA continues to work with its international partners to establish a safe, peaceful, and prosperous future in space. Working with both new and existing partners adds new energy and capabilities to ensure the entire world can benefit from our journey of exploration and discovery. Learn more about the Artemis Accords at: https://www.nasa.gov/artemis-accords View the full article
  8. 3 min read Erickson to Retire after Over 40 Years of Service December 1, 2023 It is my pleasure to share information about new hires within NASA’s Science Mission Directorate (SMD) on this blog, and it is also my bittersweet duty to share information about retirements. After 40 years with NASA, Kristen Erickson – Director of NASA Science Engagement & Partnerships Division — will retire at the end of 2023. Kristen has made many contributions to the agency. Over the years she has mentored dozens of scientists and engineers to carry on NASA’s legacy of sharing the science with audiences of all ages. Kristen started her career at the Johnson Space Center in Houston, Texas, in 1983. After witnessing the Space Shuttle Challenger tragedy, she transferred to NASA Headquarters in Washington for Return to Flight and led the Space Operations Business office for nine years during the heyday of the Space Shuttle Program when eight missions per year were flown. After graduating from Harvard’s Kennedy School on a NASA fellowship, she returned to work for at NASA Headquarters. She was chosen as the lead management executive for the new Office of Biological and Physical Research – which has since joined as a division in the Science Mission Directorate. She then moved to leading the new Office of Communications Planning under then Deputy Administrator, Shana Dale, where her role was to forge a more cohesive strategic public engagement environment. Her work there included leading the agency’s 50th anniversary activities, including “NASA at the Smithsonian Folklife Festival,” Future Forums to engage top-tier community leaders, and the Apollo 40th Anniversary events. Kristen brought those goals of working for a more integrated approach to engaging with audiences to her new job with NASA science in 2009. There she created the Year of the Solar System campaign to transition awareness and excitement post-Space Shuttle to science events and missions. Comet encounters, Venus transiting of the Sun, science launches, and the historic landing of Curiosity Rover on Mars – all broke engagement records and helped show that working together on a common theme (and using data to drive decisions) was better than a siloed approach. In addition to integrating messages and plans, Kristen worked hard to create integrated working groups as well. She helped create robust teams of diverse individuals, whose different skills and expertise combined together to pull off giant and complex projects. One such project was NASA’s 2017 total solar eclipse communications efforts, which engaged over 88% of the US adult population and still holds agency records – though Kristen says she hopes those records will soon be broken with the upcoming April 8, 2024, eclipse broadcast. When asked to say something about her career, Kristen said: “The power of the NASA team to do the impossible never fails to inspire, especially when all feel included in the process.” I wish her luck in the next phase of her life and know that her legacy lives on with a robust team of science engagement experts – whose integrated skills will continue to bring NASA science to learners of all ages. View the full article
  9. Former NASA Acting Administrator Steve Jurczyk delivering remarks during NASA’s 60th anniversary.NASA/Joel Kowsky Former NASA Acting Administrator Steve Jurczyk passed away Nov. 23, at the age of 61, following a battle with pancreatic cancer. During his career, which spanned more than three decades with the agency, Jurczyk rose in ranks to associate administrator, the highest-ranking civil servant, a position he held from May 2018 until January 2021. He ultimately went on to serve as acting administrator between administration changes, serving in that position from January 2021 until his retirement in May 2021. “Steve dedicated his life to solving some of the most daring spaceflight challenges and propelling humanity’s reach throughout the solar system. The world lost Steve too soon, but his legacy of kindness and exceptional leadership lives on. My thoughts are with his family and loved ones during this difficult time,” said NASA Administrator Bill Nelson. Preceding his roles as acting administrator and associate administrator, Jurczyk served as the associate administrator for the Space Technology Mission Directorate at NASA Headquarters in Washington, a position he had held since June 2015. He was responsible for formulating and executing the agency’s space technology portfolio, focusing on the development and demonstration of new technologies supporting human and robotic exploration within the agency, public/private partnerships, and academia. Jurczyk joined the leadership team at headquarters after serving as director of NASA’s Langley Research Center in Hampton, Virginia. He was named to that position in May 2014. He previously served as deputy center director from August 2006 until his appointment as director. His NASA career began in 1988, serving as a design, integration, and test engineer in the Electronic Systems Branch at NASA Langley. There he worked on developing several space-based Earth remote sensing systems. He served in a variety of other roles at Langley including director of engineering, and director of research and technology. At the time of his retirement, Jurczyk shared the following: “It has been an honor to lead NASA and see the agency’s incredible growth and transformation throughout my time here. The NASA workforce is what makes this agency so special, and I’m incredibly grateful for their amazing work, especially throughout the coronavirus pandemic. At NASA, we turn dreams into reality, and make the seemingly impossible possible. I am so fortunate to have been a member of the NASA family.” Among his awards, Jurczyk received a Distinguished Service Medal, Presidential Rank Award for Distinguished Executive, Presidential Rank Award for Meritorious Executive, Silver Achievement Medal, Outstanding Leadership Medal, and numerous Group Achievement Awards. He also was a finalist for Sammie management excellence award for his leadership in response to the COVID-19 pandemic. Jurczyk is a graduate of the University of Virginia where he earned a Bachelor of Science and Master of Science degrees in electrical engineering in 1984 and 1986. He also was an associate fellow of the American Institute of Aeronautics and Astronautics. An obituary for Steve Jurczyk is online. For more information about his NASA career, visit: https://www.nasa.gov/people/steve-jurczyk/ View the full article
  10. 6 min read Hubble Celebrates 30th Anniversary of Servicing Mission 1 Astronaut F. Story Musgrave works in the space shuttle Endeavour’s cargo bay while the solar array panels on the Hubble Space Telescope are deployed during the final Servicing Mission 1 spacewalk. NASA In the pre-dawn hours on Dec. 2, 1993, the space shuttle Endeavour launched from Kennedy Space Center in Florida on a critical mission to repair NASA’s Hubble Space Telescope. Hubble was designed to be serviced in space with components that astronauts can slide in and out of place. But prior to launch, no one expected the first servicing mission to be of such urgency. For three years, Hubble had been the punchline of late-night comics and editorial cartoons: the telescope that couldn’t see straight. Since its deployment in 1990, the telescope had been beaming blurry images back to Earth, the result of a flaw in the shape of its primary mirror. Though the mirror was off by only one-fiftieth the width of a human hair, the error had devastating consequences: the light from the mirror didn’t focus quite right. While the images were still better than those taken from Earth and science was still possible, their quality was not what the world expected. The sense that you got was everybody was looking at the servicing and repair of the Hubble Space Telescope as the mission that could prove NASA’s worth … There was this overarching focus and pressure on the success of this mission. Richard Covey Servicing Mission 1 Astronaut Servicing Mission 1 was the solution. Aboard the shuttle were the Wide Field and Planetary Camera 2 (WFPC2) and Corrective Optics Space Telescope Axial Replacement (COSTAR), along with other critical components to upgrade the telescope. WFPC2, responsible for the telescope’s visually impactful images, had built-in corrective optics to compensate for the mirror flaw and would replace the Wide Field/Planetary Camera that Hubble launched with. COSTAR was a refrigerator-sized component containing a constellation of mirrors, some only the size of a U.S. nickel, intended to correct and redirect light to the telescope’s other cameras and spectrographs. Astronaut Kathryn C. Thornton grips a tool to perform servicing mission tasks on the Hubble Space Telescope during the fourth spacewalk of Servicing Mission 1. NASA The shuttle’s crew of seven astronauts was aware that not only Hubble’s fate was on their shoulders, but the public perception of NASA and its space program as well. “If the Hubble repair is a failure, we can write off space science for the foreseeable future,” John Bahcall, the late astrophysicist who advocated for the telescope and a member of its science working group, told the New York Times in 1993. Credit: NASA’s Goddard Space Flight Center; Lead Producer: Grace Weikert On Dec. 2, 2023, NASA commemorates the 30th anniversary of Servicing Mission 1 and its success in transforming Hubble into one of NASA’s greatest triumphs: a shining example of human ingenuity in the face of adversity. During one of the most complex spacewalking missions ever attempted, astronauts conducted five extravehicular activities, totaling over 35 hours. They removed the High Speed Photometer instrument to add COSTAR and swapped out the original Wide Field/Planetary Camera for the Wide Field and Planetary Camera 2. They also installed other critical components to upgrade the telescope. The crew of Servicing Mission 1 poses for a portrait on the space shuttle. In the front row from left to right are Swiss scientist Claude Nicollier, mission specialist; Kenneth D. Bowersox, pilot; and Richard O. Covey, mission commander. In the back row are the spacewalkers on this flight: F. Story Musgrave, payload commander; Jeffrey A. Hoffman, mission specialist; Kathryn D. Thornton, mission specialist; and Thomas D. Akers, mission specialist. NASA At 1 a.m. on December 18, 1993, about a week after the mission had ended, astronomers gathered around computers at the Space Telescope Science Institute in Baltimore to witness the first new image from the telescope: a star, shining clear and pristine in the image without the hazy effects of Hubble’s flawed mirror. The new images were so dramatically different that even though the telescope needed around 13 weeks for adjustment to reach its full capabilities, NASA released them early. “It’s fixed beyond our wildest expectations,” said Ed Weiler, Hubble chief scientist during SM1, at a January 1994 press conference. The look on people’s faces as this picture came up – this was an old [cathode ray] tube-type TV. It took a while for it to build up, but it got clearer and clearer and clearer. Everybody starts shouting. Ed Weiler Hubble chief scientist during SM1 Images of spiral galaxy M100 show the improvement in Hubble’s vision between Wide Field/Planetary Camera and its replacement instrument, the Wide Field and Planetary Camera 2. NASA, STScI Senator Barbara Mikulski of Maryland, who had advocated diligently for Hubble, was the first to show off the new images to the public at the Jan. 13 press conference. “I’m happy to announce today that after its launch in 1990 and some of its earlier disappointments, the trouble with Hubble is over,” she said. Sen. Barbara Mikulski displays a picture showing the difference between a star image taken before COSTAR’s installation and the same star after Servicing Mission 1 during the Jan. 13, 1993 press conference announcing the success of the mission. NASA Though Servicing Mission 1 is best remembered for its resolution of Hubble’s blurry vision, it accomplished a host of additional tasks that helped transform the telescope into the astronomical powerhouse it remains today. By the time Servicing Mission 1 launched, the telescope’s gyroscopes – delicate pieces of equipment required to steer and point Hubble – were already breaking down. Three of the six gyroscopes, or gyros, aboard Hubble had failed. The other three – typically kept as backups – were in operation, the minimum number needed to keep Hubble collecting science data. Astronauts replaced four gyroscopes, a fix that would help keep the telescope running smoothly for several years. Early in Hubble’s time in orbit, NASA discovered that the telescope’s solar arrays would expand and contract excessively in the alternating heat and cold of space as the telescope traveled in and out of sunlight, causing them to vibrate. This forced engineers to use Hubble’s computing capacity to compensate for the “jitter” and reduced observation time. Astronauts replaced Hubble’s solar arrays with new versions that brought the natural jitter down to acceptable levels. Astronauts also performed an augmentation whose vital importance would become clear a year later: upgrading Hubble’s flight computer with a co-processor and associated memory. Just weeks before the disintegrating comet Shoemaker-Levy 9 collided with Jupiter in 1994, Hubble went into a protective “safe mode” due to a memory unit problem in the main computer. Engineers were able to use that co-processor’s memory to fix the problem, capturing stunning images of the gas giant being pummeled by comet fragments. Hubble Memorable Moments: Comet Impact Find out more about Servicing Mission 1 and its accomplishments Servicing Mission 1’s impact echoed far beyond Hubble. The mission was a showcase for tasks that could be done in space, proving humanity’s ability to perform highly complex work in orbit. The lessons learned from training for Hubble and from the servicing work itself would be built upon for other astronaut missions, including the four subsequent servicing visits to Hubble between 1997-2009. These additional missions to Hubble would enable the installation of new, cutting-edge instruments, repair of existing science instruments, and the replacement of key hardware, keeping Hubble at the forefront of astrophysics exploration. Further, the lessons learned from Servicing Mission 1 were a guiding force for work on the International Space Station, and for missions yet to occur. “A lot of the knowledge that was developed there transferred directly to construction of the International Space Station and it’ll transfer to the things we do with [the future orbiting lunar space station] Gateway someday,” said Kenneth Bowersox, associate administrator for NASA’s Space Operations Mission Directorate, who was also astronaut on Servicing Mission 1. “And it’ll apply to things we do on the Moon and in deep space, going to Mars and beyond. It all links.” To celebrate Servicing Mission 1, NASA is releasing a series of videos over the next two weeks featuring key players – astronauts, scientists, engineers, and more – as they reflect on the struggles and triumphs of that time, as well as the emotional and personal impact that Hubble and SM1 had on their lives. Follow @NASAHubble on X, Instagram, and Facebook, or go to nasa.gov/hubble to watch as the series kicks off this weekend. Share Details Last Updated Dec 01, 2023 Editor Andrea Gianopoulos Contact Location Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Science & Research Science Mission Directorate Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Stars Stories Galaxies Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
  11. In microgravity, without the continuous load of Earth’s gravity, the tissues that make up bones reshape themselves. Bone cells readjust their behaviors—the cells that build new bone slow down, while the cells that break down old or damaged bone tissue keep operating at their normal pace so that breakdown outpaces growth, producing weaker and more brittle bones. For every month in space, astronauts’ weight-bearing bones become roughly 1% less dense if they don’t take precautions to counter this loss. Muscles, usually activated by simply moving around on Earth, also weaken because they no longer need to work as hard. This loss of bone and muscle is called atrophy. Atrophy has serious implications for astronaut health. On Earth, muscle and bone loss or atrophy also occur from normal aging, sedentary lifestyles, and illnesses. This may cause serious health issues from injuries due to falls, osteoporosis, or many other medical problems. While researchers understand broad causes of atrophy, they continue to investigate the fundamental mechanisms and contributing factors of microgravity-induced muscle and bone atrophy. Much research focuses on determining the right combination of diet, exercise, and medication to keep astronauts healthy during missions and when they return to Earth or set foot on the Moon or Mars. Exercise & Forces To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video NASA astronauts Bob Hines and Kjell Lindgren work out on the Advanced Resistive Exercise Device (ARED). Credits: NASA Each astronaut aboard the space station engages the muscles, bones, and other connective tissues that comprise their musculoskeletal systems using Earth-like exercise regimens. Crews exercise for an average of two hours a day. Astronauts have biked on stationary bicycles and run on treadmills in space for decades. One of the first missions on the space station flew TVIS, a treadmill with a harness to keep the user tethered to the machine and add some gravity-like force.1 A current piece of equipment called ARED allows astronauts to mimic weightlifting in microgravity. Unfortunately, these machines are too large to bring aboard a spacecraft for long duration space flight where room is at a premium. So scientists are curious: Could exercises using minimal or no equipment could provide adequate physical activity while taking up less room? One study in particular aims to find out. For the Zero T2 experiment, some astronauts do not use the treadmill and instead simply perform aerobic and resistance exercises. Researchers plan to compare their muscle performance and recovery to their crewmates who did use the treadmill. NASA astronaut Frank Rubio performs maintenance on the space station’s treadmill.NASA The motivation to exercise is a major hurdle both on Earth and on the space station. Two hours or more of exercise a day is a large chunk of time! VR for Exercise focuses on developing a virtual reality environment astronauts can pedal through while on the station’s exercise bicycle. It’s more than just a different view—creating an immersive experience helps astronauts enjoy their time exercising. In addition to testing the exercise regime itself, researchers want to understand how the body experiences exercise in microgravity. Full-body exercise affects the entire musculoskeletal system. ARED Kinematics analyzes how muscle strain, bone stress, and other internal factors affect the body while exercising in microgravity. Measuring the body during space workouts can help scientists understand how astronauts need to adapt exercises in microgravity to preserve and optimize their health during long duration spaceflight missions. Researchers found that pre-flight exercise training improves performance on station, just as pre-season training helps athletes in later competition. 2 The investigation aims to determine optimal exercise programs to prepare astronauts before a mission, limit the effects of microgravity during a mission, and enable safe and rapid recovery postflight.2 ESA (European Space Agency) astronaut Alexander Gerst gets a workout on the Advanced Resistive Exercise Device (ARED). NASA The search for treatments for bone atrophy in space overlaps with research on bone loss associated with osteoporosis on Earth. Some experiments, like Vertebral Strength, capture detailed scans of astronauts’ bones and muscles supporting the vertebral column before and after flight, providing researchers with information about overall musculoskeletal strength. Drugs used to prevent bone loss on Earth, such as myostatin inhibitors, also may successfully prevent bone and muscle loss in both astronauts and animal models in space. Rodent Research 19 (RR-19) tested this drug during spaceflight.3 Developing drugs to treat bone loss could benefit people on Earth as well as provide countermeasures for those on long-duration space missions. NASA astronaut Jessica Meir installs the Bone Densitometer device for the Rodent Research 19 experiment.NASA Tissue chips are small devices that imitate complex functions of specific tissues and organs. Rather than bringing a whole organ to study in space, researchers can send a small sample in a handheld device. One tissue chip experiment, Human Muscle-on-Chip, used a 3D model of muscle fibers created from muscle cells of young and older adults to study muscle function changes in microgravity. Electrical pulses cause the tissue to contract, just like the muscles in our bodies when we use them. Researchers found decreased expression of genes related to muscle growth and metabolism in muscle cells exposed to space, with differences based on the age of the individuals that the tissue samples came from.4 Understanding how to prevent and treat muscle atrophy and bone loss is particularly important as NASA plans missions to the Moon and Mars. Once they arrive, astronauts may need to perform strenuous activity in partial gravity after a long time in near weightlessness. CIPHER is an integrated experiment measuring psychological and physiological changes—including bone and muscle loss – in crew members on missions ranging in length from a few weeks to one year. As NASA sets goals or longer missions deeper into space, scientists want to know: Do long missions change astronauts’ physical bodies more than shorter missions? Do changes to certain systems plateau after a certain amount of time in space? Do any changes feed back to affect different biological systems? NASA needs such data to best prepare astronauts to achieve agency exploration goals. Through CIPHER, NASA can conduct the same research over missions of different durations. This allows scientists to extrapolate to multi-year missions, such as a three-year round trip to Mars. Findings could be key to developing protective strategies and safeguarding crew members for exploration missions to the Moon and Mars. Studying bone and muscle loss aboard the space station is advancing the development of strategies that keep space travelers safe and treatments for people on Earth with disease-related and age-related bone and muscle atrophy. Resources for Additional Learning Search this database of scientific experiments to learn more about those mentioned above: Space Station Research Explorer Citations: Belyaev MY, Babkin EV, Ryabukha SB, Ryazantsev AV. Microperturbations on the International Space Station during physical exercises of the crew. Cosmic Research. 2011 April 16; 49(2): 160-174. DOI: 10.1134/S0010952511010011. Lambrecht G, Petersen N, Weerts G, Pruett CJ, Evetts SN, Stokes M, Hides JA. The role of physiotherapy in the European Space Agency strategy for preparation and reconditioning of astronauts before and after long duration space flight. Musculoskeletal Science & Practice. 2017 January; 27 Suppl 1S15-S22. DOI: 10.1016/j.math.2016.10.009 Lee S, Lehar A, Meir JU, Koch C, Morgan A, Warren L, Rydzik R, Youngstrom DW, Chandok H, George J, Gogain J, Michaud M, Stoklasek TA, Liu Y, Germain-Lee EL. Targeting myostatin/activin A protects against skeletal muscle and bone loss during spaceflight. Proceedings of the National Academy of Sciences of the United States of America. 2020 September 2; 117(38): 23942-23951. DOI: 10.1073/pnas.2014716117. PMID: 32900939. Parafati M, Giza S, Shenoy T, Mojica-Santiago JA, Hopf M, Malany LK, Platt D, Moore I, Jacobs ZA, Kuehl P, Rexroat JT, Barnett G, Schmidt CE, McLamb WT, Clements TS, Coen P, Malany S. Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight. npj Microgravity. 2023 September 15; 9(1): 77. DOI: 10.1038/s41526-023-00322-y. In this STEMonstration, NASA Astronaut Joe Acaba stresses the importance of exercising in orbit, and dives into the science behind what happens to bones and muscles in microgravity. Keep Exploring Discover More Topics Station Science 101: Human Research Living in Space Humans In Space Latest News from Space Station Research View the full article
  12. 2 min read Hubble Views a Double Cluster of Glowing Galaxies This NASA Hubble Space Telescope image of Abell 3192 holds two independent galaxy clusters. ESA/Hubble & NASA, G. Smith, H. Ebeling, D. Coe This Hubble image features a massive cluster of brightly glowing galaxies, first identified as Abell 3192. Like all galaxy clusters, this one is suffused with hot gas that emits powerful X-rays, and it is enveloped in a halo of invisible dark matter. All this unseen material – not to mention the many galaxies visible in this image – comprises such a huge amount of mass that the galaxy cluster noticeably curves spacetime around it, making it into a gravitational lens. Smaller galaxies behind the cluster appear distorted into long, warped arcs around the cluster’s edges. The galaxy cluster is in the constellation Eridanus, but the question of its distance from Earth is a more complicated one. Abell 3192 was originally documented in the 1989 update of the Abell catalog of galaxy clusters that was first published in 1958. At that time, Abell 3192 was thought to comprise a single cluster of galaxies, concentrated at a single distance. However, further research revealed something surprising: the cluster’s mass seemed to be densest at two distinct points rather than one. It was subsequently shown that the original Abell cluster is actually comprised of two independent galaxy clusters – a foreground group around 2.3 billion light-years from Earth, and another group at the greater distance of about 5.4 billion light-years from our planet. The more distant galaxy cluster, included in the Massive Cluster Survey as MCS J0358.8-2955, is central in this image. The two galaxy groups are thought to have masses equivalent to around 30 trillion and 120 trillion times the mass of the Sun, respectively. Both of the two largest galaxies at the center of this image are part of MCS J0358.8-2955; the smaller galaxies you see here, however, are a mixture of the two groups within Abell 3192. Text credit: European Space Agency Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Dec 01, 2023 Editor Andrea Gianopoulos Contact Location Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Science Mission Directorate The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories Stars Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
  13. 3 min read December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula Orion constellation Stellarium Web by Kat Troche of the Astronomical Society of the Pacific It’s that time of year again: Winter! Here in the Northern Hemisphere, the clear, crisp sky offers spectacular views of various objects, the most famous of all being Orion the Hunter. As we’ve previously mentioned, Orion is a great way to test your sky darkness. With the naked eye, you can easily spot this hourglass-shaped constellation. Known as an epic hunter in Greco-Roman antiqity, Orion and all its parts have many names and meanings across many cultures. In Egyptian mythology, this constellation represented the god Sah. The Babylonians referred to it as The Heavenly Shepard. In most cultures, it is Orion’s Belt that has many stories: Shen in Chinese folklore, or Tayamnicankhu in Lakota storytelling. But the Maya of Mesoamerica believed that part of Orion contained The Cosmic Hearth – the fire of creation. 1,500 light years away from Earth sits the star-forming region, and crown jewel of Orion – Messier 42 (M42), the Orion Nebula. Part of the “sword” of Orion, this 24 light year wide cloud of dust and gas sits below the first star in Orion’s Belt, Alnitak, and can easily be spotted with the naked eye under moderate dark skies. You can also use binoculars or a telescope to resolve more details, such as the Trapezium: four stars in the shape of a keystone (or baseball diamond). These young stars make up the core of this magnificent object. Of course, it’s not just for looking at! M42 is easily one of the most photographed nebulae around, imaged by amateur astrophotographers, professional observatories and space telescopes alike. It has long been a place of interest for the Hubble, Spitzer, and Chandra X-ray Space Telescopes, with James Webb Space Telescope now joining the list in February 2023. Earlier this year, NASA and the European Space Agency released a new photo of the Orion Nebula taken from JWST’s NIRCam (Near-Infrared Camera), which allowed scientists to image this early star forming region in both short and long wavelengths. These Webb images show a part of the Orion Nebula known as the Orion Bar. It is a region where energetic ultraviolet light from the Trapezium Cluster — located off the upper-left corner — interacts with dense molecular clouds. The energy of the stellar radiation is slowly eroding the Orion Bar, and this has a profound effect on the molecules and chemistry in the protoplanetary disks that have formed around newborn stars here. The largest image, on the left, is from Webb’s NIRCam (Near-Infrared Camera) instrument. At upper right, the telescope is focused on a smaller area using Webb’s MIRI (Mid-Infrared Instrument). A total of eighteen filters across both the MIRI and NIRCam instruments were used in these images, covering a range of wavelengths from 1.4 microns in the near-infrared to 25.5 microns in the mid-infrared. At the very center of the MIRI area is a young star system with a planet-forming disk named d203-506. The pullout at the bottom right displays a combined NIRCam and MIRI image of this young system. Its extended shape is due to pressure from the harsh ultraviolet radiation striking it. An international team of astronomers detected a new carbon molecule known as methyl cation for the first time in d203-506. ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), PDRs4ALL ERS Team But stars aren’t the only items visible here. In June 2023, JWST’s NIRCam and MIRI (mid-infrared instrument) imaged a developing star system with a protoplanetary disk forming around it. That’s right – a solar system happening in real time – located within the edges of a section called the Orion Bar. Scientists have named this planet-forming disk d203-506, and you can learn more about the chemistry found here. By capturing these objects in multiple wavelengths of light, astronomers now have even greater insight into what other objects might be hiding within these hazy hydrogen regions of our night sky. This technique is called Multi-spectral Imaging, made possible by numerous new space based telescopes. In addition to the Night Sky Network Dark Sky Wheel, a fun activity you can share with your astronomy club would be Universe Discovery Guide: Orion Nebula, Nursery of Newborn Stars. This will allow you to explain to audiences how infrared astronomy, like JWST, helps to reveal the secrets of nebulae. Or you can use public projects like the NASA-funded MicroObservatory to capture M42 and other objects. Stay tuned to learn more about what to spy in the Winter sky with our upcoming mid-month article! 3 min read December’s Night Sky Notes: A Flame in the Sky – the Orion Nebula View the full article
  14. The CubeSats from NASA’s ELaNa 38 mission were deployed from the International Space Station on Jan. 26, 2022. Seen here is the deployment of The Aerospace Corporation’s Daily Atmospheric and Ionospheric Limb Imager (DAILI).NASA Despite their small size, the satellites launching through NASA’s CubeSat Launch Initiative (CSLI) missions have a big impact, creating access to space for many who might not otherwise have the opportunity. One recent mission tells the story of four teams of researchers and engineers who conceived, built, launched, and collected data from these shoebox-sized satellites, helping them answer a host of questions about our planet and the universe. The teams’ CubeSats launched as part of the ELaNa 38 (Educational Launch of Nanosatellites) mission, selected by CSLI and assigned to the mission by NASA’s Launch Services Program. A little more than a month after launching aboard SpaceX’s 24th commercial resupply services mission from NASA’s Kennedy Space Center in Florida, the CubeSats were deployed from the International Space Station on Jan. 26, 2022. Being selected by CSLI was an inspirational once-in-a-lifetime opportunity for more than 100 undergraduate students who worked on ELaNA 38’s Get Away Special Passive Attitude Control Satellite (GASPACS) CubeSat. “None of us had ever worked on a project like this, much less built a satellite on our own,” said Jack Danos, team coordinator of Utah State University’s Get Away Special, or GAS Team. “When we first heard the audio beacon from our satellite in orbit, we all cheered.” It took the GAS Team nearly a decade to develop and build GASPACS – the team’s first CubeSat – with many team members graduating in the process. But the team’s focus remained the same – to deploy and photograph a meter-long inflatable boom, known as the AeroBoom, from its CubeSat in Low Earth orbit. A photograph taken by the GASPACS CubeSat shows the AeroBoom fully deployed. Utah State University “When we saw that first photo come through, we were blown away, speechless,” Danos said. “This had been a decade of work and learning everything required for a real satellite mission – a lot of us got skills that we never could have gotten in a normal school environment.” The team of college students who built Georgia Tech’s Tethering and Ranging mission (TARGIT) developed it to test an imaging LiDAR system capable of detailed topographic mapping from orbit. TARGIT’s students machined the CubeSat components themselves and integrated several new technologies into the final flight system. “CSLI was a great window into how NASA works and the formal processes to ensure the hardware that gets launched meets requirements,” said Dr. Brian Gunter, principal investigator on the Georgia Institute of Technology TARGIT CubeSat. “Our spacecraft would not have made it to orbit without this program.” Georgia Tech’s Tethering and Ranging CubeSat engaged over 100 students at the university and overcame obstacles presented by the global pandemic to get to launch.Georgia Institute of Technology Prior to launch, the Georgia Tech team worked closely with NASA’s CSLI team, gained considerable industry experience, and delivered a flight-ready spacecraft, even after COVID forced a full shutdown of activity for an extended period, during which many key team members graduated. “Just getting the spacecraft ready and delivered was the greatest achievement for the group and was a nice example of teamwork and resiliency from the students,” Gunter said. Not all ELaNa 38’s CubeSats were student-built. With the goal of studying processes affecting Earth’s upper atmosphere and ionosphere, The Aerospace Corporation’s Daily Atmospheric and Ionospheric Limb Imager (DAILI) CubeSat employed an ambitious forward sunshade that was key to DAILI’s ability to examine atmospheric variations during daytime. As perhaps the most sophisticated sunshade ever flown on a CubeSat, it reduced intense scattered light from the Sun, the Earth’s surface, and low-altitude clouds by a factor of almost a trillion. The Aerospace Corporation’s DAILI featured an ambitious sunshade that helped the CubeSat examine minute variations in the atmosphere. The Aerospace Corporation “Not only did we have a shade that occupied over half of the space we had on the CubeSat – we also needed room for the optics, the detector, and for the CubeSat bus,” said Dr. James Hecht, senior scientist at Ionospheric and Atmospheric Sciences at Aerospace and DAILI principal investigator. “The effectiveness of the shade depended greatly on the length of the shade to the angular field of view of DAILI. It was a challenge, but it worked.” Rounding out the ELaNa 38 flight was the Passive Thermal Coating Observatory Operating in Low Earth Orbit (PATCOOL) satellite, sponsored by NASA’s Launch Services Program and developed by the Advanced Autonomous Multiple Spacecraft Laboratory at the University of Florida. PATCOOL tested a highly reflective surface coating called “solar white” to measure its efficiency as way to passively cool components in space. PATCOOL during its development at the Advanced Autonomous Multiple Spacecraft Laboratory at the University of FloridaUniversity of Florida Through ELaNa 38’s four small satellites, hundreds of individuals – many developing and launching spacecraft for the first time – achieved access to space. For NASA, increasing access to space and making data and innovations accessible to all also serves to reinforce the future of the country’s space industry. “This is an opportunity that you just can’t get anywhere else – the ability to send something into space, get the ride paid for, and form relationships within the industry,” Danos said. “There are so many members of the team that went into the space industry after the mission – a mission we literally couldn’t have done without NASA’s CSLI.” View the full article
  15. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA Stennis Test Operations Chief Maury Vander speaks with a young visitor to the NASA booth during the 2023 Bayou Classic Fan Fest event in New Orleans on Nov. 25.NASA / C. Lacy Thompson NASA was on full display during the 50th Annual Bayou Classic Fan Fest activity in New Orleans on Nov. 25, hosting an informational booth and interacting with event participants to deliver a clear message – There’s Space for Everybody at NASA. In addition to event signage and messaging, NASA representatives were out in force during the morning-long Fan Fest event, providing attendees with memorabilia and sharing information about student internship and employment opportunities with the agency. The annual Bayou Classic event attracts tens of thousands of visitors each year and features several days of activities, including a Battle of the Bands showcase Nov. 24 and a nationally broadcast football game Nov. 25, all involving two Historically Black Colleges and Universities in Louisiana – Southern University in Baton Rouge and Grambling State University in Grambling. Almost 65,000 people attended this year’s game. The NASA outreach and engagement effort was part of an ongoing agency-wide commitment to advance equity and reach deeper into underrepresented and underserved segments of society and was in support of the Biden-Harris Administration’s efforts to advance racial equity in the federal government. NASA at the Bayou Classic Fan Fest video Share Details Last Updated Nov 30, 2023 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related TermsStennis Space Center Explore More 3 min read NASA to Highlight Inclusion During Bayou Classic Event Article 1 week ago Keep Exploring Discover Related Topics About NASA Stennis STEM Engagement at Stennis Space Center Minority University Research & Education Project SMD Bridge Program Planning Information Science Mission Directorate Bridge Program Call for ProposalsAnticipated ROSES-22 Amendment or ROSES-23 New Program This page contains Planning… View the full article
  16. Architecture Concept Review attendees listen to welcome remarks from NASA leadership on Nov. 14, 2023, at NASA’s Kennedy Space Center in Florida. Attendees included representatives from all of NASA’s centers, leaders from all of NASA’s mission directorates, various technical authorities, and other stakeholders across the agency. NASA/Kim Shifflett NASA hosted its second annual Architecture Concept Review in mid-November, bringing together leaders from across the agency to discuss progress on and updates to NASA’s Moon to Mars architecture since NASA released outcomes from its first such review in April. As NASA builds a blueprint for human exploration throughout the solar system for the benefit of humanity, the agency has established the internal Architecture Concept Review process to help align NASA’s Moon to Mars exploration strategy and codify the supporting architecture through robust analysis. Through this evolutionary process, NASA continuously updates its roadmap for crewed exploration, setting humanity on a path to the Moon, Mars, and beyond. NASA leadership gives opening remarks at the review. From left to right: Casey Swails, deputy associate administrator; Catherine Koerner, deputy associate administrator for the Exploration Systems Development Mission Directorate; Jim Free, associate administrator for the Exploration Systems Development Mission Directorate; and Pam Melroy, deputy administrator. NASA/Kim Shifflett “Our yearly strategic analysis cycle informs architecture decisions by identifying technology gaps, performing trade studies, and soliciting feedback from industry, academia, and the international community,” said Catherine Koerner, deputy associate administrator for NASA’s Exploration Systems Development Mission Directorate. “This year’s review focused on identifying the foundational decisions needed for a crewed mission to Mars and adding more detail to how we break down our objectives for long-term lunar exploration into specific architectural elements.” During the review, NASA also began to define potentially viable and affordable opportunities for new programs and projects that close capability gaps. NASA will share the results of this year’s Architecture Concept Review cycle early next year. This will include an update to the agency’s Architecture Definition Document and associated white papers, which provide additional detail on results from this year’s strategic analysis cycle. Both the updated Architecture Definition Document and white papers will be made available on NASA’s Moon to Mars architecture webpages. View the full article
  17. NASA Explorers Season 6, Episode 3: TAG
  18. 4 min read Google’s ‘A Passage of Water’ Brings NASA’s Water Data to Life As part of the long-standing partnership between NASA and Google, NASA worked with Google Arts & Culture and artist Yiyun Kang to create an interactive digital experience around global freshwater resources titled “A Passage of Water.” This immersive experience leverages data from the Gravity Recovery and Climate Experiment (GRACE) satellites and new high-resolution data from the Surface Water and Ocean Topography (SWOT) mission to illustrate how climate change is impacting Earth’s water cycle. A digital version of “A Passage of Water” will be released online on Thursday, Nov. 30, ahead of the beginning of the United Nations’ Climate Change Conference of Parties (COP 28) in Dubai, United Arab Emirates. Google also will host a physical installation of the visualization project in the Blue Zone at COP 28. “NASA is the U.S. space agency that provides end-to-end research about our home planet, and it is our job to inform the world about what we learn,” said Kate Calvin, NASA’s chief scientist and senior climate advisor in Washington. “Highlighting our Earth science data in the installation of ‘A Passage of Water’ is a unique way to share information, in a digestible way, around the important connection between climate change and the Earth’s water cycle.” The international Surface Water and Ocean Topography (SWOT) satellite, as shown in this illustration, is the first global mission surveying Earth’s surface water. SWOT’s high-resolution data helps scientists measure how Earth’s bodies of water change overtime. Credit: CNES. For six decades, NASA has been collecting data on Earth’s land, water, air, and climate. This data is used to inform decision-makers on ways to mitigate, adapt and respond to climate change. All of NASA’s Earth science data is available for scientists and the public to access in a variety of ways. “NASA studies our home planet and its interconnected systems more than any other planet in our universe,” said Karen St. Germain, director of NASA’s Earth Science Division. “’A Passage of Water’ provides an opportunity to highlight the public availability of SWOT data and other NASA Earth science data to tell meaningful stories, improve awareness, and help everyday people who have to make real decisions in their homes, businesses, and communities.” A collaboration between NASA and the French space agency CNES (Centre National d’Études Spatiales), SWOT is measuring the height of nearly all water on Earth’s surface, providing one of the most detailed, comprehensive views yet of the planet’s freshwater bodies. SWOT provides insights into how the ocean influences climate change and how a warming world affects lakes, rivers, and reservoirs. NASA studies our home planet and its interconnected systems more than any other planet in our universe. Karen St. Germain Director, NASA’s Earth Science Division “The detail that SWOT is providing on the world’s oceans and fresh water is game-changing. We’re only just getting started with respect to data from this satellite and I’m looking forward to seeing where the information takes us,” said Ben Hamlington, a research scientist at NASA’s Jet Propulsion Laboratory in Southern California. The Google project also uses data from the GRACE and GRACE Follow-On missions –the former is a joint effort between NASA and the German Aerospace Center (DLR), while the latter is a collaboration between NASA and the German Research Centre for Geosciences (GFZ). GRACE tracked localized changes to Earth’s mass distribution, caused by phenomena including the movement of water across the planet from 2002 to 2017. GRACE-FO came online in 2018 and is currently in operation. As with GRACE before it, the GRACE-FO mission monitors changes in ice sheets and glaciers, near-surface and underground water storage, the amount of water in large lakes and rivers, as well as changes in sea level and ocean currents, providing an integrated view of how Earth’s water cycle and energy balance are evolving. “A Passage of Water” is the most recent digital experience created under NASA’s Space Act Agreement with Google, with resulting content to be made widely available to the public free of charge on Google’s web platforms. This collaboration is part of a six-project agreement series that aims to share NASA’s content with audiences in new and engaging ways. Learn more about SWOT, GRACE, GRACE-FO, and NASA’s Earth Science missions at: https://science.nasa.gov/earth To learn more about NASA Partnerships, visit: https://www.nasa.gov/partnerships Katherine Rohloff Headquarters, Washington 202-358-1600 katherine.a.rohloff@nasa.gov Share Details Last Updated Nov 30, 2023 Editor Contact Related Terms Earth GRACE (Gravity Recovery And Climate Experiment) GRACE-FO (Gravity Recovery and Climate Experiment Follow-on) SWOT (Surface Water and Ocean Topography) Water on Earth Keep Exploring Discover More Topics From NASA Earth Your home. Our Mission. And the one planet that NASA studies more than any other. Climate Change NASA is a global leader in studying Earth’s changing climate. Explore Earth Science Earth Science Data View the full article
  19. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The six satellites that make up NASA’s SunRISE mission are each only about the size of a cereal box, flanked by small solar panels. This fleet of six SmallSats will work together to effectively create a much larger radio antenna in space. Space Dynamics Laboratory/Allison Bills Most NASA missions feature one spacecraft or, occasionally, a few. The agency’s Sun Radio Interferometer Space Experiment (SunRISE) is using half a dozen. This month, mission members completed construction of the six identical cereal box-size satellites, which will now go into storage and await their final testing and ride to space. SunRISE will launch as a rideshare aboard a United Launch Alliance Vulcan rocket, sponsored by the United States Space Force (USSF)’s Space Systems Command (SSC). Once launched, these six small satellites, or SmallSats, will work together to act like one giant radio antenna in space. The mission will study the physics of explosions in the Sun’s atmosphere in order to gain insights that could someday help protect astronauts and space hardware from showers of accelerated particles. “This is a big moment for everyone who has worked on SunRISE,” said Jim Lux, the SunRISE project manager at NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission for the agency. “Challenges are expected when you’re doing something for the first time, and especially when the space vehicles are small and compact. But we have a small team that works well together, across multiple institutions and companies. I’m looking forward to the day when we receive the first images of the Sun in these radio wavelengths.” Monitoring Solar Radio Bursts They may be small, but the six satellites have a big job ahead of them studying solar radio bursts, or the generation of radio waves in the outer atmosphere of the Sun. These bursts result from electrons accelerated in the Sun’s atmosphere during energetic events known as coronal mass ejections and solar flares. Particles accelerated by these events can damage spacecraft electronics – including on communications satellites in Earth orbit – and pose a health threat to astronauts. Scientists still have big questions about how solar radio bursts, coronal mass ejections, and solar flares are created and how they are linked. SunRISE may shed light on this complex question. Someday, tracking solar radio bursts and pinpointing their location could help warn humans when the energetic particles from coronal mass ejections and solar flares are likely to hit Earth. This type of monitoring isn’t possible from the ground. Earth’s atmosphere blocks the range of radio wavelengths primarily emitted by solar radio bursts. For a space-based monitoring system, scientists need a radio telescope bigger than any previously flown in space. This is where SunRISE comes in. To look out for solar radio events, the SmallSats will fly about 6 miles (10 kilometers) apart and each deploy four radio antennas that extend 10 feet (2.5 meters). Mission scientists and engineers will track where the satellites are relative to one another and measure with precise timing when each one observes a particular event. Then they will combine the information collected by the satellites into a single data stream from which images of the Sun will be produced for scientists to study – a technique called interferometry. “Some missions put multiple scientific instruments on a single spacecraft, whereas we use multiple small satellites to act as a single instrument,” said JPL’s Andrew Romero-Wolf, the deputy project scientist for SunRISE. More About the Mission SunRISE is a Mission of Opportunity under the Heliophysics Division of NASA’s Science Mission Directorate (SMD). Missions of Opportunity are part of the Explorers Program, managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. SunRISE is led by Justin Kasper at the University of Michigan in Ann Arbor and managed by NASA’s Jet Propulsion Laboratory in Southern California, a division of Caltech in Pasadena, California. Utah State University’s Space Dynamics Laboratory built the SunRISE spacecraft. JPL, a division of Caltech in Pasadena, California, provides the mission operations center and manages the mission for NASA. News Media Contacts Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 626-808-2469 calla.e.cofield@jpl.nasa.gov Denise Hill NASA Headquarters, Washington 202-308-2071 denise.hill@nasa.gov Share Details Last Updated Nov 30, 2023 Related TermsSunRISE (Sun Radio Interferometer Space Experiment)Earth Explore More 3 min read NASA to Showcase Earth Science Data at COP28 NASA will share knowledge and data at the 28th U.N. Climate Change Conference of the… Article 3 days ago 2 min read Connect with NASA at FAN EXPO San Francisco 2023 Article 1 week ago 5 min read NASA Mission Excels at Spotting Greenhouse Gas Emission Sources Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  20. “I want to help the Native community get better representation and show that we can help Native citizens get into aerospace engineering, mathematics, or [other STEM career fields]. And the Cherokee and Choctaw Nations are trying to do the same thing on their reservations. They have amazing education networks, so when I realized what they were doing, I wanted to help them be successful [in their efforts] so that they could inspire other tribes to do the same thing. “When I was talking with the Principal Chiefs of the Cherokee and Choctaw Nations, they said, ‘We need to start making decisions for our people seven generations from now.’ So, they started looking at emerging technologies, and aviation [with a focus on] advanced air mobility was one of those areas. They said, ‘We want to make sure our youth are enabled and equipped to start fielding some of these areas,’ and that’s how I want to help inspire people too. “Everyone needs an anchor from their community to motivate and inspire them to move forward. I want to be a motivational anchor for the next generation of minorities. You look at minorities, and we often don’t have as many anchors from our past to make us believe [our big dreams are possible]. Providing that legacy now and saying, ‘Hey, I can be an emotional anchor to somebody in my community or with my background [in] two, three, four generations from now,’ and building something outside of myself – that’s what motivates me. I think that’s how we inspire, by leaving those anchors in our timeline.” — David Zahn, NASA Research Pilot, Ames Research Center Image Credit: NASA / Dominic Hart Interviewer: NASA / Tahira Allen View the full article
  21. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI/AURA; IR:NASA/JPL/Caltech; Image Processing: NASA/CXC/SAO/N. Wolk A group of dead stars known as “spider pulsars” are obliterating companion stars within their reach. Data from NASA’s Chandra X-ray Observatory of the globular cluster Omega Centauri is helping astronomers understand how these spider pulsars prey on their stellar companions. A pulsar is the spinning dense core that remains after a massive star collapses into itself to form a neutron star. Rapidly rotating neutron stars can produce beams of radiation. Like a rotating lighthouse beam, the radiation can be observed as a powerful, pulsing source of radiation, or pulsar. Some pulsars spin around dozens to hundreds of times per second, and these are known as millisecond pulsars. Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them. Through winds of energetic particles streaming out from the spider pulsars, the outer layers of the pulsar’s companion stars are methodically stripped away. Astronomers recently discovered 18 millisecond pulsars in Omega Centauri — located about 17,700 light-years from Earth — using the Parkes and MeerKAT radio telescopes. A pair of astronomers from the University of Alberta in Canada then looked at Chandra data of Omega Centauri to see if any of the millisecond pulsars give off X-rays. They found 11 millisecond pulsars emitting X-rays, and five of those were spider pulsars concentrated near the center of Omega Centauri. The researchers next combined the data of Omega Centauri with Chandra observations of 26 spider pulsars in 12 other globular clusters. A close-up image of Omega Centauri, in X-ray & optical light, shows the locations of some of the spider pulsars. Spider pulsars are a special class of millisecond pulsars, and get their name for the damage they inflict on small companion stars in orbit around them.X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI/AURA; Image Processing: NASA/CXC/SAO/N. Wolk There are two varieties of spider pulsars based on the size of the star being destroyed. “Redback” spider pulsars are damaging companion stars weighing between a tenth and a half the mass of the Sun. Meanwhile, the “black widow” spider pulsars are damaging companion stars with less than 5 percent of the Sun’s mass. The team found a clear difference between the two classes of spider pulsars, with the redbacks being brighter in X-rays than the black widows, confirming previous work. The team is the first to show a general correlation between X-ray brightness and companion mass for spider pulsars, with pulsars that produce more X-rays being paired with more massive companions. This gives clear evidence that the mass of the companion to spider pulsars influences the X-ray dose the star receives. The X-rays detected by Chandra are mainly thought to be generated when the winds of particles flowing away from the pulsars collide with winds of matter blowing away from the companion stars and produce shock waves, similar to those produced by supersonic aircraft. Spider pulsars are typically separated from their companions by only about one to 14 times the distance between the Earth and Moon. This close proximity — cosmically speaking — causes the energetic particles from the pulsars to be particularly damaging to their companion stars. This finding agrees with theoretical models that scientists have developed. Because more massive stars produce a denser wind of particles, there is a stronger shock — producing brighter X-rays — when their wind collides with the particles from the pulsar. The proximity of the companion stars to their pulsars means the X-rays can cause significant damage to the stars, along with the pulsar’s wind. Chandra’s sharp X-ray vision is crucial for studying millisecond pulsars in globular clusters because they often contain large numbers of X-ray sources in a small part of the sky, making it difficult to distinguish sources from each other. Several of the millisecond pulsars in Omega Centauri have other, unrelated X-ray sources only a few arc seconds away. (One arc second is the apparent size of a penny seen at a distance of 2.5 miles.) The paper describing these results will be published in the December issue of the Monthly Notices of the Royal Astronomical Society, and a preprint of the accepted paper is available online. The authors of the paper are Jiaqi (Jake) Zhao and Craig Heinke, both from the University of Alberta in Canada. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. For more Chandra images, multimedia and related materials, visit: https://www.nasa.gov/mission/chandra-x-ray-observatory/ News Media Contact Megan Watzke Chandra X-ray Center Cambridge, Mass. 617-496-7998 Jonathan Deal Marshall Space Flight Center Huntsville, Ala. 256-544-0034 View the full article
  22. 5 Min Read Webb Study Reveals Rocky Planets Can Form in Extreme Environments An international team of astronomers has used NASA’s James Webb Space Telescope to provide the first observation of water and other molecules in the highly irradiated inner, rocky-planet-forming regions of a disk in one of the most extreme environments in our galaxy. These results suggest that the conditions for terrestrial planet formation can occur in a possible broader range of environments than previously thought. Image: Protoplanetary Disk (Artist Concept) This is an artist’s impression of a young star surrounded by a protoplanetary disk in which planets are forming. ESO/L. Calçada These are the first results from the eXtreme Ultraviolet Environments (XUE) James Webb Space Telescope program, which focuses on the characterization of planet-forming disks (vast, spinning clouds of gas, dust, and chunks of rock where planets form and evolve) in massive star-forming regions. These regions are likely representative of the environment in which most planetary systems formed. Understanding the impact of environment on planet formation is important for scientists to gain insights into the diversity of the different types of exoplanets. The XUE program targets a total of 15 disks in three areas of the Lobster Nebula (also known as NGC 6357), a large emission nebula roughly 5,500 light-years away from Earth in the constellation Scorpius. The Lobster Nebula is one of the youngest and closest massive star-formation complexes, and is host to some of the most massive stars in our galaxy. Massive stars are hotter, and therefore emit more ultraviolet (UV) radiation. This can disperse the gas, making the expected disk lifetime as short as a million years. Thanks to Webb, astronomers can now study the effect of UV radiation on the inner rocky-planet forming regions of protoplanetary disks around stars like our Sun. “Webb is the only telescope with the spatial resolution and sensitivity to study planet-forming disks in massive star-forming regions,” said team lead María Claudia Ramírez-Tannus of the Max Planck Institute for Astronomy in Germany. Astronomers aim to characterize the physical properties and chemical composition of the rocky-planet-forming regions of disks in the Lobster Nebula using the Medium Resolution Spectrometer on Webb’s Mid-Infrared Instrument (MIRI). This first result focuses on the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24. “Only the MIRI wavelength range and spectral resolution allow us to probe the molecular inventory and physical conditions of the warm gas and dust where rocky planets form,” added team member Arjan Bik of Stockholm University in Sweden. Image: XUE 1 spectrum detects water This spectrum shows data from the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24. The inner disk around XUE 1 revealed signatures of water (highlighted here in blue), as well as acetylene (C2H2, green), hydrogen cyanide (HCN, brown), and carbon dioxide (CO2, red). As indicated, some of the emission detected was weaker than some of the predicted models, which might imply a small outer disk radius.NASA, ESA, CSA, M. Ramírez-Tannus (Max Planck Institute for Astronomy), J. Olmsted (STScI) Due to its location near several massive stars in NGC 6357, scientists expect XUE 1 to have been constantly exposed to high amounts of ultraviolet radiation throughout its life. However, in this extreme environment the team still detected a range of molecules that are the building blocks for rocky planets. “We find that the inner disk around XUE 1 is remarkably similar to those in nearby star-forming regions,” said team member Rens Waters of Radboud University in the Netherlands. “We’ve detected water and other molecules like carbon monoxide, carbon dioxide, hydrogen cyanide, and acetylene. However, the emission found was weaker than some models predicted. This might imply a small outer disk radius.” “We were surprised and excited because this is the first time that these molecules have been detected under these extreme conditions,” added Lars Cuijpers of Radboud University. The team also found small, partially crystalline silicate dust at the disk’s surface. This is considered to be the building blocks of rocky planets. These results are good news for rocky planet formation, as the science team finds that the conditions in the inner disk resemble those found in the well-studied disks located in nearby star-forming regions, where only low-mass stars form. This suggests that rocky planets can form in a much broader range of environments than previously believed. Image: XUE 1 Spectrum detects CO This spectrum shows data from the protoplanetary disk termed XUE 1, which is located in the star cluster Pismis 24. It features the observed signatures of carbon monoxide spanning 4.95 to 5.15 microns. NASA, ESA, CSA, M. Ramírez-Tannus (Max Planck Institute for Astronomy), J. Olmsted (STScI) The team notes that the remaining observations from the XUE program are crucial to establish the commonality of these conditions. “XUE 1 shows us that the conditions to form rocky planets are there, so the next step is to check how common that is,” said Ramírez-Tannus. “We will observe other disks in the same region to determine the frequency with which these conditions can be observed.” These results have been published in The Astrophysical Journal. The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. Media Contacts Laura Betz – laura.e.betz@nasa.gov, Rob Gutro– rob.gutro@nasa.gov NASA’s Goddard Space Flight Center, , Greenbelt, Md. Bethany Downer – Bethany.Downer@esawebb.org ESA/Webb Chief Science Communications Officer Christine Pulliam cpulliam@stsci.edu Space Telescope Science Institute, Baltimore, Md. Downloads Download full resolution images for this article from the Space Telescope Science Institute. Research results published in The Astrophysical Journal. Related Information Terrestrial Exoplanets Exoplanets 101 LIfe and Death of Planetary Systems Webb Mission – https://science.nasa.gov/mission/webb/ Webb News – https://science.nasa.gov/mission/webb/latestnews/ Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/ Related For Kids What is a Planet? What is an Exoplanet? How Many Solar Systems are in our Galaxy? What Is a Galaxy? What is the Webb Telescope? SpacePlace for Kids En Español Ciencia de la NASA NASA en español Space Place para niños Keep Exploring Related Topics James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Exoplanets Overview Most of the exoplanets discovered so far are in a relatively small region of our galaxy, the Milky Way.… Stars Overview Stars are giant balls of hot gas – mostly hydrogen, with some helium and small amounts of other elements.… Galaxies Our galaxy, the Milky Way, is typical: it has hundreds of billions of stars, enough gas and dust to make… Share Details Last Updated Nov 30, 2023 Editorsteve sabiaContactLaura Betz Related TermsJames Webb Space Telescope (JWST)ExoplanetsGoddard Space Flight CenterMissionsNebulaePlanetary NebulaeStarsTerrestrial ExoplanetsThe Universe View the full article
  23. “The goal is to get as many of the wrong ideas out of the way as early as possible. “So we’ll come up with some idea, especially on the research side, and sometimes it will seem really brilliant on the napkin or in a conversation with one other person. “[When I started working on electric aircraft propulsion,] I was not familiar with all of the electrical ins and outs. I thought power would just be available, and I could use it when I wanted it. [Our concepts had] all these little hiccups — how they get integrated in the real system, how the battery systems are going to interplay, and all the extra safety things that we need to consider—they allowed us to figure out things a little bit earlier and [give us] a broader perspective. “The key thing is that when you’re working on something that’s really hard, I think the whole expectation is that you’re going to fail. So we try to fail as many times as we can early on. So when we’re getting closer to an actual demonstration, we’re pretty confident that at that point, we’ve talked to the right people, everyone’s on board, and we’re going to have a safe, larger test campaign. “It’s always better to fail earlier on and learn as much as you can.” — Joe Connolly, Deputy for Electrified Aircraft Propulsion Integration, Glenn Research Center Image Credit: NASA / Jef Janis Interviewer: NASA / Thalia Patrinos Check out some of our other Faces of NASA. View the full article
  24. Discovery Alert: Watch the Synchronized Dance of a 6-Planet System The discovery: Six planets orbit their central star in a rhythmic beat, a rare case of an “in sync” gravitational lockstep that could offer deep insight into planet formation and evolution. Key facts: A star smaller and cooler than our Sun hosts a truly strange family of planets: six “sub-Neptunes” – possibly smaller versions of our own Neptune – moving in a cyclic rhythm. This orbital waltz repeats itself so precisely it can be readily set to music. This animation shows six “sub-Neptune” exoplanets in rhythmic orbits around their star – with a musical tone as each planet passes a line drawn through the system. The line is where the planets cross in front of (transit) their star from Earth’s perspective. In these rhythms, known as “resonance,” the innermost planet makes three orbits for every two of the next planet out. Among the outermost planets, a pattern of four orbits for every three of the next planet out is repeated twice. Animation credit: Dr. Hugh Osborn, University of Bern Details: While multi-planet systems are common in our galaxy, those in a tight gravitational formation known as “resonance” are observed by astronomers far less often. In this case, the planet closest to the star makes three orbits for every two of the next planet out – called a 3/2 resonance – a pattern that is repeated among the four closest planets. Among the outermost planets, a pattern of four orbits for every three of the next planet out (a 4/3 resonance) is repeated twice. And these resonant orbits are rock-solid: The planets likely have been performing this same rhythmic dance since the system formed billions of years ago. Such reliable stability means this system has not suffered the shocks and shakeups scientists might typically expect in the early days of planet formation – smash-ups and collisions, mergers and breakups as planets jockey for position. And that, in turn, could say something important about how this system formed. Its rigid stability was locked in early; the planets’ 3/2 and 4/3 resonances are almost exactly as they were at the time of formation. More precise measurements of these planets’ masses and orbits will be needed to further sharpen the picture of how the system formed. Fun facts: The discovery of this system is something of a detective story. The first hints of it came from NASA’s TESS (the Transiting Exoplanet Survey Satellite), which tracks the tiny eclipses – the “transits” – that planets make as they cross the faces of their stars. Combining the TESS measurements, made in separate observations two years apart, revealed an assortment of transits for the host star, called HD 110067. But it was difficult to distinguish how many planets they represented, or to pin down their orbits. Eventually, astronomers singled out the two innermost planets, with orbital periods – “years” – of 9 days for the closest planet, 14 days for the next one out. A third planet, with a year about 20 days long, was identified with the help of data from CHEOPS, The European Space Agency’s CHaracterising ExOPlanets Satellite. Then the scientists noticed something extraordinary. The three planets’ orbits matched what would be expected if they were locked in a 3/2 resonance. The next steps were all about math and gravity. The science team, led by Rafael Luque of the University of Chicago, worked through a well-known list of resonances that potentially could be found in such systems, trying to match them to the remaining transits that had been picked up by TESS. The only resonance chain that matched up suggested a fourth planet in the system, with an orbit about 31 days long. Two more transits had been seen, but their orbits remained unaccounted for because they were only single observations (more than one transit observation is needed to pin down a planet’s orbit). The scientists again ran through the list of possible orbits if there were two additional, outer planets that fit the expected chain of resonances across the whole system. The best fit they found: a fifth planet with a 41-day orbit, and a sixth just shy of 55. At this point the science team almost hit a dead end. The slice of the TESS observations that had any chance of confirming the predicted orbits of the two outer planets had been set aside during processing. Excessive light scattered through the observation field by Earth and the Moon seemed to make them unusable. But not so fast. Scientist Joseph Twicken, of the SETI Institute and of the NASA Ames Research Center, took notice of the scattered light problem. He knew that scientist David Rapetti, also of Ames and of the Universities Space Research Association, happened to be working on a new computer code to recover transit data thought to be lost because of scattered light. At Twicken’s suggestion, Rapetti applied his new code to the TESS data. He found two transits for the outer planets – exactly where the science team led by Luque had predicted. The discoverers: An international team of researchers led by Rafael Luque, of the University of Chicago, published a paper online on the discovery, “A resonant sextuplet of sub-Neptunes transiting the bright star HD 110067,” in the journal Nature on Nov. 29. Tracing a link between two neighbour planet at regular time interval along their orbits, creates a pattern unique to each couple. The six planets of the HD110067 system create together a mesmerising geometric pattern due to their resonance-chain. Credit: Thibaut Roger/NCCR PlanetS, CC BY-NC-SA 4.0 View the full article
  25. 15 Min Read The Marshall Star for November 29, 2023 Artemis II Crew Enjoys Visit with Marshall Team Members By Wayne Smith From talking about continuing the legacy of NASA’s Marshall Space Flight Center in space exploration to describing their roles in an upcoming historic mission, Artemis II astronauts enjoyed visiting with center team members Nov. 27. The crew will be the first to ride aboard NASA’s SLS (Space Launch System) rocket and Orion spacecraft. They will launch atop the rocket to venture around the Moon on Artemis II, the first crewed flight for Artemis. Their mission around the Moon will verify capabilities for humans to explore deep space and pave the way for long-term exploration and science on the lunar surface. Marshall manages the SLS Program. From left, Artemis II astronauts Jeremy Hansen, Christina Koch, and Victor Glover listen as Commander Reid Wiseman talks during an employee event at NASA’s Marshall Space Flight Center on Nov. 27. NASA/Charles Beason The four-member crew answered questions from a standing-room only crowd for about an hour inside Activities Building 4316 before taking photos with Marshall team members. The crew consists of NASA astronauts Reid Wiseman, who will be the Artemis II commander, Victor Glover (pilot) and Christina Koch (mission specialist), and Canadian Space Agency astronaut Jeremy Hansen (mission specialist). They even took the time to send a personalized Christmas greeting to the grandmother of Corey Walker, an atmospheric science programmer at Marshall with Jacobs, who said it would be the perfect gift for her. During the question and answer portion of the event, the astronauts had Walker join them on stage and made a short greeting for his grandmother, Brenda Lowery, who lives on Sand Mountain. “I can’t wait to give this to her because she loves the space program,” Walker said. “She was young when the astronauts went to the Moon the first time. She has lots of mementos at her house of the space program.” After acting Center Director Joseph Pelfrey welcomed team members to the event, SLS Program Manager John Honeycutt talked about Marshall’s reputation of excellence in rocket propulsion and the success of Artemis I before introducing the astronauts. Glover, third from left, makes a point during the Artemis II crew event with Marshall team members. NASA/Charles Beason “Since the beginning, NASA astronauts have launched on historic missions and on rockets designed, developed, and built right here at Marshall Space Flight Center and our Michoud Assembly Facility,” Honeycutt said. “… It seems only fitting that when a new era of human space flight launches on a rocket developed here, that that’s the way it should be. We’ve been entrusted not just with an incredibly powerful and capable rocket, but with the lives of four astronauts. Their safety and return are chief among our responsibilities.” Wiseman acknowledged Marshall’s rocket excellence, but also pointed out the center’s role in research for future missions to the Moon and working in the lunar environment. The Payload Operations Integration Center at Marshall is the control center for scientific operations on the International Space Station. “(Marshall) means a lot more to us than getting us off this planet,’ Wiseman said. “It’s also our human research side when we are off the planet. When we are working sustainably in the lunar area, and we see humans on Mars, it’s built on the shoulders of POIC (Payload Operations Integration Center), of human research in orbit. That is the bread and butter of what we’re doing. We’re launching humans and living in space, and that is built right here at Marshall.” Glover, who will be the first African American on a lunar mission, thanked Marshall team members for their work with SLS and the space station. He spent 168 days in space as a flight engineer aboard the space station for Expedition 64. SLS Program Manager John Honeycutt, left, and acting Center Director Joseph Pelfrey, right, join the Artemis II crew for a photo at the employee event in Activities Building 4316. NASA/Charles Beason “Thank you for your work supporting our friends who are working on the space station now and for that amazing legacy that we’ve all had the opportunity to be a part of in one facet or another,” Glover said. “We’re here to do the work and be a part of this team. We hope that what we’re doing makes you proud.” Koch and Hansen also will make history with the Artemis II mission. Koch will be the first woman on a lunar mission, while Hansen will be the first Canadian. Andy Buehler, a rocket propulsion engineer at Marshall with Boeing, asked Koch what her message to young girls is as they see a female going to the Moon for the first time. “Surround yourself with people who are encouraging,” Koch said. “Tell yourself you’re going to do great things one day. You can be that voice for yourself. Don’t just strive to be a part of something, strive to be excellent at what you’re doing.” Corey Walker, an atmospheric science programmer at Marshall with Jacobs, smiles with the astronauts as they record a video wishing Walker’s grandmother, Brenda Lowery, merry Christmas. During a question and answer session with the astronauts, Walker asked if he could get a video of them for his grandmother as a Christmas gift for her. Walker said his grandmother loves the space program. At far left is Lance D. Davis, Marshall’s news chief, who served as moderator for the event. NASA/Charles Beason Hansen said he is excited about the future of Artemis. He told Marshall team members they are part of something that brings value to the world with NASA’s leadership. “You’re doing that with partners around the world because you’re choosing to lead,” Hansen said. “We need that kind of leadership and that vision more than ever. We really need to be focused on things that lift up humanity. We have a lot of reason for hope for our future.” Learn more about the Artemis II crew. Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications. › Back to Top Artemis II Crew Signs NASA Moon Rocket Hardware at Marshall Brent Gaddes, lead for the Orion stage adapter in the Spacecraft Payload Integration & Evolution Office in the SLS Program at NASA’s Marshall Space Flight Center, far left, talks with NASA astronauts Reid Wiseman, center, and Christina Koch near the SLS Orion stage adapter for the Artemis II mission during their visit to Marshall on Nov. 27.NASA/Charles Beason Artemis II astronauts Victor Glover, Reid Wiseman, and Christina Koch of NASA, and CSA (Canadian Space Agency) astronaut Jeremy Hansen signed the Orion stage adapter for the SLS (Space Launch System) rocket at NASA’s Marshall Space Flight Center on Nov. 27. The hardware is the topmost portion of the SLS rocket that they will launch atop during Artemis II when the four astronauts inside NASA’s Orion spacecraft will venture around the Moon. The Orion stage adapter is a small ring structure that connects NASA’s Orion spacecraft to the SLS rocket’s interim cryogenic propulsion stage and fully manufactured at Marshall. At five feet tall and weighing 1,800 pounds, the adapter is the smallest major element of the SLS rocket. During Artemis II, the adapter’s diaphragm will serve as a barrier to prevent gases created during launch from entering the spacecraft. From left, Artemis II astronauts Jeremy Hansen, Christina Koch, Victor Glover, and Reid Wiseman sign the SLS Orion stage adapter for the Artemis II mission. NASA/Charles Beason In addition to signing the Orion stage adapter, Wiseman and Koch also visited the Systems Integration Lab at Marshall prior to an employee event. Dan Mitchell, lead SLS integrated avionics and software engineer, talks with Wiseman and Koch as they visit the Systems Integration Lab at Marshall. NASA/Charles Beason NASA is working to land the first woman and first person of color on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single mission. Through Artemis, NASA will explore more of the lunar surface than ever before and prepare for the next giant leap: sending astronauts to Mars. › Back to Top Monthly Brown Bag Seminars Shine Spotlight on Marshall’s Business Units By Jessica Barnett With thousands of employees across hundreds of departments and teams, there’s no shortage of cool things happening at NASA’s Marshall Space Flight Center. To help keep Marshall team members up to date, the center recently started a series of monthly brown bag seminars aimed at highlighting its business units. Each month features a different business unit. On Nov. 7, nearly 300 Marshall team members attended the first seminar, which focused on Marshall’s Moon/Mars Surface Technologies and Systems. In doing so, the participants learned more about the center’s strategy. Geologist Jennifer Edmunson, from right, discusses lunar regolith and infrastructure plans during a brown bag seminar Nov. 7 at NASA’s Marshall Space Flight Center that highlighted the center’s Moon/Mars Surface Technologies and Systems business unit. NASA/Charles Beason “We’re in between the hopes and dreams of what you might find out there or what the vision of the future on the lunar surface might look like, and what is actually practical,” said Michael Zanetti, a lunar and planetary geologist at Marshall who was also one of the speakers during the Nov. 7 seminar. Zanetti discussed GPS-denied LiDAR navigation systems, including KNaCK (Kinematic Navigation and Cartography Knapsack), a proof-of-concept 3D terrain mapping, navigation, and algorithm development tool that can be used to determine the layout of portions of the lunar or Martian surface even when there is no light source or GPS to guide it. He also talked about Marshall’s Lunar Regolith Terrain Facility – a 125-by-125-foot area covered in 500 tons of lunar regolith simulant that can be quickly modified as needed for robotics testing. “If we’re going to send anything to the lunar surface, we need to make sure that technology is going to be able to function when it gets there,” said Jennifer Edmunson, project manager for Marshall’s Moon-to-Mars Planetary Autonomous Construction Technology Project, or MMPACT. “Testing with regolith is important to do that, but since we don’t have enough regolith material from the Apollo missions, we rely on simulants.” Materials test engineer Annette Gray, far left at table, explains how participants in Marshall’s MERCRII (Metallic Environmentally Resistant Coatings Rapid Innovation Initiative) worked with other centers and NASA partners to develop a radiation-resistant coating to improve the wear resistance of mechanism joints on the lunar or Martian surface. MMPACT is currently working to determine how best to build infrastructure on the lunar surface using the regolith and resources already available there. Edmunson shared how the project aims to build landing pads and even habitats on the Moon, but that it’s important to find ways of building that can withstand the extreme temperature variations, lengthy moonquakes, and other challenges that would be faced on the lunar surface. Joining Edmunson and Zanetti at the seminar was Annette Gray, a materials test engineer who was part of MERCRII (Metallic Environmentally Resistant Coatings Rapid Innovation Initiative). Gray explained how the early career initiative project worked with other centers and NASA partners to develop a radiation-resistant coating to improve the wear resistance of mechanism joints on the lunar or Martian surface. Part of the initiative included acquiring a Planetary, Lunar, and Asteroid Natural Environment Testbed, or PLANET. Gray said the PLANET was a 2-meter-by-3-meter chamber with up to 1 ton of regolith simulant inside that could test high vacuum, low-density plasma, and various atmospheric conditions. Attendees at Marshall’s first brown bag seminar check out lunar regolith samples, view informational displays, and further discuss the featured topics following the seminar.NASA/Ray Osorio The seminar ended with a question-and-answer session and a chance for in-person attendees to check out regolith simulant samples. “It was an excellent way to showcase how the varied work we do at Marshall is enabling future NASA missions and addressing critical gaps,” said MMSTS Strategy Lead Shawn Maynor. “The excitement was palpable, and the discussion was lively. I truly feel that Marshall is in a unique position to capitalize on the evolving space industry.” The next brown bag seminar is set for January 2024, after the winter holiday season. Barnett, a Media Fusion employee, supports the Marshall Office of Communications. › Back to Top NASA Releases Its First International Space Station Tour in Spanish Lee esta nota de prensa en español aquí. Record-breaking NASA astronaut Frank Rubio provides the agency’s first Spanish-language video tour of humanity’s home in space – the International Space Station. Rubio welcomes the public aboard the microgravity science laboratory in a behind-the-scenes look at living and working in space recorded during his 371-day mission aboard the space station, the longest single spaceflight in history by an American. The station tour is available to watch on the agency’s NASA+ streaming platform, NASA app, NASA Television, YouTube, and the agency’s website. Continuously inhabited for more than 23 years, the space station is a scientific platform where crew members conduct experiments across multiple disciplines of research, including Earth and space science, biology, human physiology, physical sciences, and technology demonstrations that could not be performed on Earth. The Payload Operations Integration Center at NASA’s Marshall Space Flight Center operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day. The crew living aboard the station are the hands of thousands of researchers on the ground conducting more than 3,300 experiments in microgravity. During his record-breaking mission, Rubio spent many hours contributing to scientific activities aboard the orbiting laboratory, conducting everything from human health studies to plant research. Rubio returned to Earth in September, having completed approximately 5,936 orbits of the Earth and a journey of more than 157 million miles during his first spaceflight, roughly the equivalent of 328 trips to the Moon and back. Get the latest NASA space station news, images and features on Instagram, Facebook, and X. › Back to Top NASA’s Dragonfly to Proceed with Final Mission Design Work NASA’s Dragonfly mission has been authorized to proceed with work on final mission design and fabrication – known as Phase C – during FY (fiscal year) 2024. The agency is postponing formal confirmation of the mission (including its total cost and schedule) until mid-2024, following the release of the FY 2025 President’s Budget Request. Earlier this year, Dragonfly – a mission to send a rotorcraft to explore Saturn’s moon Titan – passed all the success criteria of its Preliminary Design Review. The Dragonfly team conducted a re-plan of the mission based on expected funding available in FY 2024 and estimate a revised launch readiness date of July 2028. The agency will officially assess the mission’s launch readiness date in mid-2024 at the agency Program Management Council. Artist’s impression of Dragonfly heading off toward its next landing spot on Titan.NASA/Johns Hopkins APL/Steve Gribben “The Dragonfly team has successfully overcome a number of technical and programmatic challenges in this daring endeavor to gather new science on Titan,” said Nicola Fox, associate administrator of NASA’s Science Mission Directorate at NASA Headquarters. “I am proud of this team and their ability to keep all aspects of the mission moving toward confirmation.” Dragonfly takes a novel approach to planetary exploration, for the first time employing a rotorcraft-lander to travel between and sample diverse sites on Titan. Dragonfly’s goal is to characterize the habitability of the moon’s environment, investigate the progression of prebiotic chemistry in an environment where carbon-rich material and liquid water may have mixed for an extended period, and even search for chemical indications of whether water-based or hydrocarbon-based life once existed on Titan. Dragonfly is being designed and built under the direction of the Johns Hopkins Applied Physics Laboratory in Laurel, Maryland, which manages the mission for NASA. The team includes key partners at NASA’s Goddard Space Flight Center; Lockheed Martin Space in Littleton, Colorado; Sikorsky, a Lockheed Martin company; NASA’s Ames Research Center; NASA’s Langley Research Center; Penn State University in State College, Pennsylvania; Malin Space Science Systems in San Diego, California; Honeybee Robotics in Pasadena, California; NASA’s Jet Propulsion Laboratory; CNES (Centre National d’Etudes Spatiales), the French space agency, in Paris, France; DLR (German Aerospace Center) in Cologne, Germany; and JAXA (Japan Aerospace Exploration Agency) in Tokyo, Japan. Dragonfly is the fourth mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center for the Science Mission Directorate. › Back to Top Webb Telescope: A Prominent Protostar in Perseus A new Picture of the Month from the NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797, known as HH 797. Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of the image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797, or HH 797. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).ESA/Webb, NASA & CSA, T. Ray (Dublin Institute for Advanced Studies) The image was captured with Webb’s NIRCam (Near-InfraRed Camera). Infrared imaging is powerful in studying newborn stars and their outflows, because the youngest stars are invariably still embedded within the gas and dust from which they are formed. The infrared emission of the star’s outflows penetrates the obscuring gas and dust, making Herbig-Haro objects ideal for observation with Webb’s sensitive infrared instruments. Molecules excited by the turbulent conditions, including molecular hydrogen and carbon monoxide, emit infrared light that Webb can collect to visualize the structure of the outflows. NIRCam is particularly good at observing the hot (thousands of degree Celsius) molecules that are excited as a result of shocks. Using ground-based observations, researchers have previously found that for cold molecular gas associated with HH 797, most of the red-shifted gas (moving away from us) is found to the south (bottom right), while the blue-shifted gas (moving towards us) is to the north (bottom left). A gradient was also found across the outflow, such that at a given distance from the young central star, the velocity of the gas near the eastern edge of the jet is more red-shifted than that of the gas on the western edge. Astronomers in the past thought this was due to the outflow’s rotation. In this higher resolution Webb image, however, we can see that what was thought to be one outflow is in fact made up of two almost parallel outflows with their own separate series of shocks (which explains the velocity asymmetries). The source, located in the small dark region (bottom right of center), and already known from previous observations, is therefore not a single but a double star. Each star is producing its own dramatic outflow. Other outflows are also seen in this image, including one from the protostar in the top right of center along with its illuminated cavity walls. HH 797 resides directly north of HH 211 (separated by approximately 30 arcseconds), which was the feature of a Webb image release in September 2023. The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. Several NASA centers contributed to the project, including NASA’s Marshall Space Flight Center. › Back to Top View the full article
×
×
  • Create New...