Members Can Post Anonymously On This Site
-
Posts
5,741 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
Perseverance Perseverance Mission Overview Rover Components Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Science Objectives Science Instruments Science Highlights News and Features Multimedia Perseverance Raw Images Mars Resources Mars Exploration All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read Carving Into Carbonates at Old Faithful Geyser Abrading Old Faithful Geyser: On Sol 1151 (May 16, 2024), Perseverance abraded a carbonate-bearing rock called Old Faithful Geyser in the Western Margin Unit. This activity was captures by the rover’s Left Hazard Avoidance Camera (HAZCAM). NASA/JPL-Caltech This past week on Mars, Perseverance made a pit stop near Overlook Mountain to abrade a rock called Old Faithful Geyser. This target is situated within the Western side of the Margin Unit, an area around the upper edge of Jezero Crater that is astrobiologically-interesting due to its abundant carbonate. Carbonate-bearing rocks have been a major scientific focus throughout this campaign, which began with Perseverance entering the Eastern side of the Margin Unit on Sol 915 of the mission (1 sol = 1 day on Mars) in September of 2023, about 240 sols ago, then roving steadily Westward. So far, Perseverance has collected 3 cores from this Unit, including Pelican Point on Sol 923, Lefroy Bay on Sol 942, and Comet Geyser on Sol 1088. Proximity and remote science observations associated with each of these targets have all confirmed the presence of carbonate, but the grains and mineral assemblages in each rock are unique, which may indicate that carbonates in the Eastern and Western parts of the Margin have experienced different formation mechanisms and/or alteration histories. In particular, the team is interested in understanding whether the carbonate-bearing rocks in the West formed through sedimentary, igneous, or volcaniclastic processes. To investigate the origin of Western Margin Unit carbonates, the team decided to stop off at Old Faithful Geyser to conduct an opportunistic abrasion on Sol 1151, then measure the rock with the Planetary Instrument for X-ray Lithochemistry (PIXL), a proximity science instrument carried on the rover’s arm. PIXL maps elemental distributions across fine scales (each PIXL map is a few square millimeters), and the Wide Angle Topographic Sensor for Operations and eNgineering (WATSON) camera takes complementary images of rocks from a similar close-up scale to record rock textures, grain boundaries, and color distributions. PIXL and WATSON will assess differences or similarities in composition in the Old Faithful Geyser abrasion, as compared to other targets across the Margin Unit, in hopes of better understanding how carbonates from East to West formed and transformed through time. In addition to helping the team unravel the history of Jezero Crater’s carbonates that record changes along the Margin, the observations at Old Faithful Geyser would provide additional context for the three collected Margin Unit core samples if they are brought back to Earth by Mars Sample Return (MSR) in the future! Written by Denise Buckner, Student Collaborator at University of Florida Share Details Last Updated Jun 05, 2024 Related Terms Blogs Explore More 3 min read Sols 4205-4206: Curiosity Would Like One of Each, Please! Article 1 hour ago 2 min read Sols 4202-4204: Sticking Around Article 1 hour ago 2 min read Sols 4199-4201: Driving Through a Puzzle Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars… All Mars Resources Rover Basics Mars Exploration Science Goals View the full article
-
Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Science Instruments Science Highlights News and Features Multimedia Curiosity Raw Images Mars Resources Mars Exploration All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 3 min read Sols 4205-4206: Curiosity Would Like One of Each, Please! This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4202 (2024-06-01 19:34:11 UTC). NASA/JPL-Caltech Earth planning date: Monday, June 3, 2024 You know that feeling at the ice cream shop when you’re presented with so many tantalizing options and you have to narrow it down to just a few to taste test, and then you have to strategize how to fit all the best flavors in your bowl? That’s what the past few planning shifts have felt like on Mars. There are just too many cool rocks to choose from! Curiosity is currently investigating “Whitebark Pass” (which sounds like it should be an ice cream flavor, right?) with a variety of rock textures and colors in our workspace. We spent the weekend at this location, investigating some of the light-toned, pitted clasts and the gray crumbly material that lines the slab. Then there’s the slab itself, and some bright white clasts that we crushed with the rover wheel which caught our eye. The Navcam image above shows the rover arm going in for a close inspection of the slab. Today’s 2-sol plan includes another helping of contact science and a lot of targeted remote sensing. Essentially the team asked to try a scoop of the tan stuff, some gray stuff on the side, and add in the crumbly white bits while you’re at it. This translated to the team planning DRT, MAHLI, and APXS on “Gem Lakes” to investigate the top of this slab, MAHLI and APXS hovering over “Convict Lake” to assess a white rock that was crushed by the rover wheel, and a MAHLI dogs eye mosaic on “Starr Minaret” to get a detailed view of the textures in the gray material. Then we sprinkled in a number of ChemCam and Mastcam activities in the targeted remote sensing blocks. The team planned ChemCam LIBS on some different textures at “Cold Springs” and “Fishgut Lake” (umm, maybe I’ll skip that flavor…) and a ChemCam passive observation on “Quarry Peak” to assess a nearby light-toned slab. The team also planned a long distance ChemCam RMI to investigate the distribution of light-toned clasts at “Camp Four.” Multiple Mastcam mosaics are planned to document the ChemCam targets, monitor areas for change detection, characterize the diversity of textures, and assess stratigraphic relationships. And for good measure we also planned environmental monitoring activities including a Navcam line of sight observation, Mastcam tau, Navcam deck monitoring and dust devil survey, in addition to standard DAN and REMS observations. You’d think we’d be stuffed by now, but the team is already strategizing what else we can get in the next plan before driving away. A sure sign of a delicious workspace. Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center Share Details Last Updated Jun 05, 2024 Related Terms Blogs Explore More 2 min read Sols 4202-4204: Sticking Around Article 14 mins ago 2 min read Sols 4199-4201: Driving Through a Puzzle Article 7 days ago 2 min read Sols 4195-4198: Feels Like Summer Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars… All Mars Resources Rover Basics Mars Exploration Science Goals View the full article
-
Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Science Instruments Science Highlights News and Features Multimedia Curiosity Raw Images Mars Resources Mars Exploration All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read Sols 4202-4204: Sticking Around This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4200 (2024-05-30 13:21:00 UTC). NASA/JPL-Caltech Earth planning date: Friday, May 31, 2024 Our most recent drive delivered us, as planned, right alongside ‘Whitebark Pass.’ This last drive was only about 9 metres, but Curiosity has been doing a lot of travelling lately and this weekend we’re giving the rover a well-deserved break from driving – but not a break from science! There’s a lot to see at our current location, so we made the decision to stick around a while to take it all in. The lighter-toned rocks like those of Whitebark pass, which you can see above, are scattered all throughout our workspace and are getting the majority of our attention. The advantage of a nice long weekend plan with no driving is that we have plenty of time to get in contact science, with MAHLI and APXS getting up close with two targets called ‘Gray Peak’ and ‘Snow Lakes.’ ChemCam is joining in with three LIBS targets, ‘Beck Lakes,’ ‘Ten Lakes,’ and ‘Pohono Bridge.’ Mastcam is also taking two large mosaics of Whitebark Pass, looking more at the general topography and texture of the feature as a whole. There’s more than light-toned rocks in this area though – Mastcam will also be taking a look at some nearby bedrock along the channel wall. Rocks aren’t the only features of interest here. The drive also put us right next to a rippled sand patch, which we’re taking a look at with both Mastcam and Navcam. Aside from that, the Environmental theme group is taking advantage of staying put this weekend with some of our regular activities, including a number of tau and line of sight observations to look at dust in the atmosphere, a dust devil survey to scan for dust lifting, and several cloud movies. We also have our bi-weekly ChemCam passive sky observation, which gives us an idea of the abundances of oxygen and water vapour in the atmosphere. Written by Alex Innanen, Atmospheric Scientist at York University Share Details Last Updated Jun 05, 2024 Related Terms Blogs Explore More 3 min read Sols 4205-4206: Curiosity Would Like One of Each, Please! Article 7 mins ago 2 min read Sols 4199-4201: Driving Through a Puzzle Article 7 days ago 2 min read Sols 4195-4198: Feels Like Summer Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars… All Mars Resources Rover Basics Mars Exploration Science Goals View the full article
-
Rocket Lab’s Electron rocket lifted off from Launch Complex 1 at Māhia, New Zealand at 11:15 p.m. NZST June 5, 2024, carrying a small satellite for NASA’s PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) mission. RocketLab The second of NASA’s PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) two satellites is communicating with ground controllers after launching at 3:15 p.m. NZST, Wednesday (11:15 p.m. EDT, June 4). Data from these two shoebox-size cube satellites, or CubeSats, will better predict how Earth’s ice, seas, and weather will change in a warming world — providing information to help humanity thrive on our changing planet. The CubeSat launched on top Rocket Lab’s Electron rocket from the company’s Launch Complex 1 in Māhia, New Zealand, and follows the May 25 launch of the first PREFIRE CubeSat. After a 30-day checkout period, when engineers and scientists confirm both CubeSats are operating normally, the mission is expected to operate for 10 months. “By helping to clarify the role that Earth’s polar regions play in regulating our planet’s energy budget, the PREFIRE mission will ultimately help improve climate and ice models,” said Amanda Whitehurst, PREFIRE program executive, at NASA Headquarters in Washington. “Improved models will benefit humanity by giving us a better idea of how our climate and weather patterns will change in the coming years.” Capitalizing on NASA’s unique vantage point in space, PREFIRE will help understand the balance between incoming heat energy from the Sun and the outgoing heat given off at Earth’s poles. The Arctic and Antarctica act something like the radiator in a car’s engine shedding much of the heat initially absorbed at the tropics back into space. The majority of that heat is emitted as far-infrared radiation. The water vapor content of the atmosphere, along with the presence, structure, and composition of clouds, influences the amount of radiation that escapes into space from the poles. The PREFIRE mission will give researchers information on where and when far-infrared energy radiates from the Arctic and Antarctic environments into space. The mission also will use its two CubeSats in asynchronous, near-polar orbits to study how relatively short-lived phenomena like cloud formation, moisture changes, and ice sheet melt affect far-infrared emissions over time. The two satellites pass over the same part of Earth at different times of day, giving researchers information on changing conditions. “Climate change is reshaping our environment and atmosphere in ways that we need to prepare for,” said Brian Drouin, PREFIRE’s deputy principal investigator at NASA’s Jet Propulsion Laboratory in Southern California. “This mission will give us new measurements of the far-infrared wavelengths being emitted from Earth’s poles, which we can use to improve climate and weather models and help people around the world deal with the consequences of climate change.” Each CubeSat carries an instrument called a thermal infrared spectrometer, which uses specially shaped mirrors and sensors to measure infrared wavelengths. Miniaturizing the instruments to fit on CubeSats required downsizing some parts while scaling up other components. “Equipped with advanced infrared sensors that are more sensitive than any similar instrument, the PREFIRE CubeSats will help us better understand Earth’s polar regions and improve our climate models,” said Laurie Leshin, director at NASA JPL. “Their observations will lead to more accurate predictions about sea level rise, weather patterns, and changes in snow and ice cover, which will help us navigate the challenges of a warming world.” NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, in partnership with NASA’s Earth System Science Pathfinder Program, is providing the launch service as part of the agency’s Venture-class Acquisition of Dedicated and Rideshare (VADR) launch services contract. The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. NASA JPL manages the mission for the agency’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built the CubeSats and the University of Wisconsin-Madison will process the data the instruments collect. The launch services provider is Rocket Lab USA Inc. of Long Beach, California. To learn more about PREFIRE, visit: https://science.nasa.gov/mission/prefire/ -end- Karen Fox / Elizabeth Vlock Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov Jane J. Lee / Andrew Wang Jet Propulsion Laboratory, Pasadena, Calif. 818-354-0307 / 626-379-6874 jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov View the full article
-
It is impossible to pinpoint a single, static definition of what makes a “Digital Transformer.” Although Matt Dosberg’s official title is Digital Transformation and IT Innovation Lead for Goddard Space Flight Center (GSFC), his full contributions to NASA require a lengthier description. He is the nexus for everything under the Digital Transformation (DT) umbrella at GSFC, including digital engineering, AI, data-driven programmatics, data strategy, and more. He serves as liaison to the agency-level DT team and other centers, coordinating across directorates to drive cultural change within the organization, and has sponsored multiple DT events at GSFC, including the center’s first AI Symposium. He strategizes on rolling out proof of concepts and pilots, working toward solutions that address agency-wide barriers to technology readiness and adoption. Dosberg doesn’t just do transformative work—he embodies transformation in an ever-adaptive role. In his three and a half years at NASA, Dosberg has impacted the agency beyond quantitative measures. Of course, his formal accomplishments are extensive, including co-leadership positions for the Goddard AI strategy and Goddard Data Strategy Working Group. He works with the GSFC Chief Technologist to co-fund various initiatives for weaving digital technology into next-generation, mission-enabling solutions. However, his commitment to qualitative, ground-level change, impacting the agency through its culture and people, is demonstrated by how he measures success. “You could look at community adoption and engagement,” he says, highlighting his team’s efforts in hosting events and building community around Digital Transformation. “I’m trying to enable teams and empower people to really achieve the best that they can achieve and help transform how we work here at Goddard.” Dosberg attributes his team-building skills and service-oriented approach to his experience working at the Department of Homeland Security in US Citizenship and Immigration Services. As a program manager, he led the Digital Innovation & Development team, which worked to transform the asylum and refugee program from paper-based to fully digital processing. “I think that really set me up for success here,” says Dosberg. “That technology background and the experience of going through a successful digital transformation, and the cultural change aspect…all those things are kind of principles and success factors that I brought over to Goddard to lead the DT efforts here.” Although Dosberg does not come from explicitly scientific background—he received an undergraduate degree in economics, master’s degree in finance, and MBA—he has always been deeply interested in and curious about technology. In his daily work, he leverages the collaborative capabilities of tools like Microsoft Teams and Mural to aid in brainstorming and soliciting input. When reflecting on the technology he uses to drive transformation within the agency, he highlights his work on DT Catalyst Projects, particularly those aimed at establishing interoperable architecture for managing data. Dosberg sees data as a foundational layer to his work; by developing common tools for accessing, aggregating, and sharing data across the agency, he hopes to strengthen inclusive teaming at an organizational level. Dosberg’s dedication is apparent in how thoughtfully he reflects on his past and present experiences as a Digital Transformer. However, his passion truly shines through when he considers the future of Digital Transformation. “There’s real opportunity to transform and change the way that we are working…Jill [Marlowe] and the DT team have done an incredible job on building momentum, getting folks excited, bringing centers together.” Although it is difficult to distill the many reasons why Dosberg was selected as the first featured Digital Transformer of the Month, this may be a good place to start: “At the end of the day, I’m just super passionate about the work that NASA does,” he says. “The portfolio is truly inspiring and I’m excited to help position the center to take on new projects, be more efficient, and enable the workforce. That motivates me each day.” View the full article
-
3 min read NASA to Change How It Points Hubble Space Telescope This image of NASA’s Hubble Space Telescope was taken on May 19, 2009 after deployment during Servicing Mission 4. NASA After completing a series of tests and carefully considering the options, NASA announced Tuesday work is underway to transition its Hubble Space Telescope to operate using only one gyroscope (gyro). While the telescope went into safe mode May 24, where it now remains until work is complete, this change will enable Hubble to continue exploring the secrets of the universe through this decade and into the next, with the majority of its observations unaffected. Of the six gyros currently on the spacecraft, three remain active. They measure the telescope’s slew rates and are part of the system that determines and controls the direction the telescope is pointed. Over the past six months, one particular gyro has increasingly returned faulty readings, causing the spacecraft to enter safe mode multiple times and suspending science observations while the telescope awaits new instructions from the ground. This one gyro is experiencing “saturation,” where it indicates the maximum slew rate value possible regardless of how quickly the spacecraft is slewing. Although the team has repeatedly been able to reset the gyro’s electronics to return normal readings, the results have only been temporary before the problem reappears as it did again in late May. To return to consistent science operations, NASA is transitioning the spacecraft to a new operational mode it had long considered: Hubble will operate with only one gyro, while keeping another gyro available for future use. The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing problems, which the team will continue to monitor. Hubble uses three gyros to maximize efficiency but can continue to make science observations with only one gyro. NASA first developed this plan more than 20 years ago, as the best operational mode to prolong Hubble’s life and allow it to successfully provide consistent science with fewer than three working gyros. Hubble previously operated in two-gyro mode, which is negligibly different from one-gyro mode, from 2005-2009. One-gyro operations were demonstrated in 2008 for a short time with no impact to science observation quality. While continuing to make science observations in one-gyro mode, there are some expected minor limitations. The observatory will need more time to slew and lock onto a science target and won’t have as much flexibility as to where it can observe at any given time. It also will not be able to track moving objects closer than Mars, though these are rare targets for Hubble. The transition involves reconfiguring the spacecraft and ground system as well as assessing the impact to future planned observations. The team expects to resume science operations again by mid-June. Once in one-gyro mode, NASA anticipates Hubble will continue making new cosmic discoveries alongside other observatories, such as the agency’s James Webb Space Telescope and future Nancy Grace Roman Space Telescope, for years to come. Launched in 1990, Hubble has more than doubled its expected design lifetime, and has been observing the universe for more than three decades, recently celebrating its 34th anniversary. Read more about some of Hubble’s greatest scientific discoveries. Learn more about NASA’s Hubble Space Telescope on the agency’s website: https://www.nasa.gov/hubble Resources Download the image above Hubble Pointing and Control Operating Hubble with Only One Gyroscope Hubble Science Highlights Hubble Images Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Jun 04, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories Stars Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
-
The physics remain the same, but the rockets, spacecraft, landers, and spacesuits are new as NASA and its industry partners prepare for Artemis astronauts to walk on the Moon for the first time since 1972. NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson put on spacesuits, developed by Axiom Space, to interact with and evaluate full-scale developmental hardware of SpaceX’s Starship HLS (Human Landing System) that will be used for landing humans on the Moon under Artemis. The test, conducted April 30, marked the first time astronauts in pressurized spacesuits interacted with a test version of Starship HLS hardware. “With Artemis, NASA is going to the Moon in a whole new way, with international partners and industry partners like Axiom Space and SpaceX. These partners are contributing their expertise and providing integral parts of the deep space architecture that they develop with NASA’s insight and oversight,” said Amit Kshatriya, NASA’s Moon to Mars program manager. “Integrated tests like this one, with key programs and partners working together, are crucial to ensure systems operate smoothly and are safe and effective for astronauts before they take the next steps on the Moon.” NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson prepare for a test of full-scale mockups of spacesuits developed by Axiom Space and SpaceX’s Starship human landing system developed for NASA’s Artemis missions to the Moon.SpaceX The day-long test, conducted at SpaceX headquarters in Hawthorne, California, provided NASA and its partners with valuable feedback on the layout, physical design, mechanical assemblies, and clearances inside the Starship HLS, as well as the flexibility and agility of the suits, known as the AxEMU (Axiom Extravehicular Mobility Unit). To begin the test, Wheelock and Whitson put on the spacesuits in the full-scale airlock that sits on Starship’s airlock deck. Suits were then pressurized using a system immediately outside the HLS airlock that provided air, electrical power, cooling, and communications to the astronauts. Each AxEMU also included a full-scale model of the Portable Life Support System, or “backpack,” on the back of the suits. For Artemis moonwalks, each crew member will put on a spacesuit with minimal assistance, so the team was eager to evaluate how easily the suits can be put on, taken off, and stowed in the airlock. Astronauts were fully suited while conducting mission-like maneuvers in the full-scale build of the Starship human landing system’s airlock which will be located inside Starship under the crew cabin. SpaceX During the test, NASA and SpaceX engineers were also able to evaluate placement of mobility aids, such as handrails, for traversing the hatch. Another set of mobility aids, straps hanging from the ceiling in the airlock, assisted the astronauts when entering and removing the AxEMU suits. The astronauts also practiced interacting with a control panel in the airlock, ensuring controls could be reached and activated while the astronauts were wearing gloves. “Overall, I was pleased with the astronauts’ operation of the control panel and with their ability to perform the difficult tasks they will have to do before stepping onto the Moon,” said Logan Kennedy, lead for surface activities in NASA’s HLS Program. “The test also confirmed that the amount of space available in the airlock, on the deck, and in the elevator, are sufficient for the work our astronauts plan to do.” The suited astronauts also walked the from Starship’s airlock deck to the elevator built for testing. During Artemis missions, the elevator will take NASA astronauts and their equipment from the deck to the lunar surface for a moonwalk and then back again. Whitson and Wheelock practiced opening a gate to enter the elevator while evaluating the dexterity of the AxEMU suit gloves, and practiced lowering the ramp that astronauts will use to take the next steps on the Moon. Wheelock and Whitson were able to test the agility of the spacesuits by conducting movements and tasks similar to those necessary during lunar surface exploration on Artemis missions, such as operating Starship’s elevator gate. SpaceX The steps the astronauts took in the spacesuits through full-scale builds of the Starship hatch, airlock, airlock deck, and elevator may have been small, but they marked an important step toward preparing for a new generation of moonwalks as part of Artemis. For the Artemis III mission, SpaceX will provide the Starship HLS that will dock with Orion in lunar orbit and take two astronauts to and from the surface of the Moon. Axiom Space is providing a new generation of spacesuits for moonwalks that are designed to fit a wider range of astronauts. With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration. For more information about Artemis, visit: https://www.nasa.gov/artemis View the full article
-
Artemis II commander and NASA astronaut Reid Wiseman provides remarks at a Moon tree dedication ceremony on Tuesday, June 4, 2024, at the United States Capitol in Washington. The American Sweetgum tree planted on the southwestern side of the Capitol was grown from a seed that was flown around the Moon during the Artemis I mission. NASA/Aubrey Gemignani NASA astronaut and Artemis II Commander Reid Wiseman provides remarks at a Moon Tree dedication ceremony Tuesday, June 4, at the U.S. Capitol in Washington. The American Sweetgum tree was grown from a seed that few around the Moon during the agency’s Artemis I mission in 2022. In April, NASA announced the agency selected organizations from across the country to receive ‘Moon Tree’ seedlings to plant in their communities. Since returning to Earth, the tree seeds have been germinating under the care of the United States Department of Agriculture Forest Service. Artemis II is the first crewed test flight on NASA’s path to establishing a long-term presence at the Moon for exploration and scientific discovery. View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Aquarius instrument aboard the joint U.S. and Argentinian Satélite de Aplicaciones Científicas mapped the surface salinity of Earth’s oceans between 2011 and 2014. To calibrate the instrument, a team from NASA’s Jet Propulsion Laboratory, including project scientist Yi Chao, had to distribute robotic floats across oceans. The experience helped inspire Chao’s invention of an inexhaustible power source for ocean floats and sensors.Credit: NASA No one has mapped more territory than NASA. The agency not only charts stars and other planets but also maps Earth from orbit. Now a NASA invention could let robots map our planet’s entire seafloor, helping to unlock resources while protecting habitats. The sonar devices for such an operation are not new, but they’re hampered by battery limitations. As an engineer at NASA’s Jet Propulsion Laboratory in Southern California, Yi Chao learned about those limitations firsthand. He worked on studying the ocean from space and was the project scientist for the Aquarius satellite mission measuring ocean salinity. The satellite’s instruments were calibrated with sensors that had to be distributed across the oceans. He found that a major constraint to monitoring oceans is the battery life of subsurface sensors, which can’t rely on solar energy. When their batteries die, they’re either left dead in the water or recharged by ship at great expense. Two of Seatrec’s SL1 modules are attached to a robotic float. The modules generate power from changes in volume undergone by phase-change materials as the float rises from colder deep water to warmer surface water. By adding a second module, the operator doubles the available energy.Credit: Seatrec With two JPL colleagues, Chao set out to design a solution. The power modules they developed are based on what’s known as a phase-change material, in this case a paraffin-family substance with a melting point about 50°F – between typical deep-ocean and surface temperatures. As a device rises to the surface to transmit data, the material melts and expands, turning a motor that charges the battery. It’s the same concept as a steam engine, but changing from solid to liquid brings about a 10% expansion, so the trick was to make the device efficient enough to operate on that tiny bit of energy. Chao then licensed the invention and founded Seatrec Inc. of Vista, California. The company sells its SL1 power module to research labs, universities, government researchers, and the military. Chao noted that many entities, including offshore drillers, wind farm developers, the military, and environmentalists, are interested in mapping the 80% of the seafloor that remains uncharted. Read More Share Details Last Updated Jun 04, 2024 Related TermsTechnology Transfer & SpinoffsJet Propulsion LaboratorySpinoffsTechnology Transfer Explore More 5 min read Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance Article 5 days ago 2 min read Tech Today: Measuring the Buzz, Hum, and Rattle NASA-supported wireless microphone array quickly, cheaply, and accurately maps noise from aircraft, animals, and more. Article 6 days ago 6 min read NASA to Measure Moonquakes With Help From InSight Mars Mission Article 6 days ago Keep Exploring Discover Related Topics Technology Transfer & Spinoffs Earth Science Stories Oceanography Looking at our Earth from space, it is obvious that we live on a water planet. Ocean covers over 70%… Robotics View the full article
-
The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Amy Gresser, Mary Beth Wilhelm, Taylor Bell, and Liane Guild. Their commitment to the NASA mission represents the talent, camaraderie, and vision needed to explore this world and beyond. Space Biosciences Star: Amy Gresser Dr. Amy Gresser is the Space Biology Portfolio Manager for the Space Biosciences Division. Amy made a significant impact through her exemplary leadership in navigating the space biology portfolio, safeguarding workforce and science through budget planning and execution, and fostering a culture of excellence. Space Science Star: Mary Beth Wilhelm Dr. Mary Beth Wilhelm is a planetary scientist and astrobiologist with the Space Science & Astrobiology Division. Mary Beth’s outstanding leadership in team projects, ingenuity reflected in her recent proposal selection, and collaborative disposition play a crucial role in the success of the division. Space Science Star: Dr. Taylor Bell Dr. Taylor Bell is a planetary scientist with the Space Science & Astrobiology Division. Taylor published a very exciting result on a popular hot Jupiter target using the James Webb Space Telescope observations in a high-impact journal Nature Astronomy. Earth Science Star: Dr. Liane Guild Dr. Liane Guild is an ecosystems scientist in the Earth Science Division. Liane represented NASA on the U.S. Coral Reef Task Force, presented on her CyanoSCape project at HQ Focus Area team meetings, attended a Surface Biology and Geology meeting, and led the Interagency Agreement with the Naval Postgraduate School (CIRPAS) to ‘fly Ames’ 4STAR-B airborne instrument for validating data from the PACE-PAX mission data. View the full article
-
Photo of Matt Dosberg It is impossible to pinpoint a single, static definition of what makes a “Digital Transformer.” Although Matt Dosberg’s official title is Digital Transformation and IT Innovation Lead for Goddard Space Flight Center (GSFC), his full contributions to NASA require a lengthier description. He is the nexus for everything under the Digital Transformation (DT) umbrella at GSFC, including digital engineering, AI, data-driven programmatics, data strategy, and more. He serves as liaison to the agency-level DT team and other centers, coordinating across directorates to drive cultural change within the organization, and has sponsored multiple DT events at GSFC, including the center’s first AI Symposium. He strategizes on rolling out proof of concepts and pilots, working toward solutions that address agency-wide barriers to technology readiness and adoption. Dosberg doesn’t just do transformative work—he embodies transformation in an ever-adaptive role. In his three and a half years at NASA, Dosberg has impacted the agency beyond quantitative measures. Of course, his formal accomplishments are extensive, including co-leadership positions for the Goddard AI strategy, Goddard Data Strategy Working Group, and SPARTA (Smart Projects and Reviews with Transformative Analytics) Project. He works with the GSFC Chief Technologist to co-fund various initiatives for weaving digital technology into next-generation, mission-enabling solutions. However, his commitment to qualitative, ground-level change, impacting the agency through its culture and people, is demonstrated by how he measures success. “You could look at community adoption and engagement,” he says, highlighting his team’s efforts in hosting events and building community around Digital Transformation. “I’m trying to enable teams and empower people to really achieve the best that they can achieve and help transform how we work here at Goddard.” Dosberg attributes his team-building skills and service-oriented approach to his experience working at the Department of Homeland Security in US Citizenship and Immigration Services. As a program manager, he led the Digital Innovation & Development team, which worked to transform the asylum and refugee program from paper-based to fully digital processing. “I think that really set me up for success here,” says Dosberg. “That technology background and the experience of going through a successful digital transformation, and the cultural change aspect…all those things are kind of principles and success factors that I brought over to Goddard to lead the DT efforts here.” Although Dosberg does not come from explicitly scientific background—he received an undergraduate degree in economics, master’s degree in finance, and MBA—he has always been deeply interested in and curious about technology. In his daily work, he leverages the collaborative capabilities of tools like Microsoft Teams and Mural to aid in brainstorming and soliciting input. When reflecting on the technology he uses to drive transformation within the agency, he highlights his work on SPARTA, a DT Catalyst Project that establishes interoperable architecture for managing project reviews and data. Dosberg sees data as a foundational layer to his work; by developing common tools like SPARTA for accessing, aggregating, and sharing data across the agency, he hopes to strengthen inclusive teaming at an organizational level. Dosberg’s dedication is apparent in how thoughtfully he reflects on his past and present experiences as a Digital Transformer. However, his passion truly shines through when he considers the future of Digital Transformation. “There’s real opportunity to transform and change the way that we are working…Jill [Marlowe] and the DT team have done an incredible job on building momentum, getting folks excited, bringing centers together.” Although it is difficult to distill the many reasons why Dosberg was selected as the first featured Digital Transformer of the Month, this may be a good place to start: “At the end of the day, I’m just super passionate about the work that NASA does,” he says. “The portfolio is truly inspiring and I’m excited to help position the center to take on new projects, be more efficient, and enable the workforce. That motivates me each day.” View the full article
-
From the first lunar footsteps of Apollo to the threshold of humanity’s return aboard the Artemis missions, Ted Michalek has been part of the fabric of Goddard for 55 years — and counting! Name: Theodore “Ted” Michalek Title: Chief technical engineer (retired), now consultant Formal Job Classification: Thermal engineer Organization: Thermal Engineering Branch (Code 545), Mechanical Division (Code 540) and Systems Review Office, Flight Assurance Directorate (Code 301) Theodore “Ted” Michalek is a consultant thermal engineer at NASA’s Goddard Space Flight Center in Greenbelt, Md. After 40 years at Goddard, he retired in 2009, but returned part-time as a contractor consultant. Courtesy of Ted Michalek What do you do and what is most interesting about your role here at Goddard? I’ve been a thermal engineer at Goddard since May 1970, over 50 years. I’m currently a consultant to the lead thermal engineer for the Roman Space Telescope mission. I am also part of a team reviewing the Compact Coronagraph Instrument (CCOR-2) which will fly on the Space Weather Follow On (SWFO) mission. The thermal engineering discipline involves and affects all of the hardware and systems on all spaceflight hardware, and is involved from “cradle to grave,” from conception to the end of every mission. What is your educational background? I went to the Baltimore Polytechnic Institute, a Baltimore City public high school with an engineering preparatory curriculum. In 1969, I earned a B.S. in aerospace engineering from the University of Maryland. How did you become a thermal engineer? From the time I was 2, I was always fascinated by things that flew, especially airplanes. I originally wanted to be a pilot, but my mother found that I was partially color blind so I could not become a pilot. I decided to become an aeronautical engineer instead. In college, I did not enjoy the aerodynamics courses, so I gravitated to the structural design of flight systems. It was the Apollo era and I was fascinated by the space program, and was fortunate to get a job at Goddard in a mechanical design group. After a year, I was transferred to the thermal design group which, at that time, had a critical shortage of engineers. How did you come to Goddard? Though a job fair and interviews, I came to Goddard in June 1969 about one month before the first moon landing, Apollo 11. Why have you stayed at Goddard for over 50 years? I’ve stayed at Goddard because it’s a really good place to work and the work is interesting. I was on the front line of thermal engineering for spacecraft design. Although I retired in 2009, I returned as a contractor consultant. After 40 years, I only wanted to work part time, but have enjoyed keeping my hand in the field, continuing to contribute, and working with the people. What is most challenging about being a consultant to the lead thermal engineer for the Roman Space Telescope? Roman is a challenging mission thermally since much of the instrument and optical portions of the observatory need to be maintained at temperatures well below room temperature. Not as cold as the James Webb Space Telescope, but still a challenge. I had been doing reviews for Roman when it started, and eventually became part of their team. The lead thermal engineer is a very good guy whom I helped mentor when he first arrived in the thermal branch about 15 years ago. Thankfully I gave him good technical advice years ago, and am glad to be helping him out again. I’m proud that he has been so successful. What is your role in reviewing the CCOR-2 instrument? The systems review office at Goddard has a program of periodic reviews of every big project several times during their development phase from inception to launch. Every project has a committee of technical experts from various branches who are usually senior engineers who act as independent reviewers. The project presents to this review committee, discipline by discipline. There are success criteria for each periodic review. Each review has a pass-fail grade with details of what went into the grade, specific recommendations and advisories which are less binding than the formal recommendations. If there is really a problem, which is rare, they might get a lien, a restriction against proceeding beyond a certain point until a specific problem has been corrected. What are your career highlights? I’ve had many. One was being part of a small group of technical experts at Goddard who served as consultants to Argentina’s space agency, CONAE, when it was first formed and when they were designing their first orbiting satellite in the late 1980s and early 1990s. I went to Argentina a few times, and to Brazil twice for thermal testing. Another was being lead thermal engineer for the Earth Radiation Budget Satellite (ERBS) that was launched from a space shuttle. I also worked quite a bit on the WMAP (Wilkinson Microwave Anisotropy Probe) design, test and launch effort, and I also had the opportunity to work on the big Webb telescope test done in Houston before launch. I traveled to Houston for 10 days, every month, for five months to support that test, including right after Hurricane Harvey. Do you know that your nickname is the Thermal Engineer Guru? I may have heard that before. It’s OK, though the original thermal guru for me was Robert Kidwell, the assistant branch head when I joined the thermal branch, and was my first mentor there. A large part of the later part of my career included informal mentoring and reviews. I was responsible, as the chief technical engineer, for the technical output of my branch, so I spent a lot of my time talking with the engineers in the thermal branch, especially when they were involved in difficult technical situations. I worked with them to help make decisions. The job also included conducting periodic engineering peer reviews. One of the engineers I worked with quite a bit said that they were the ones firing the cannon and I was especially good at aiming the cannon. That made me feel good. “Take advantage of the culture at Goddard to learn your job as well as you can, which will enable you to take on more responsibility in time and contribute as much as you can to these missions,” said Ted Michalek. “I’ve always been appreciative and excited about how all of Goddard’s missions contribute to our knowledge of the universe and the quality of our life on Earth.”Courtesy of Ted Michalek What changes have you seen in Goddard over the years? The one big change is how the complexity of the missions has evolved. Our missions have gotten more sophisticated in technology and science. The size and complexity of our missions has increased. Thermal engineers work with almost every other disciplinary area including the scientists because everyone’s equipment has different thermal requirements. I don’t think the culture of Goddard has changed that much. Goddard has always been a group of very smart and dedicated people who are devoted to the missions that they are working. Goddard generally has a very collegial and collaborative atmosphere. Over the years, the coordination of the different technical and science disciplines has improved, I’d say primarily because of the evolution of the systems engineering function which is a key part of every project, and has been for some time now. We also document more thoroughly now than we did when I started. In 1970, when three of us entered the thermal branch, the first thing the branch did was have the assistant branch head conduct a three month training class. He was a pioneer in the field of thermal design for spacecraft, the real thermal guru. Over the years, the thermal branch has continued this kind of training class for incoming engineers. I came to work at Goddard 10 years after Goddard was created. When Goddard opened, there was a need to develop a workforce that knew how to build and launch spacecraft. Among other things, we had a number of people who came from the U.S. Naval Research Lab, or NRL, one of whom was the assistant branch head who taught us. Most of these people had worked on the Vanguard Project, which resulted in the launch of the second U.S. satellite to orbit the Earth. I came to Goddard about 12 years after the field of thermal engineering for space flight was started. I was there for the continuing maturation of this field. Because our missions are so much more complex, the field keeps evolving. Computer modeling is an important part of the field and that has gone through a huge evolution since I was a young thermal engineer, including collaboration with the structural analysts to predict in-orbit deformations, which is a key on many missions these days, including Roman. Also, the thermal hardware we have to utilize has evolved, necessarily, to answer the demands of ever more complex science missions. My first year at Goddard, we were doing vibration testing on a spacecraft model. I remember clearly thinking, as I was trying to position the instrumentation, that Goddard has been doing this for 10 years, and wondered if I’d ever do something new and different. Little did I know how much more evolution would go on from then until now. Every mission is different and requires creative ways to meet ever more demanding requirements. What do you do for fun? I have been a semi-serious bird watcher for the last 35 years. About three years ago, I was introduced to several aspects that rekindled my interest. One is a free app for my cellphones called Merlin, developed by the Cornell Laboratory of Ornithology, which helps identify birds. Another is a free app called eBird, also developed by the Cornell Laboratory of Ornithology, which allows you to list the birds that you have seen on an outing and report it to Cornell’s worldwide data base. Now I feel like when I am going birding, I can easily keep track of the birds I have seen and at the same time help contribute to bird studies. I also recently became involved in watching hawks in particular. There is a network of people and organizations from Canada to the northern part of South America who, during the fall and spring migration seasons, have expert observers in carefully chosen locations. The data from these sites goes into a database that’s been kept and analyzed for almost five decades now. These observers are charged with counting every migrating hawk they can see, daily, for two to three months. These people are fantastic in how they can do this tough job, in the outdoors, sometimes on a platform, from 7 a.m. until 4 or 5 p.m. every day, seven days a week, for two to three months at a time. Some are paid professionals. Depending on the location, day and weather, these hawk watches can count anything from zero migrant hawks to, in the Panama Canal Zone, 300,000 hawks. That’s in one day at the peak of the season. I really have a lot of respect for these hawk watchers. Ted Michalek on a birding trip in May 2024 at Bradbury Mountain Hawkwatch area, at the summit, about 5 miles NW of Freeport, ME.Courtesy of Ted Michalek On a birding trip in May 2024, I visited two of these hawkwatch sites, one at Bradbury Mountain State Park in Maine, and the other at Braddock Bay State Park in New York. In addition to getting some great practice at hawk identification, I learned first-hand the influence that weather, including wind direction, has in the daily flights, and how well the official hawk counters know the hawks and where to look for them based on the conditions, and how they can tell migrants (which they report) from local birds (which they don’t). It’s amazing how they’re able to quickly, at a glance sometimes, identify a hawk at a distance of several miles. At Braddock Bay, I was fortunate to be there on a couple of days when they had daily counts of more than 1,000 migrant hawks, and can attest first hand to the skill and focus necessary to identify and count that many birds. It was a good trip: in addition to visiting family, I saw 16 species of birds on this trip that I’d not seen before, including my first golden eagle, called to my attention by the professionals at Braddock Bay. What lessons or words of wisdom would you pass along to somebody just starting their career at Goddard? Take advantage of the culture at Goddard to learn your job as well as you can, which will enable you to take on more responsibility in time and contribute as much as you can to these missions. I’ve always been appreciative and excited about how all of Goddard’s missions contribute to our knowledge of the universe and the quality of our life on Earth. Who do you want to thank? I want to thank my family, my wife especially. And also my parents who provided me with a nurturing and secure upbringing, and an education. My wife and I homeschooled our two children through high school. I helped in the evening, but she did the bulk of the work. My wife has always been very supportive of my career. We met at Goddard. In the early ’70s, I taught a beginners’ class for the Goddard karate club and she was a student of mine. She offered me a correction for one of the exercises I had them do, and I listened and corrected it. My sister, our children and grandchildren, and the rest of my family have always been supportive of and interested in my career as NASA. I’m thankful to have such a wonderful extended family. From my early years at the thermal branch, I would also like to thank Ed Powers, who transferred me into the thermal branch and became the assistant director of engineering before he retired. Ed recently made a presentation about the early history of the thermal branch in the 1960s. I’m helping him a bit with his presentation. I would also like to thank Norm Ackerman, who was also a thermal branch head. Both of them were my supervisors and also two of many excellent mentors and leaders I worked with at Goddard. By Elizabeth M. Jarrell NASA’s Goddard Space Flight Center, Greenbelt, Md. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Share Details Last Updated Jun 04, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related TermsPeople of GoddardGoddard Space Flight CenterPeople of NASA Explore More 10 min read Kan Yang: Translating Science Ideas into Engineering Concepts Article 2 weeks ago 10 min read Ken Carpenter: Ensuring Top-Tier Science from Moon to Stars Article 4 weeks ago 6 min read Kiyun Kim: From Intern to Accessibility Advocate Article 1 month ago View the full article
-
The voyages of the Starship Enterprise came to a sudden and premature end on June 3, 1969, with the airing of the final episode of the Star Trek original television series. Ironically, the show’s cancellation came just six weeks before humanity embarked on its first voyage to land on another celestial body. Although the show ran for only three seasons, it generated a devoted fan base disappointed by the cancellation despite their write-in campaign to keep it on the air. But as things turned out, over the decades Star Trek evolved into a global phenomenon, first with the original episodes replayed in syndication, followed by a series of full-length motion pictures, and eventually a multitude of spin-off series. With its primary focus on space exploration, along with themes of diversity, inclusion, and innovation, the Star Trek fictional universe formed a natural association with NASA’s real life activities. Left: A scene from “The Man Trap,” the premiere episode of Star Trek. Middle: The cast of the original Star Trek series from a promotional ad for the 1968-9 season. Right: A scene from “Turnabout Intruder,” the final episode of the original series. Image credits: courtesy NBC-TV. Star Trek creator Gene Roddenberry first had the idea for a science fiction television series in 1964. He presented his idea, a show set in the 23rd century aboard a starship with a crew dedicated to exploring the galaxy, to Desilu Productions, an independent television production company headed by Lucille Ball. They produced a pilot titled “The Cage,” selling it to the National Broadcasting Corporation (NBC) network that then bought a second pilot titled “Where No Man Has Gone Before.” NBC introduced the show to its fall 1966 lineup, with the first episode “The Man Trap” airing on Sep. 8. To put that date in perspective, NASA launched Gemini XI four days later, one of the missions that helped the agency achieve the Moon landing nearly three years later. Meanwhile, Star Trek’s Starship Enterprise continued its fictional five-year mission through the galaxy to “seek out new life and new civilizations.” The makeup of the Enterprise’s crew made the show particularly attractive to late 1960s television audiences. The major characters included an African American woman communications officer, an Asian American helmsman, and a half-human half-Vulcan science officer, later joined by a Russian-born ensign. While the show enjoyed good ratings during its first two seasons, cuts to its production budget resulted in lower quality episodes during its third season leading to lower ratings and, despite a concerted letter-writing campaign from its dedicated fans, eventual cancellation. Left: NASA Administrator James C. Fletcher, left, with the creator and cast members of Star Trek at the September 1976 rollout of space shuttle Enterprise. Right: The cast members give the Vulcan salute. Despite the show’s cancellation, Star Trek lived on and prospered in syndication and attracted an ever-growing fan base, turning into a worldwide sensation. Often dubbed “trekkies,” these fans held the first of many Star Trek conventions in 1972. When in 1976 NASA announced that it would name its first space shuttle orbiter Constitution, in honor of its unveiling on the anniversary of the U. S. Constitution’s ratification, trekkies engaged in a dedicated letter writing campaign to have the orbiter named Enterprise, after the starship in the television series. This time the fans’ letter writing campaign succeeded. President Gerald R. Ford agreed with the trekkies and directed NASA to rechristen the first space shuttle. When on Sept. 17, 1976, it rolled out of its manufacturing plant in Palmdale, California, appropriately accompanied by a band playing the show’s theme song, it bore the name Enterprise. Many of the original cast members of the show as well as its creator Rodenberry participated in the rollout ceremony, hosted by NASA Administrator James C. Fletcher. Thus began a lengthy relationship between the space agency and the Star Trek brand. Left: Star Trek cast member Nichelle Nichols, left, in the shuttle simulator with astronaut Alan L. Bean at NASA’s Johnson Space Center (JSC) in Houston. Middle: Nichols at the controls of the shuttle simulator. Right: Nichols, left, in JSC’s Mission Control Center during filming of the recruiting video. During the development of the space shuttle in the 1970s, the need arose to recruit a new group of astronauts to fly the vehicle, deploy the satellites, and perform the science experiments. When NASA released the call for the new astronaut selection on July 8, 1976, it specifically encouraged women and minorities to apply. To encourage those applicants, NASA chose Nichelle Nichols, who played communications officer Lt. Uhura on the Starship Enterprise, to record a recruiting video and speak to audiences nationwide. She came to NASA’s Johnson Space Center (JSC) in Houston in March 1977, and accompanied by Apollo 12 and Skylab 3 astronaut Alan L. Bean, toured the center and filmed scenes for the video in Mission Control and other facilities. NASA hoped that her stature and popularity would encourage women and minorities to apply, and indeed they did. In January 1978, when NASA announced the selection of 35 new astronauts from more than 8,000 applicants, for the first time the astronaut class included women and minorities. All distinguished themselves as NASA astronauts and paved the way for others in subsequent astronaut selections. Nichols returned to JSC in September 2010 with the Traveling Space Museum, an organization that partners with schools to promote space studies. She toured Mission Control and the International Space Station trainer accompanied by NASA astronaut B. Alvin Drew. She also flew aboard NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne telescope aircraft managed by NASA’s Ames Research Center in Silicon Valley, California, in September 2015. Left: Nichelle Nichols, middle, with NASA astronaut B. Alvin Drew in the space station trainer at NASA’s Johnson Space Center in Houston. Right: Nichols, center, aboard NASA’s Stratospheric Observatory for Infrared Astronomy aircraft. Meanwhile, the Star Trek brand renewed itself in 1979 as a full-length motion picture with the original TV series cast members reprising their roles. Over the years, several sequels followed this first film. And on the small screen, a reboot of sorts occurred in 1987 with the premiere of Star Trek: The Next Generation, a new series set in the 24th century aboard the Enterprise-D, a next generation starship with a new crew. That series lasted seven seasons, followed by a near-bewildering array of spin-off series, all built on the Star Trek brand, that continue to this day. Left: Actor James Doohan visits NASA’s Dryden (now Armstrong) Flight Research Center in California in 1967 with NASA pilot Bruce A. Peterson, in front of the M2-F2 lifting body aircraft. Middle: At NASA’s Johnson Space Center in Houston, Doohan sits in the commander’s seat of the space shuttle simulator, as NASA astronaut Mario Runco looks on. Right: Doohan, second from left, during his retirement party with fellow Star Trek stars George Takei, left, and Nichelle Nichols, and Apollo 11 astronaut Neil A. Armstrong. Credit: Image courtesy Anne Cusack/Los Angeles Times. James Doohan, the actor who played Lt. Cmdr. Montgomery “Scotty” Scott, the Starship Enterprise’s chief engineer, had early associations with NASA. In April 1967, Doohan visited NASA’s Dryden (now Armstrong) Flight Research Center in California, spending time with NASA test pilot Bruce A. Peterson. A month later, Peterson barely survived a horrific crash of the experimental M2-F2 lifting body aircraft. He inspired the 1970s TV series The Six-Million Dollar Man, and the show’s opening credits include film of the crash. Doohan narrated a documentary film about the space shuttle released shortly before Columbia made its first flight in April 1981. In January 1991, Doohan visited JSC and with NASA astronaut Mario Runco (who sometimes went by the nickname “Spock”) toured the shuttle trainers, Mission Control, and tried his hand at operating the shuttle’s robotic arm in the Manipulator Development Facility. In a unique tribute, astronaut Neil A. Armstrong, the first person to step on the lunar surface, spoke at Doohan’s retirement in 2004, addressing him as “one old engineer to another.” Left: Director of NASA’s Johnson Space Center in Houston Michael L. Coats presents actor George Takei with a commemorative plaque. Right: Takei and Robonaut both give the Vulcan greeting. George Takei, who played Enterprise helmsman Lt. Hikaru Sulu, and his husband Brad, visited JSC in May 2012. Invited by both Asian American and LGBTQ+ Employee Resource Groups, Takei spoke of leadership and inclusiveness, including overcoming challenges while in Japanese American internment camps during World War II and as a member of the LGBTQ+ community. He noted that Star Trek remained ahead of its time in creating a future when all members of society could equally participate in great undertakings, at a time when the country struggled through the Civil Rights movement and the conflict in Southeast Asia. The inclusiveness that is part of NASA’s culture greatly inspired him. JSC Director Michael L. Coats presented Takei with a plaque including a U.S. flag flown aboard space shuttle Atlantis’ STS-135 mission. He also visited Mission Control and spent some time with Robonaut. Left: Star Trek cast member Leonard Nimoy gives the Vulcan greeting in front of space shuttle Enterprise after its arrival in New York in 2012. Right: Expedition 43 crew member European Space Agency astronaut Samantha Cristoforetti gives the Vulcan salute to honor the late actor Nimoy. Leonard Nimoy played the science officer aboard the Starship Enterprise, the half-human, half-Vulcan Mr. Spock. The actor watched in September 2012 when space shuttle Enterprise arrived at John F. Kennedy International Airport in New York, on the last leg of its journey to the Intrepid Sea, Air and Space Museum, where it currently resides. “This is a reunion for me,” observed Nimoy. “Thirty-five years ago, I met the Enterprise for the first time.” As noted earlier, the Star Trek cast attended the first space shuttle’s rollout in 1976. Following his death in 2015, European Space Agency astronaut Samantha Cristoforetti paid tribute to Nimoy aboard the International Space Station by wearing a Star Trek science officer uniform, giving the Vulcan greeting, and proclaiming, “Of all the souls I have encountered … his was the most human.” Left: Star Trek cast member William Shatner, left, receives the Distinguished Public Service Medal from NASA Deputy Associate Administrator for Communications Robert N. Jacobs in 2014. Middle: Shatner, upper left, moderates a virtual panel at the 2020 San Diego Comic-Con with NASA spacesuit engineer Lindsay T. Aitchison, upper right, NASA astronauts Nicole A. Mann, lower left, and Kjell N. Lindgren, and NASA technology expert LaNetra C. Tate. Image credit: courtesy Comic-Con International. Right: Shatner experiences weightlessness during his suborbital trip to the edge of space aboard a New Shepard vehicle. Image credit: courtesy Blue Origin. Captain James T. Kirk, played by actor William Shatner, a life-long advocate of science and space exploration, served at the helm of the Starship Enterprise. His relationship with NASA began during the original series, with references to the space agency incorporated into several story lines. In 2011, Shatner hosted and narrated a NASA documentary celebrating the 30th anniversary of the Space Shuttle program, and gave his time and voice to other NASA documentaries. NASA recognized Shatner’s contributions in 2014 with a Distinguished Public Service Medal, the highest award NASA bestows on non-government individuals. NASA Deputy Associate Administrator for Communications Robert “Bob” N. Jacobs presented the medal to Shatner. The award’s citation read, “For outstanding generosity and dedication to inspiring new generations of explorers around the world, and for unwavering support for NASA and its missions of discovery.” In 2019, Shatner narrated the NASA video We Are Going, about NASA’s plans to return astronauts to the Moon. He has spoken at numerous NASA-themed events and moderated panels about NASA’s future plans. On Oct. 13, 2021, at the age of 90, Shatner reached the edge of space during the NS-18 suborbital flight of Blue Origin’s New Shepard vehicle, experiencing three minutes of weightlessness. Left: Patch for the Window Observational Research Facility (WORF), including the Klingon writing just below the letters “WORF.” Middle: Astronaut Naoki Yamazaki of the Japan Aerospace Exploration Agency and the WORF rack after its installation aboard the space station during STS-131. Right: The STS-54 crew dressed as Starfleet officers. Left: The Space Flight Awareness (SFA) poster for the Expedition 21 crew. Right: The SFA poster for the STS-134 crew. Elements of the Star Trek universe have made their way not only into popular culture but also into NASA culture. As noted above, Star Trek fans had a hand in naming the first space shuttle Enterprise. NASA’s Earth observation facility aboard the space station that makes use of its optical quality window bears the name the Window Observational Research Facility (WORF). The connection between that acronym and the name of a Klingon officer aboard the Enterprise in the Star Trek: The Next Generation TV series seemed like an opportunity not to be missed – the facility’s official patch bears its name in English and in Klingon. Several astronaut crews have embraced Star Trek themes for their unofficial photographs. The STS-54 crew dressed in the uniforms of Starship Enterprise officers from Star Trek II: The Wrath of Kahn, the second full-length feature motion picture of the series. Space shuttle and space station crews created Space Flight Awareness (SFA) posters for their missions, and more than one embraced Star Trek themes. The Expedition 21 crew dressed in uniforms from the original series, while the STS-134 crew chose as their motif the 2009 reboot motion picture Star Trek. Left: Picture of the Gemini VI launch in the background in the 1967 Star Trek episode “Court Martial.” Credit: Image courtesy of Collectspace.com. Middle: NASA astronaut Mae C. Jemison, left, and actor LeVar Burton in a 1993 episode of Star Trek: The Next Generation. Credit: Image courtesy CBS. Right: NASA astronauts Terry W. Virts, left, and E. Michael Fincke, right, flank actor Scott Bakula on the set of Star Trek: Enterprise in 2005. Credit: Image courtesy CBS. As much as Star Trek has influenced NASA, in turn the agency has left its mark on the franchise, from episodes referencing actual and future spaceflight events to NASA astronauts making cameo appearances on the show. The first-season episode “Court Martial” that aired in February 1967 featured a photograph of the December 1965 Gemini VI launch adorning a wall aboard a star base. In the second-season episode “Return to Tomorrow,” airing in February 1968, Captain Kirk in a dialogue about risk-taking remarks, “Do you wish that the first Apollo mission hadn’t reached the Moon?” a prescient reference to the first Apollo mission to reach the Moon more than 10 months after the episode aired. Astronaut Mae C. Jemison, who credits Nichelle Nichols as her inspiration to become an astronaut, appeared in the 1993 episode “Second Chances” of Star Trek: The Next Generation, eight months after her actual spaceflight aboard space shuttle Endeavour. In May 2005, two other NASA astronauts, Terry W. Virts and E. Michael Fincke, appeared in “These are the Voyages…,” the final episode of the series Star Trek: Enterprise. Left: NASA astronaut Victor J. Glover, host of the 2016 documentary “NASA on the Edge of Forever: Science in Space.” Right: Actress Nichelle Nichols appearing in the documentary “NASA on the Edge of Forever: Science in Space.” In the 2016 documentary “NASA on the Edge of Forever: Science in Space,” host NASA astronaut Victor J. Glover states, “Science and Star Trek go hand-in-hand.” The film explores how for 50 years, Star Trek influenced scientists, engineers, and even astronauts to reach beyond their potential. While the space station doesn’t speed through the galaxy like the Starship Enterprise, much of the research conducted aboard the orbiting facility can make the fiction of Star Trek come a little closer to reality. Several of the cast members from the original TV series share their viewpoints in the documentary, along with those of NASA managers and scientists. Over the years, NASA has created several videos highlighting the relationship between the agency and the Star Trek franchise. In 2016, NASA Administrator Charles F. Bolden led a video tribute to celebrate the 50th anniversary of the first Star Trek episode. In a tribute to Star Trek creator Gene Roddenberry on the 100th anniversary of his birth, his son Rod, upper left, hosts a virtual panel discussion about diversity and inspiration. In 2021, on the 100th anniversary of Gene Roddenberry’s birth, his son Rod hosted a virtual panel discussion, introduced by NASA Administrator C. William “Bill” Nelson, about diversity and inspiration, two ideals the Star Trek creator infused into the series. Panelists included Star Trek actor Takei, Tracy D. Drain, flight systems engineer for the Europa Clipper spacecraft at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, NASA astronaut Jonny Kim, Swati Mohan, guidance and operations lead for the Mars 2020 rover at JPL, and Hortense B. Diggs, Director of the Office of Communication and Public Engagement at NASA’s Kennedy Space Center in Florida. The mutual attraction between NASA and Star Trek stems from, to paraphrase the opening voiceover from the TV series, that both seek to explore and discover new worlds, and to boldly go where no one has gone before. The diversity, inclusion, and inspiration involved in these endeavors ensure that they will live long and prosper. Explore More 6 min read 25 Years Ago: STS-96 Resupplies the Space Station Article 6 days ago 6 min read 15 Years Ago: First Time all Partners Represented aboard the International Space Station Article 1 week ago 18 min read 40 Years Ago: NASA Selects its 10th Group of Astronauts Article 2 weeks ago View the full article
-
Credits: NASA NASA announced the recipients of the Established Program to Stimulate Competitive Research (EPSCoR) grants, which will support scientific and technical research projects for more than 20 universities and organizations across the United States. “NASA’s EPSCoR awards are a tool to strengthen research capacity in areas across our nation that have historically been underrepresented in government research,” said Torry Johnson, deputy associate administrator of Science, Technology, Engineering, and Mathematics (STEM) Engagement Programs at NASA Headquarters in Washington. “The goal with each award is to provide institutions a long-term and sustainable pathway to participating in the aerospace industry by cultivating competitive research capabilities and fostering strategic relationships with NASA experts.” The EPSCoR awards will compliment NASA’s research portfolio to benefit future missions. Selected proposals cover a range of science and technology needs including in space manufacturing, heliophysics, astronaut health, and climate research. The NASA EPSCoR Rapid Response Research grants, funded by the agency’s Office of STEM Engagement, will award approximately $100,000 to each project over the course of a one-year performance period for fiscal year 2024. The awarded institutions are: University of Alabama in Huntsville University of Arkansas in Little Rock University of Delaware in Newark Iowa State University in Ames University of Idaho in Moscow University of Kentucky in Lexington Louisiana Board of Regents in Baton Rouge University of Mississippi in University Montana State University in Bozeman University of North Dakota in Grand Forks University of Nebraska in Omaha New Mexico State University in Las Cruces Nevada System of Higher Education in Reno Oklahoma State University in Stillwater Brown University in Providence, Rhode Island College of Charleston in Charleston, South Carolina South Dakota School of Mines and Technology in Rapid City West Virginia University in Morgantown University of Wyoming in Laramie NASA establishes partnerships with government, higher education, and industry to create lasting improvements in research infrastructure while enhancing national research and development competitiveness. The program is directed at those jurisdictions that have traditionally been underrepresented in competitive aerospace and aerospace-related research activities. For more information about NASA STEM, visit: https://stem.nasa.gov -end- Gerelle Dodson Headquarters, Washington 202-358-1600 gerelle.q.dodson@nasa.gov Share Details Last Updated Jun 04, 2024 LocationNASA Headquarters Related TermsSTEM Engagement at NASAEPSCoRFor Colleges & UniversitiesGet InvolvedGrants & OpportunitiesLearning Resources View the full article
-
From pioneering space initiatives to championing diversity and innovation, Shirley Holland-Hunt’s multifaceted leadership at NASA exemplifies the future of aerospace exploration. Her efforts have driven technological advancements and advocated for the inclusion of women and minorities in STEM fields. Holland-Hunt currently serves as the associate division chief for Houston’s Johnson Space Center Aeroscience and Flight Mechanics Division, where she drives engineering design, development, testing, and evaluation for all phases of space flight. She supports the identification and establishment of center partnerships and Space Act Agreements that drive the research and development of new space exploration technology. Holland-Hunt also coordinates business activities and workforce development, including planning, programming, budgeting, and execution, as well as facility management and Johnson’s diversity, equity, inclusion, and accessibility initiatives. Holland-Hunt was a member of the Dare | Unite | Explore team that launched the “Propel the Space Economy Coalition” initiative, which supports the sustainable growth of the global space economy. Official portrait of Shirley Holland-Hunt. Credit: NASA/James Blair As an alumna of Prairie View A&M University, a Historically Black College and University, Holland-Hunt holds a bachelor of science in Electrical Engineering and a Master of Business Administration from the University of Phoenix. She helped develop Johnson’s first Request for Information document, showcasing her pivotal role in advancing the center’s initiatives to collect data that inform future procurement actions. She also spearheaded initiatives to promote women in leadership roles. She founded the networking group “The Women of ES” within the Structural Engineering Division to help women leaders seek opportunities and gain promotions. Additionally, she launched “The Women of EG” within the Aeroscience and Flight Mechanics Division, which conducts outreach to schools to encourage girls to pursue STEM careers. “Each division leaves its own footprint,” she said. “Sometimes you need those small entities within a culture because the issues are different, the people are different. It’s so fulfilling to be a part of these outreach activities and see the outcome.” Shirley Holland-Hunt leads a discussion at a STEM outreach event for Brownsville Independent School District. Holland-Hunt emphasizes the importance of persistence and continuous learning in your career. “Every little thing that you do or contribute to is huge. You might not see the results right away, but there is an outcome.” She motivates students interested in pursuing space exploration careers to recognize their skills, know their worth, and work hard. “Strive to do your best daily but know that things are going to happen. Just be the best you can be.” One of her core beliefs is to treat others with respect and acknowledge that diversity of thought is a strength. “Different means that somebody has a different way of thinking than you do, and that is a plus.” Shirley Holland-Hunt at a NASA Pathways internship outreach event at Prairie View A&M University. Holland-Hunt is also involved in a discovery program at her church, educating young girls about careers in STEM and supporting minority students pursuing graduate programs in those fields. She recalls teachers doubting her potential to become an engineer. “I don’t want another little girl to hear that she can’t be something that she wants to be,” she said. Her advice to women is to embrace new challenges without fear. “Learn and grow in everything you do. Don’t be afraid to move around in your career. You don’t need to have 100% of the skills to do it,” said Holland-Hunt. “Networking is also important—get to know people who can make a positive impact on your life.” Shirley Holland-Hunt at a Texas Independent School District STEM outreach event in Galveston. Reflecting on her career, Holland-Hunt shares, “I started at NASA in a technical field but learned later that I have a passion for people, which was shocking because I always thought I was shy and an introvert. Now, I have a passion for seeing people grow and giving back in any way I can.” Holland-Hunt worked in flight software and avionics for the Space Shuttle Program, which she said was her favorite program to work on at NASA. “When the program ended, I had to figure out how to use my background at Johnson for future capabilities,” she said. “That is the great part of working at NASA; there are many opportunities that bring together a range of people and perspectives to foster innovation.” Holland-Hunt’s previous role managing a materials and processing group helped overcome her initial fear that her technical knowledge would hinder her ability to manage people. “I empowered everyone in that group with the respect I had for their work. They could teach me, and we trusted and learned from each other,” she said. “I know that I’m working with the best engineers in the world, and I learn so much from everyone that I work with.” She believes that challenging herself and moving to different programs has revealed her hidden strengths and talents. “Knowing yourself is very important to be successful.” Shirley Holland-Hunt in front of NASA’s Space Exploration Vehicle at Johnson Space Center in Houston. Holland-Hunt is also a member of the Ensemble Theatre in Houston, Texas, which aims to preserve African American artistic expression. She and her husband enjoy attending car shows and driving her 1972 Pontiac GTO. Coming from a large family of eight, with a father who was a sharecropper, Holland-Hunt helped her family pick cotton. Despite her parents not graduating from junior high school, she and her eight siblings graduated from college, with five becoming engineers. Her husband also works for Axiom Space, one of the agency’s commercial space partners. Holland-Hunt believes that experiencing adversity at a young age developed her character. “My parents always told me to be the best we can be and to love ourselves. That made us feel special and empowered me to do great things,” she said. “We never got new books, but we never saw it as a reason not to learn or excel. It teaches you to work with what you have. Now, when challenges come, I think, ‘That’s nothing. I’ve lived through worse.’” View the full article
-
4 min read Solid State Quantum Magnetometers—Seeking out water worlds from the quantum world Left: Jupiter’s moon Europa and its presumed interior. A thick ice shell covers a planetary saltwater ocean, presumed to hold twice as much water as Earth’s oceans. Right: Simulation of the ocean bending the magnetic field lines emitted by Jupiter that are close to Europa Image credit: C. Cochrane/ NASA/JPL-Caltech “Follow the water!” The solar system is full of water in different states, from the Sun’s water vapor to the ice of Pluto and beyond. Water is not only linked to the possibility to sustain life, it is also interesting for its own geological properties and potential uses. For example, ice on the Moon and Mars could support human exploration. Comets that hit Earth may have deposited water on our planet. The icy comets and rings of Saturn reveal how solar systems change over time. Liquid water, however, has a special role in enabling life. Scientists have discovered indications that liquid water might exist on a number of moons orbiting our solar system’s gas and ice giants. The mantra of the astrobiology community is to “Follow the Water” to find life, so subsurface oceans on Jupiter’s Europa, Saturn’s Enceladus, and other moons are compelling targets for future missions. However, looking beneath the miles-thick ice crusts of these planetary bodies with conventional remote-sensing instruments, like cameras and radar, is challenging. Until we can send landers or rovers that drill or melt through the ice, we can use other techniques to track down these enormous, but elusive, water bodies. One method—Magnetometry—stands out since magnetic fields penetrate solid material and can therefore provide information about the interior of planet-sized bodies. Briny water conducts electricity; therefore, a saltwater ocean can function as a planet-sized electric circuit. The strong rotating magnetic field of the parent planet of an ocean world can induce an electric current in this “circuit,” which in turn disturbs and modifies the magnetic field near the ocean world under investigation. These magnetic field disturbances can be observed from a spacecraft and may indicate the presence of liquid water. For example, a distortion of Jupiter’s magnetic field in the vicinity of Europa was measured by the magnetometer on NASA’s Galileo mission, providing further evidence for the initial suspicions of a water ocean under that moon’s icy crust. The heart of optically pumped quantum magnetometers: a diamond crystal enriched with color centers. Unlike many other quantum systems, diamond and SiC solid state quantum color centers operate at room temperature and can be readily accessed electrically or optically. The bottom photo, filtering the laser light for the observer, shows the red-shifted emission response of the quantum system. This response is encoded with quantum spin information, and can be used to read environmental influences, such as temperature, pressure, electric and, most importantly for us, magnetic field properties. Image credit A. Gottscholl/ NASA/JPL-Caltech Solid-state quantum magnetometers are an upcoming instrument class promising to measure magnetic fields at competitive sensitivities, while offering lower size, weight, and power footprints. In addition, these instruments offer quantum benefits like self-calibration on spin-nuclear quantum interaction, which means that the magnetometer can compensate for drifts over time. This capability is especially important for decades-long missions to the outer ice-giants. Other solid-state quantum advantages include radiation resilience and an inherent ability to withstand very high/low temperatures. Solid-state quantum magnetometers leverage quantum color centers located in semiconductors such as diamond and silicon carbide. Color centers are defects in the crystal lattice—for example, a missing atom or a different atom replacing a crystal atom. In everyday life, color centers give crystals their color, but they can also be probed on the quantum level using modulated light. Due to their quantum spin properties these color centers are sensitive to environmental magnetic fields. As these color centers are exposed to varying magnetic fields, the changing quantum spin properties can be read electrically and/or optically, providing insight into the magnetic field properties and enabling us to detect the presence of water. Research teams at NASA’s Jet Propulsion Laboratory are developing two magnetometers to measure spin properties from space. The incredibly simple but elegant SiCMAG (Silicon Carbide Magnetometer, Lead Dr. Corey J. Cochrane) instrument reads spin properties electrically, while the OPuS-MAGNM (optically pumped solid state quantum magnetometer, Lead Dr. Hannes Kraus) promises access to higher sensitivities through the addition of optics. Optically pumped here means that the quantum system is pumped with green (diamond) or deep red (silicon carbide) laser light, and the system’s response is read with a light detector. According to Dr. Kraus, “Novel quantum sensors not only enable new science, but also offer the chance to downscale former flagship-class instrumentation to a size and cost allowing flagship-class science on CubeSat-class platforms.” NASA has been funding solid state quantum magnetometer sensor research through its PICASSO (Planetary Instrument Concepts for the Advancement of Solar System Observations) program since 2016. A variety of domestic partners from industry and academia support this research, including NASA’s Glenn Research Center in Cleveland, the University of Iowa, Q-Cat LLC and QuantCAD LLC, as well as international partners such as Japan’s National Institutes for Quantum Science and Technology (QST Japan) and ETH Zurich, a public research university in Zurich, Switzerland. PI Dr. Kraus (left) and postdoctoral researcher Dr. Andreas Gottscholl (right) in the JPL Quantum Magnetometer lab, with the optically detected magnetic resonance (ODMR) spectrometer apparatus—a larger-scale stepping stone towards a miniaturized integrated magnetometer instrument—built by Dr. Gottscholl in the background. The optically pumped quantum sensor crystals (not visible here, as the sensor itself is only millimeters in size) are located in the concentric barrel-shaped four-layer µ-metal chamber, which is capable of shielding the Earth’s and other magnetic field disturbances by a factor of 100,000. Image Credit H. Kraus/ NASA/JPL-Caltech Acknowledgment: The research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). PROJECT LEAD Dr. Hannes Kraus, Dr. Corey Cochrane, Jet Propulsion Laboratory/California Institute of Technology SPONSORING ORGANIZATION Science Mission Directorate PICASSO, JPL R&D funding Share Details Last Updated Jun 04, 2024 Related Terms Planetary Science Science-enabling Technology Technology Highlights The Solar System Explore More 2 min read June’s Night Sky Notes: Constant Companions: Circumpolar Constellations, Part III In the final Circumpolar Constellations installment, learn about objects in Cepheus, Draco, and Ursa Major,… Article 4 days ago 6 min read What’s Up: June 2024 Skywatching Tips from NASA Article 5 days ago 8 min read The Moon and Amaey Shah Article 5 days ago View the full article
-
This June 2021 aerial photograph shows the coastal launch range at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore.Credit: Courtesy Patrick J. Hendrickson; used with permission The NASA Wallops Visitor Center will be open for extended hours from 4-6 p.m., Wednesday, June 12, to conduct outreach focused around NASA’s environmental work at Wallops. In addition, the Visitor Center exhibit gallery and auditorium will be open for the public to visit, and personnel will be onsite to share information on current and upcoming missions. The Visitor Center is open to the public and admission is always free. Wallops’ Environmental Team will be on-hand to discuss and answer questions about NASA’s ongoing work related to Per- and Polyfluoroalkyl Substances (PFAS) at the facility. Experts will also be available to share information on the new Wallops Island Causeway Bridge project. Wallops conducts extended hours outreach events routinely at the Visitor Center, which is located on Virginia Route 175 about five miles from U.S. Route 13 and five miles from Chincoteague Island, Virginia. By Jeremy Eggers NASA’s Wallops Flight Facility, Wallops Island, Va. Share Details Last Updated Jun 03, 2024 EditorMadison OlsonContactJeremy EggersLocationWallops Flight Facility Related TermsWallops Flight Facility View the full article
-
A United Launch Alliance Atlas V rocket with Boeing’s Starliner spacecraft is pictured from Space Launch Complex 41 at Cape Canaveral Space Force Station in Florida. NASA astronauts Butch Wilmore and Suni Williams will launch aboard Starliner for the agency’s Boeing Crew Flight Test.Credits: NASA/Joel Kowsky NASA will provide live coverage of launch activities for the agency’s Boeing Crew Flight Test, which will carry NASA astronauts Butch Wilmore and Suni Williams to and from the International Space Station. Launch of the ULA (United Launch Alliance) Atlas V rocket and Boeing Starliner spacecraft is targeted for 10:52 a.m. EDT Wednesday, June 5, from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. Starliner will dock to the forward-facing port of the station’s Harmony module at approximately 12:15 p.m., Thursday, June 6. Wilmore and Williams will remain at the space station for about a week to test the Starliner spacecraft and its subsystems before NASA works to complete final certification of the transportation system for rotational missions to the orbiting laboratory as part of the agency’s Commercial Crew Program. The deadline for media accreditation for in-person coverage of this launch has passed. The agency’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov. NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations): Wednesday, June 5 6:45 a.m. – Launch coverage begins on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. 10:52 a.m. – Launch Launch coverage on NASA+ will end shortly after Starliner orbital insertion. NASA Television will provide continuous coverage leading up to docking and through hatch opening and welcome remarks. 12:30 p.m. – Postlaunch news conference with the following participants: NASA Administrator Bill Nelson Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate Joel Montalbano, deputy associate administrator, NASA’s Space Operations Mission Directorate Steve Stich, manager, NASA’s Commercial Crew Program Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Tory Bruno, president and CEO, ULA Coverage of the postlaunch news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov. NASA+ will resume coverage and NASA Television’s public channel will break from in-orbit coverage to carry the postlaunch news conference. Mission operational coverage will continue on NASA Television’s media channel and the agency’s website. Once the postlaunch news conference is complete, NASA+ coverage will end, and mission coverage will continue on both NASA channels. Thursday, June 6 9:30 a.m. – Arrival coverage resumes on NASA+, the NASA app, and YouTube, and continues on NASA Television and the agency’s website. 12:15 p.m. – Targeted docking to the forward-facing port of the station’s Harmony module 2 p.m. – Hatch opening 2:20 p.m. – Welcome remarks 3:30 p.m. – Post-docking news conference at NASA’s Johnson Space Center with the following participants: NASA Associate Administrator Jim Free Steve Stich, manager, NASA’s Commercial Crew Program Jeff Arend, manager for systems engineering and integration, NASA’s International Space Station Office Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Coverage of the post-docking news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. All times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date operations information. Audio Only Coverage Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240 or -7135. On launch day, “mission audio,” countdown activities without NASA Television launch commentary, will be carried on 321-867-7135. Launch audio also will be available on Launch Information Service and Amateur Television System’s VHF radio frequency 146.940 MHz and KSC Amateur Radio Club’s UHF radio frequency 444.925 MHz, FM mode, heard within Brevard County on the Space Coast. Live Video Coverage Prior to Launch NASA is providing a live video feed of Space Launch Complex-41 on NASA Kennedy’s YouTube: https://youtube.com/kscnewsroom. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA Television, approximately four hours prior to launch. NASA Website Launch Coverage Launch day coverage of the mission will be available on the agency’s website. Coverage will include live streaming and blog updates beginning no earlier than 6:45 a.m., June 5, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the commercial crew or the Crew Flight Test blog. Attend Launch Virtually Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch. Watch, Engage on Social Media Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Starliner and #NASASocial. You can also stay connected by following and tagging these accounts: X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @BoeingSpace, @Commercial_Crew Facebook: NASA, NASAKennedy, ISS, ISS National Lab Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab Coverage en Espanol Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425; antonia.jaramillobotero@nasa.gov o Messod Bendayan: 256-930-1371; messod.c.bendayan@nasa.gov. NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low-Earth orbit and the International Space Station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars. For NASA’s launch blog and more information about the mission, visit: https://www.nasa.gov/commercialcrew -end- Josh Finch / Jimi Russell / Claire O’Shea Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov Steven Siceloff / Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov Leah Cheshier Johnson Space Center, Houston 281-483-5111 leah.d.cheshier@nasa.gov Share Details Last Updated Jun 03, 2024 LocationNASA Headquarters Related TermsHumans in SpaceCommercial SpaceInternational Space Station (ISS)ISS ResearchMissionsSpace Operations Mission Directorate View the full article
-
An STS-125 crew member aboard the Space Shuttle Atlantis captured this image of NASA’s Hubble Space Telescope on May 19, 2009. Credit: NASA NASA will hold a media teleconference at 4 p.m. EDT, Tuesday, June 4, to provide an update on operations for NASA’s Hubble Space Telescope. NASA anticipates Hubble will continue making discoveries, working with other observatories such as the agency’s James Webb Space Telescope, throughout this decade and into the next. Audio of the teleconference will stream live on the agency’s website at: https://www.nasa.gov/nasatv/ Participants in the teleconference include: Mark Clampin, director, Astrophysics Division, Science Mission Directorate at NASA Headquarters in Washington Patrick Crouse, project manager, Hubble Space Telescope, NASA’s Goddard Space Flight Center in Greenbelt, Maryland To ask questions during the teleconference, media must RSVP no later than two hours before the event to Alise Fisher at: alise.m.fisher@nasa.gov. NASA’s media accreditation policy is available online. Launched in 1990, Hubble has been observing the universe for more than three decades and recently celebrated its 34th anniversary. To learn more about Hubble, including some of its greatest scientific discoveries, visit: https://www.nasa.gov/hubble -end- Alise Fisher Headquarters, Washington 202-358-2546 alise.m.fisher@nasa.gov View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Team “Rumble Ready” from California State Polytechnic University, Pomona, comprised of (from left to right) Professor Mark Gonda, Nicole Xie, Junaid Bodla, Jordan Ragsac, Krishi Gajjar, Gerald McAllister III, and Leara Dominguez, took home first place at the 2024 Gateways to Blue Skies Forum held May 30-31 at NASA Ames Research Center.National Institute of Aerospace The California State Polytechnic University, Pomona, team, with their project titled “Aero-Quake Emergency Response Network,” took first place at the third annual Gateways to Blue Skies Competition. Competing among eight finalist teams that presented their ideas for aviation-related systems for natural disasters, the California State Polytechnic University, Pomona team earned the top award at the 2024 Blue Skies Forum, hosted at NASA’s Ames Research Center May 30-31. The Forum was judged by subject matter experts from NASA and industry. In addition to the first-place recognition, team members were awarded an opportunity to intern at any of the four NASA Aeronautics Centers — Langley Research Center (Hampton, VA), Glenn Research Center (Cleveland, OH), Ames Research Center (Mountain View, CA), and Armstrong Flight Research Center (Edwards, CA) —across the country during the 2024-25 Academic Year. “We truly enjoyed the NASA Blue Skies competition,” said team lead Krishi Gajjar. “We are honored that our efforts have been awarded by the experienced and diverse judging panel. This would not have been possible without the guidance from our advisor, professor Mark Gonda, and our rigorous engineering program at Cal Poly Pomona. We are proud to have grown together as a team and are excited to continue advancing aviation in our future careers as aerospace engineers!” Second place went to Columbia University with their project, “AVATARS: Aerial Vehicles for Avalanche Terrain Assessment and Reporting Systems.” Other awards included: Future Game-Changer Award: Cerritos College | F.I.R.E (Fire Intervention Retardant Expeller) Most Innovative Award: North Carolina State University | Reconnaissance and Emergency Aircraft for Critical Hurricane Relief (REACHR) Sponsored by NASA’s Aeronautics Research Mission Directorate’s University Innovation Project, the Gateways to Blue Skies Competition is an initiative to engage college students in researching climate-friendly technologies and applications related to the future of aviation. Because of the increase in natural disasters compounded by climate change, the 2024 theme, “Advancing Aviation for Natural Disaster,” asked students to investigate and conceptualize, in terms of feasibility and viability, aviation-related systems that can be applied by 2035 to one phase of management of a chosen type of natural disaster to improve capabilities. Because many emergency response professionals believe there is no one proposed concept that will be applicable for all different natural disasters or can be applied to all phases of management, this competition welcomed a wide range of potential solutions. New technologies and applications gained from this crowdsourced competition may be developed further by NASA for use in coordinating and facilitating disaster management. At the Forum, finalist teams presented concepts of systems that addressed responses to natural disasters such as earthquakes, avalanches, volcanic eruptions, hurricanes, floods, and wildfires. “Whenever NASA engages with students, it’s such a rewarding experience,” said Steven Holz, NASA Aeronautics University Innovation Assistant Project Manager and Blue Skies judge and co-chair. “This competition encourages students to imagine, expand, and tackle the challenges and opportunities that await in the future of aeronautics. The students bring unique concepts and ideas to the table along with a wealth of knowledge and professionalism. It’s always exciting to have the chance to see firsthand what they come up with next.” Students also had the opportunity to network with NASA and industry experts, tour NASA’s Ames Research Center, and gain insight into potential careers and applications that will further the Agency’s mission toward a climate-friendly aviation future. “Because natural disasters are so far-reaching and impactful to so many, we had a lot of interest in this year’s competition,” added Marcus Johnson, project manager in the Aeronautics Directorate at NASA Ames Research Center and 2024 Blue Skies co-chair. “Each of the eight finalist teams that presented at this year’s Forum were passionate about their concepts and each offered compelling ideas. This competition is about so much more than just “awards,” it’s about connecting, networking and identifying the future leaders in aeronautics.” The 2024 Gateways to Blue Skies Competition is sponsored by NASA’s Aeronautics Research Mission Directorate and administered by the National Institute of Aerospace. **** View the livestream of the competition presentations: https://vimeo.com/showcase/blueskies View the competition finalists: https://blueskies.nianet.org/finalists/ To learn more about the 2024 Gateways to Blue Skies: Advancing Aviation for Natural Disasters Competition, visit: https://blueskies.nianet.org/competition/ For more information about NASA Aeronautics, visit: https://www.nasa.gov/topics/aeronautics/index.html Share Details Last Updated Jun 03, 2024 Related TermsAeronauticsLangley Research Center Explore More 4 min read NASA Mission Flies Over Arctic to Study Sea Ice Melt Causes Article 3 days ago 4 min read NASA Releases New High-Quality, Near Real-Time Air Quality Data Article 4 days ago 2 min read Tech Today: Measuring the Buzz, Hum, and Rattle NASA-supported wireless microphone array quickly, cheaply, and accurately maps noise from aircraft, animals, and more. Article 5 days ago View the full article
-
Comicpalooza, the largest annual pop culture festival in the southern United States, is home to thousands of comic book, science, anime, and gaming fanatics in Houston. Guests have the opportunity to celebrate their passions through a variety of entertainment, panels, and meet and greets. NASA’s Johnson Space Center has participated in Comicpalooza’s festivities for the last decade, giving attendees the chance to interact with NASA experts and learn more about human space exploration and the agency’s mission. Comicpalooza guests listen to a presentation by NASA astronaut Marcos Berríos at the agency’s exclusive booth and stage area.NASA/Robert Markowitz Over 52,000 fans attended this year’s Comicpalooza, held May 24-26 at Houston’s George R. Brown Convention Center. NASA shared with them the exhilarating future of the Artemis campaign that will take humans further in space exploration than ever before, plans for human exploration of the Moon and Mars, and showcased innovative spacesuits, lunar terrain vehicles, and spacewalk tools. Fans also had an opportunity to meet and take photos with NASA astronaut Marcos Berríos. NASA astronaut Marcos Berríos talks about his journey to becoming an astronaut and experiences to date during a presentation at 2024 Comicpalooza. NASA/Robert Markowitz The NASA exhibit featured immersive experiences with the Extravehicular Activity and Human Surface Mobility Program; Exploration Architecture, Integration, and Science Directorate; Human Health and Performance Directorate; and STEM engagement programs. These unique exhibits provided guests with insight into the exciting opportunities and discoveries ahead for human spaceflight. NASA’s presence at Comicpalooza also caught the attention of legendary Hollywood actor Christopher Lloyd, who met NASA officials and participated in a tour of Johnson Space Center after the event concluded. Johnson Space Center volunteers and NASA experts who led interactive exhibits and panel discussions as part of the agency’s presence at 2024 Comicpalooza.NASA/Robert Markowitz NASA’s exclusive Comicpalooza stage featured 13 unique panels and discussions from agency experts, programs, and Berríos. These panels included: The Development of Lunar Base Camp: NASA scientists discussed how future robotic and human explorers will put in place infrastructure for a long-term sustainable presence on the Moon. Driving on the Moon One Day: A discussion about the latest technology and partnerships that will develop the next mobility systems on the Moon. Another One Bites the Dust: Lunar Dust, Hardware Damage, and Why It Matters on the Moon: Lunar dust mitigation engineers and scientists talked about some of the risks of working on the Moon, what happened during Apollo, and what they plan to do about hardware damage, which threatens their efforts to keep astronauts safe and ensure mission success. Meet an Astronaut: NASA astronaut Marcos Berríos hosted a panel about his journey to becoming an astronaut, what he is doing at NASA during his training period, and what is next for him in the future. A Q&A session followed the presentation and guests had the opportunity to learn more about Marcos. Why It’s Hard to get to Mars: A discussion on why it is so difficult to get to the “Red Planet” and what technologies and strategies NASA is developing to accomplish this goal. Landing on the Moon: A panel onwhy landing on the Moon remains a challenge and what the future looks like for additional lunar landings and activities. International Space Station Mimic: Engineers and educators talked about a 3D printed, robotic model that syncs to live telemetry streaming from the real International Space Station in real-time. My NASA Story: An early career perspective on launching a career at Johnson Space Center. Panelists discussed how they got to where they are, and what their jobs look like on a daily basis. Artemis Overview: An overview on the Artemis campaign and its future, which includes landing the first woman and first person of color on the Moon. Through the Artemis missions, NASA will use new technology to study the Moon in new and better ways and prepare for human missions to Mars. Draw Artemis: A panel of experts hosted a “draw along” as they discussed humanity’s voyage back to the Moon, the key role art plays in exploration, and the otherworldly environment of the Moon’s South Pole. NASA’s participation in Comicpalooza educates and excites the public about the agency’s mission and inspires people who want to be a part of space exploration in their own unique ways. Enjoy more images of the NASA exhibit booth at Comicpalooza below. Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Actor Christopher Lloyd visited the Mission Control Center at NASA’s Johnson Space Center following Comicpalooza.NASA Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage.NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage.NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz Comicpalooza guests enjoyed interactive exhibits, photo ops, and compelling panel discussions at NASA’s booth and exclusive event stage. NASA/Robert Markowitz View the full article
-
A team from Iowa accepts the Artemis grand prize award during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida. Photo credit: NASA/Derrol NailPhoto credit: NASA/Derrol Nail Members of the Artemis Generation kicked up some simulated lunar dust as part of NASA’s 2024 Lunabotics Challenge, held at The Astronauts Memorial Foundation’s Center for Space Education at the agency’s Kennedy Space Center Visitor Complex in Florida. When the dust settled, two teams emerged from Artemis Arena as the grand prize winners of this year’s competition. Teams from Iowa State University and the University of Alabama shared the Artemis grand prize award for scoring the most cumulative points during the annual competition. Judges scored competing teams on project management plans, presentations and demonstrations, systems engineering papers, robotic berm building, and science, technology, engineering, and math (STEM) engagement. This is the first time in Lunabotics’ 15-year history that the competition ended in a tie for the top prize, and most likely the last time. “Both teams earned their win, but a tie was never on the table,” said Rich Johanboeke, project manager at NASA’s Kennedy Space Center in Florida. “These students work hard and sacrifice much throughout the year to be a part of this challenge and to come to Kennedy, so our team will look into creating a tie-breaking event for future events.” Alabama’s team lead, Ben Gulledge, is pictured with the team’s winning rover during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.Photo credit: NASA/Derrol Nail While previous Lunabotics competitions focused on lunar mining, this year’s competition reflected the current needs of NASA’s Artemis missions. Teams designed, built, and operated autonomous robotic rovers capable of building a berm structure from lunar regolith. Among other uses, berms on the Moon could provide protection against blast and material ejected during lunar landings and launches, shade cryogenic propellant tank farms, or shield a nuclear power plant from space radiation. Of the 58 college teams across the country that applied to the challenge, 42 were invited to demonstrate their robotic rovers during the qualifying round held in the Exolith Lab at the University of Central Florida in Orlando. From there, 10 finalist teams made the short trip to Kennedy for the two-day final round, where their robots attempted to construct berms from simulated lunar regolith inside Artemis Arena. “During the competition we had over 150 berm construction runs in the arena,” said Robert Mueller, senior technologist for Advanced Products Development in NASA’s Exploration Research and Technology Programs Directorate, as well as lead judge and co-founder of the original Lunabotics robotic mining challenge. “So, teams went into the arena 150 times and created berms – that’s pretty impressive. And 28 teams, which is 65% of the teams that attended, achieved berm construction points, which is the highest we have ever had. That speaks to the quality of this competition.” Teams competing in this year’s Lunabotics applied the NASA Systems Engineering Process to create their prototype robots and spent upwards of nine months focused on making their designs realities. “We really put a lot of work in this year,” said Vivian Molina Sunda, team and electrical lead for University of Illinois at Chicago. “Our team of 10 put in about 3,400 hours, so it’s really exciting to get to Kennedy Space Center and know we made the top 10.” The University of Illinois team received two awards for its efforts – the Mission Control “Failure is Not an Option” Award for Team Persistence and the Innovation Technology Award for best design based on creative construction, innovative technology, and overall architecture. Lunabotics teams prepare robots to compete inside the Artemis Arena during NASA’s Lunabotics competition on Friday, May 17, 2024, at the Center for Space Education near the Kennedy Space Center Visitor Complex in Florida.Photo credit: NASA/Derrol Nail For the hundreds of Artemis Generation members who took part in this year’s competition, Lunabotics was an opportunity to connect to NASA’s mission, work, and people, while also using classroom skills and theories in ways that will benefit them in future STEM careers. “We go into engineering because we want to do stuff, we want to make things,” said Ben Gulledge, team and mechanical lead for the University of Alabama’s Artemis grand prize co-winning team. “This competition gives you the opportunity to take all your classroom theory and put it into practice and learn where your gaps in knowledge are. So, you learn to be a better designer and learn where you can improve in the future.” Coordinated by NASA’s Office of STEM Engagement, the Lunabotics competition is one of NASA’s Artemis Student Challenges, designed to engage and retain students in STEM fields. These challenges are designed to provide students with opportunities to research and design in the areas of science, technology, engineering, and math, while fostering innovative ideas and solutions to challenges likely to be faced during the agency’s Artemis missions. To view the complete list of NASA’s 2024 Lunabotics Challenge winners, or for more information visit: https://www.nasa.gov/learning-resources/lunabotics-challenge/ Winners List Artemis Grand Prize Iowa State University, The University of Alabama Robotic Construction Award First Place – Iowa State University Second Place – The University of Alabama Third Place – University of Utah Systems Engineering Paper Award First Place – College of DuPage Second Place – The University of Alabama Third Place – Purdue University-Main Campus Leaps and Bounds Award New York University Nova Award for Stellar Systems Engineering by a First Year Team Ohio State University STEM Engagement Award First Place – University of North Florida Second Place – Auburn University Third Place – Iowa State University Honorable Mention – Harrisburg University of Science and Technology Presentation and Demonstration First Place – University of North Carolina at Charlotte Second Place – Purdue University-Main Campus Third Place – University of Utah First Steps Award – Best Presentation by a First Year Team Harrisburg University of Science and Technology Innovation Technology Award University of Illinois at Chicago The Mission Control “Failure is Not an Option” Award for Team Persistence University of Illinois at Chicago View the full article
-
Earth ObserverEarth and ClimateEarth Observer HomeEditor’s CornerFeature ArticlesNewsIn MemoriamsScience in the NewsMoreMeeting SummariesArchives 26 min read Summary of the 2023 Precipitation Measurement Mission Science Team Meeting Andrea Portier, NASA’s Goddard Space Flight Center/Science Systems and Applications, Inc., andrea.m.portier@nasa.gov Introduction The annual Precipitation Measurement Mission (PMM) Science Team Meeting (STM) took place September 18–22, 2023, in Minneapolis, MN. The PMM program supports scientific research and applications, algorithm development, and ground-based validation activities for the completed Tropical Rainfall Measuring Mission (TRMM) and current Global Precipitation Measurement (GPM) mission, including the GPM Core Observatory. Participants (including 137 in person and 22 virtual attendees) joined the meeting from a variety of affiliations including NASA, the Japan Aerospace Exploration Agency (JAXA), universities, and other partner agencies—see Photo. The meeting included 46 plenary presentations spread across 7 thematically focused sessions and 77 poster presentations split between 2 sessions, with both oral and poster sessions covering mission and program status, partner reports, GPM algorithm development, and scientific results using GPM data. The meeting also included a series of splinter sessions for precipitation working groups. The working groups included NASA–JAXA Joint Precipitation Science Team, the Committee on Earth Observation Satellites–Precipitation Virtual Constellation, GPM Mentorship Program, and topically focused groups on Applications, Hydrology, Land Surface, Latent Heating, Multisatellite, GPM Intersatellite Calibration (XCAL), Ground Validation (GV), Particle Size Distribution (PSD), and Oceanic Areas. These working groups were a combination of invitation-only, in-person, and hybrid meetings. Owing to the distributed nature of these meetings, summaries of their proceedings are not included in this article. This article highlights current updates on the GPM mission and summarizes scientific results conveyed during the 2023 PMM STM. The meeting agenda and full presentations can be accessed through the 2023 PMM Science Team Meeting Files. Note that this is a password protected page; readers interested in accessing these files will need to reach out via the GPM Contact Form on the website to receive the access code. Photo. Attendees of the 2023 PMM STM in front of the McNamara Alumni Center in Minneapolis, MN. Photo credit: Chris Kidd/GSFC and University of Maryland, College Park (UMD) Status Report and Updates on PMM: Perspectives from NASA and JAXA The PMM missions are the fruit of long partnerships between NASA and JAXA. The PMM Science Team (ST) includes more than 20 international partners. The subsections that follow highlight the status of the PMM program and related activities that were conveyed by NASA and JAXA PMM Science Program Management Teams. NASA Will McCarty [NASA Headquarters (HQ)—GPM Program Scientist] presented the NASA HQ perspective regarding PMMs – present and future. He explained that current missions continue to drive the focus for precipitation science, and that future missions will continue to link the thermodynamic and dynamic factors of precipitation science by targeting additional temporal information. McCarty introduced several current and upcoming missions and programs, including satellite launches [e.g., NASA’s Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS), an Earth Venture Instrument (EVI), and the Investigation of Convective Updrafts (INCUS), an Earth Venture Mission], instruments [e.g., NASA’s Polarized Submillimeter Ice-cloud Imager (POLSIR), also an EVI, which will be deployed on two CubeSats], and field campaigns [e.g., NASA’s Investigation of Microphysics and Precipitation for Atlantic Coast-Threatening Snowstorms (IMPACTS) and Convective Processes Experiment Cabo Verde (CPEX-CV) experiments]. He then briefly discussed the second (2017) Earth Science Decadal Survey and provided an overview of the future Earth System Observatory (ESO), which will have interconnected core missions (e.g., the Atmosphere Observing System (AOS)). He also discussed the Planetary Boundary Layer (PBL), which the Decadal Survey classifies incubation targeted observable. McCarty concluded by noting that the future PMM ST call may be integrated by combining mission science from multiple satellites. George Huffman [NASA’s Goddard Space Flight Center (GSFC)—GPM Project Scientist and PMM ST Lead] provided an update on the projected lifetime for GPM. Based on fuel usage alone, GPM should continue to December 2027. However, the amount of solar activity has an impact on that calculation. The Sun is expected to be quite active over the next few years as we approach the Solar Maximum for Solar Cycle 25—which could shorten GPM’s lifetime by as much as four years. He noted that a controlled reentry of the GPM Core spacecraft is planned—and enough fuel has to be kept in reserve to allow this to happen. Huffman discussed a recently developed plan for boosting the orbit of the GPM core satellite—for more details on the plan, see the subsection, “GPM Core Observatory Boost,” later in this article. He added that NASA and JAXA have both approved the plan and deemed its implementation critical for overlap with AOS for instrument intercomparison. The boosting is currently scheduled for November 7–9, 2023.(Update: Since the meeting in September, the GPM orbit boost was executed successfully on the scheduled dates.) The impact of the boosting on radiometer algorithms (e.g., for the GPM Microwave Imager (GMI)) is expected to be less than the impact on the radar algorithms (e.g., for the GPM Dual-Frequency Precipitation Radar, (DPR)). The potential impact on the combined algorithms (i.e., algorithms used to combine data from GMI and DPR) is still being assessed. Huffman also discussed the status of the GPM data products. He reported that all GPM core data products are using Version 7 (V07). He mentioned that V07 of the Integrated Multi-Satellite Retrievals for GPM (IMERG) Final is out, but IMERG Early and Late data products are pending other actions in the NASA Precipitation Processing System (PPS). (IMERG has 3 classifications of data products: Early (latency of 4 hours), late (latency of 12–14 hours), and final (latency of 3 months).) He noted that the GPM orbit boost requires modifications to V07 core algorithms, and this accentuates the importance of a timely release of V08 algorithms (anticipated early 2026). Erich Stocker [GSFC—GPM Deputy Project Scientist for Data and Precipitation Processing System Project Manager] discussed the status of GPM data products. He mentioned that radar/combined/IMERG products have transitioned from V06 to V07—but all radiometer products, Level-1 to Level-3, went from V05 to V07 to ensure the version is consistent on all of the products. Stocker continued that the GPM core satellite boost in November 2023 will lead to an outage of radar products for about five months for research and 2–3 months for near real-time (NRT) data products. NRT radiometer products will continue through the boost with only 2–3 days of outage while the satellite reaches its new altitude. He concluded that the initial NRT V07 IMERG processing and V07 retroprocessing of Early and Late IMERG products will start in January 2024. David Wolff [NASA’s Wallops Flight Facility (WFF)—GPM Deputy Project Scientist for Ground Validation and Ground Validation System Manager] provided an overview of the GPM Ground Validation program and current activities. He stated that the ground validation (GV) program has state-of-the-art ground and remote sensing instruments to acquire precipitation and microphysics data to validate GPM retrievals. He described the ground validation site at NASA’s Wallops Flight Facility (WFF), which includes several radars, disdrometers (an instrument that measures drop-size distribution), and a Precipitation Imaging Processor (PIP) package. Wolff discussed the gauge-only systems, Platforms for In situ Estimation of Rainfall Systems (PIERS), activities for Increasing Participation of Minority Serving Institutions in Earth Science Division Surface-Based Measurement Networks, and pySIMBA – the GPM GV Support Software, an Open-Source Python Package to integrate and Analyze Precipitation Datasets that is available from GitHub. Wolff also provided a brief overview of the successful GPM GV Workshop that was held at Wallops Flight Facility on March 23–25, 2023. He continued by providing GPM Ground Validation Network (VN) updates and discussing VN captures of three-dimensional (3D) polarimetric information within DPR and GMI. Wolff also noted that the GV program includes field campaigns (e.g., IMPACTS and Marquette, a five-year mini campaign conducted in collaboration with the National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service (NWS)). He also discussed the new S-band radar network in Canada that offers access to high-quality radar data at relatively high latitudes over both land and sea. This data will be used as part of the VN for evaluation of GPM products. He concluded by discussing the Global Hydrometeorology Resource Center (GHRC) that archives past and current field campaign data and provides data quality control, metadata, campaign descriptions, and digital object identifier (DOI) assignments for each instrument/sensor. Andrea Portier [GSFC—GPM Mission Applications Lead] and Dorian Janney [GSFC—GPM Outreach Coordinator] reflected on the 2022–2023 applications and outreach efforts and also discussed upcoming activities, including the – at the time of the meeting – upcoming tenth anniversary of the GPM Mission in February 2024. The applications team continues its focus on increasing awareness and use of GPM data and products across communities through user-engagement activities, including workshops (e.g., Applying Earth Observation Data for Research and Applications in Sustainable Development held at the 2022 Fall Meeting of the American Geophysical Union (AGU) in San Francisco, CA), trainings (e.g., 2023 GPM Mentorship Program), GPM application case studies, and GPM visualizations. A continuing and integral part of GPM outreach efforts is the numerous activities that reach hundreds of students and adults in a variety of formal and informal settings. This includes cooperative efforts with NASA’s Global Learning and Observations to Benefit the Environment (GLOBE) and hands-on activities at events (e.g., the Earth Day celebration at the Washington, DC’s Union Station). (To read more about the 2023 Earth Day celebration at Union Station, see A Pale Blue Dot in Washington: NASA’s Earth Day Celebration at Union Station, in the July–August 2023 issue of The Earth Observer [Volume 35, Issue 4, pp. 4–12].) Many of these efforts will be highlighted and amplified during GPM’s tenth anniversary celebration. The GPM Applications and Outreach Team’s planning for the anniversary is underway. The intent is to highlight the vast capabilities of the GPM Mission and how GPM data can be used to address societal applications and improve the understanding of Earth’s water and energy cycles through a series of activities and resources starting in February 2024. These efforts include a reception at GSFC Visitor’s Center, a year-long monthly webinar series, feature articles, applications eBook, and a GPM video, among others. Details of these efforts will be posted through the GPM website. JAXA Takuji Kubota [JAXA—JAXA GPM Program Scientist] provided an update and a review of the PMM program status and mission objectives. He emphasized that this update included the perspectives of the Japanese PMM Science Program Management Team, including their roles in the development of DPR and its algorithms, GV, GPM data processing, and GPM data distribution systems. He also gave an update on current activities related to GPM data utilization and application across Japan and Asia. Kubota continued by describing the potential impacts on the DPR instrument because of the proposed orbit boost, noting that the instrument footprints and swath widths will increase proportionately with altitude change accompanied by a slight reduction in radar sensitivity. JAXA is preparing for these impacts with revised codes for L1 algorithms and planning for external calibrations before and after the orbit boost to examine calibrations of the DPR. Kubota also discussed the reprocessing of JAXA’s Global Satellite Mapping of Precipitation (GSMaP) data product (essentially the JAXA equivalent of IMERG) to enable a longer-term precipitation dataset, highlighting its completion in September 2023. GSMaP data is now available back to January 1998. Kubota discussed the future of Japanese precipitation measurements including: Earth Cloud, Aerosol and Radiation Explorer (EarthCARE), scheduled for launch in 2024; Global Observing SATellite for Greenhouse gases and Water cycle (OSAT-GW), planned for launch NET 2024; Advanced Microwave Scanning Radiometer (AMSR) series, which currently includes AMSR2 on the (GCOM-W) and will include AMSR3 on GOSAT-GW; and the previously discussed ESO AOS mission. He concluded with a discussion of JAXA’s plan for observing and celebrating GPM’s tenth anniversary. Yukari Takayabu [University of Tokyo—JAXA GPM Project Scientist] highlighted results from recent science studies using DPR and GSMaP data products from the JAXA assembled GPM Program Science Team. She noted the use of DPR for extracting high-altitude precipitation information over Africa, capturing low-level precipitation statistics near the center of typhoons, narrowing the blind zone of the DPR to improve shallow precipitation detection in mountainous areas, validation studies of DPR, and retrieving frozen precipitation data using DPR. She concluded her presentation with highlights of GSMaP use for several applications, including the new GSMaP validation work in Japan to observe extreme rainfall, improvements to GSMaP through data-driven approaches, and data assimilation of GSMaP into the JAXA Realtime Weather Watch system. Nobuhiro Takahashi [Nagoya University] presented an overview of significant updates to the DPM algorithm since the last PMM ST meeting, including changes in the latest V07 processing to accommodate the full-swath Ka-band operations – see Figure 1. He emphasized the impacts on the planning and development of V08 DPR algorithm with respect to the GPM orbit boost (described in George Huffman’s presentation). He noted that the major impacts to the performance of DPR include a degradation of measurement sensitivity and the “rain/no rain” classification. Takahashi concluded by saying that the release of V08 is expected in January 2026. Figure 1. Evaluation of DPR product improvements from V06 to V07. Dual frequency product has smaller bias than KuPR product. The correlation coefficient improved from V06 to V07.Figure credit: Nobuhiro Takahashi/Nagoya University Kosuke Yamamoto [Earth Observation Research Center (EORC) and JAXA] summarized application activities initiated by the JAXA GPM Program Science Team. He discussed the use of GSMaP precipitation data to support and enhance several application areas, e.g., the operational use of GSMaP for flood and severe weather forecasting as well as the use of GSMaP in operational systems, including the JAXA Agro-meteorology Information Provision System (JASMIN), ASEAN Food Security Information System (AFSIS), and the Japanese’ Coast Guard’s Maritime Domain Awareness (MDA) initiative. Yamamoto also discussed the 2022 Japan–Australia–India–U.S. (QUAD) Joint Leaders’ Meeting Tackling Extreme Precipitation Events Workshop, an online event that took place March 1–3, 2023, and associated workshop reports focusing on the utilization of satellite observations across Pacific Islands. GPM Algorithm Updates Presenters during this session provided information and updates on various aspects of the five major algorithms of GPM. Full documentation and detailed updates for each algorithm are available at the Precipitation Data Directory. Dual Frequency Radar Algorithm The DPR algorithm team provided updates on DPR-related work, including the further refinement of the path-integrated attenuation (PIA) estimates used in the surface reference technique (SRT). They examined the effects of using the new AutoSnow algorithm – which uses satellite snowfall observations to create snowfall maps – on PIA estimations and changes in the surface type classification. Overall, the changes were small on the estimated precipitation profiles. Other algorithm refinements include the addition of a dry and wet snow category and wind speed. The team is currently examining how to recover Ka-band attenuation from the Ku-band. They stressed that results from this analysis are preliminary, and more work is needed to assess the utility of this technique. Finally, the team is discussing the implications of the GPM orbit boost on the DPR algorithm. GPM Combined Radar–Radiometer Algorithm The GPM Combined Radar–Radiometer Algorithm (CORRA) team discussed the changes and improvements to the CORRA V07 algorithm over the previous version. They highlighted the new AutoSnow algorithm and its impacts within CORRA V07. The team also examined the impact of the precipitation particle size distribution (PSD) initial assumptions on the estimation of snowfall as well as a machine-learning based initialization approach that improves the agreement between CORRA and NOAA’s Multi-Radar/Multi-Sensor System (MRMS) snow estimates. In addition, the team continues to examine a radiometer-only module to estimate light precipitation over oceans. This module will be included in the next version (V08) of CORRA. The team is also looking at the consequences of the GPM orbit boost. Goddard Profiling Algorithm for GMI The Goddard Profiling Algorithm (GPROF) team continues to work on well-known issues. The V07 update includes improvements in the a priori database to help constrain outputs from GPM constellation radiometers as well as inclusion of the radiometers on TROPICS and NASA’s Temporal Experiment for Storms and Tropical Systems–Demonstration (TEMPEST-D). The two new neural network-based implementations of GPROF in V08 are anticipated in roughly a year. The team reported that they have no issues with the GPM orbit boost. Integrated Multi-Satellite Retrievals for GPM Algorithm The IMERG algorithm team reported on V07, which includes a wide range of algorithm changes from V06. V07 includes retrospective reprocessing of the entire TRMM–GPM record and thus supersedes all previous versions. The team also reported that the algorithm changes improve the performance of IMERG estimates both in terms of its precipitation detection and systematic and random bias. The presenters noted improvements over frozen, orographic, and coastal surfaces. The team is now working on priority items that need completing in order to implement V08. Convective–Stratiform Heating Algorithm The GSFC Convective–Stratiform Heating (CSH) algorithm team provided an overview on latent heating (LH) retrievals. The presentation highlighted some of the details in updating to V07, including more accurate cloud-resolving model (CRM) simulations (using 3D domain rather than two-dimensional) and new detailed radiation retrievals. V07 is also “terrain aware,” meaning that the algorithm includes added details of radiative heating profiles and eddy transport terms. For V08, the CSH team plans to have a new 3D CRM database with a grid size of 250 m (820 ft) and look-up tables (LUTs) for non-surface raining columns for the tropical/summertime part of the algorithm as well as LUTs for terrain. These V08 improvements are still in development as of this meeting. Science Results and Data Quality A large component of the meeting was dedicated to presentations by NASA PMM-funded Principal Investigator (PI) teams on the science research and applications being achieved using PMM data. PI oral presentations were divided into four thematically focused topical sessions: Precipitation Microphysics, Snow and Hail, Storm Analysis, and Data Uncertainty. The subsections that follow highlight scientific results from each of these sessions. The reader is referred to the full reports online for more details. Precipitation Microphysics Presenters during this session described various techniques and new methodologies to study microphysical properties of precipitation including shape and size of precipitation particles (e.g., drop size distribution (DSD)), phase identification (e.g., liquid, solid, and mixed phase/melting), scattering properties, and precipitation rate, using both radar and radiometer observations. These property measurements play a pivotal role in improving precipitation retrieval algorithms, allowing scientists and decision makers to better understand and forecast storms. One presenter in this session discussed new methods for classifying different types of precipitation (e.g., rain, graupel, hail, and dry and wet snow) using DPR precipitation retrievals. The new technique will be implemented into the V08 DPR algorithm. The discussion also covered a technique to establish relationships between GMI brightness temperature and hydrometeor type (e.g., rain, snow, graupel, and hail), leveraging the GPM validation network to construct LUTs of hydrometeor type likelihood – see Figure 2. Another presenter introduced a model to understand how DSD changes near the surface can be used to estimate rainfall rate. The last presenter in this session discussed the development of a precipitation scattering property database—which includes scattering characteristics of about 10,000 different types of ice particles. The database includes scattering cross sections calculated in thousands of orientations for each type of particle. This database is accessible to the public, which helps support the development of physically based scattering calculations and improvement of precipitation retrieval algorithms for both radar and radiometers. Figure 2. A technique for retrieving hydrometeor information from GMI brightness temperature. In these RGB plots, snow and rain are combined into one category (green), while the individual probabilities are retained in the lookup tables.Figure credit: Dan Cecil/NASA’s Marshall Space Flight Center (MSFC) Snow and Hail In this session, speakers discussed a broad move toward satellite retrievals for frozen hydrometeors, not just to identify bulk effects (e.g. snow or hail accumulation at the surface), but also to gather information on physical properties of frozen hydrometeors (e.g., where hailstones reside within clouds or what shapes snowflakes take). Understanding frozen hydrometeor properties can significantly improve precipitation and latent heat estimates that are essential for numerical weather forecasting and climate model development. One speaker applied a method that used DPR and GMI observations to estimate frozen precipitation particle properties for an Olympic Mountain Experiment (OLYMPEX) field campaign case. The results he showed indicated a significant difference in the shapes of snowflakes between land and sea. Another speaker detailed the use of a simple machine learning framework trained on measurements of the use of snowfall and cloud type observations from the CloudSat Cloud Profiling Radar (CPR) to infer surface snowfall from GMI microwave measurements. Other presenters conveyed the results of a study examining different potential indicators of hail within the GPM database. These hail indicators were mapped, and the mean vertical profiles of radar reflectivity and storm structure were contrasted. The final pair of presentations focused on detecting hail in South America and Africa. In South America, hail-producing storms were shown to be strongly linked to local topography – in contrast to hotspots of hail in the U.S. Meanwhile, in Africa, new algorithms for identifying hail in GPM data suggest hail should be common – but this outcome is at odds with ground truth observations. This test case is being used to develop new methods for retrieving hail that include analyzing horizontal profile information within the data. Storm Analysis Presenters in this session discussed a variety of applications and assessments of PMM products for analyzing a variety of storms, particularly their cloud, precipitation, and kinematic structures and their structural evolution. The first speaker compared precipitation events simulated in IMERG to the same event with rain gauge observations. They found that while IMERG missed many winter precipitation events in mountainous regions –which rain gauges typically can measure – IMERG also captured summer virga events – which rain gauges typically miss. Another presenter compared IMERG to river catchment and integrated watershed observations and found that IMERG overestimated small precipitation events but underestimated large events. The next presenter showed a comparison IMERG simulations to the multi-instrument MRMS dataset during the lifecycle of precipitation events. The results shown suggest that IMERG errors in precipitation intensity could be improved by inputting other variables (e.g., ice water path or vertical velocity) into the precipitation retrievals. The discussions during this session also covered other plans to use PMM products to study convection in atmospheric river events, in combination with a modeling analysis using different convection schemes. The final pair of presenters spoke about understanding convective-scale drivers of the Inter Tropical Convergence Zone ascent and widening the use of a simple prognostic model that will use PMM data for filling terms in the model. One model weakness is the decay term for the convection cloud shield, which, if determined, could reduce error in climate models, particularly with radiative processes. The final speaker used TRMM Visible and Infrared Scanner (VIRS) data to develop and test a method for identifying and classifying cloud areas (i.e., core, midrange extent, and outer bound split window testing) and determine their relationships to other environmental variables, such as sea surface temperatures and column water vapor. Data Uncertainty Presenters during this session discussed new methodologies to address data uncertainties and bias in precipitation retrievals to improve precipitation estimates for science and applications research. Two of the presenters delved into the details of how the GPROF algorithm has inherent precipitation biases due to different hydrometeor characteristics captured by GMI passive microwave brightness temperature – which may be related to thermodynamic environments. Another PI presented updates for improving uncertainty estimates to enhance hydrological prediction. Specifically, he discussed multiscale precipitation uncertainties in precipitation products, including a new product that combines the Space-Time Rainfall Error and Autocorrelation Model (STREAM) with single-orbit rainfall estimates from the combined GPM data product, called STREAM-Sat. He explained how the uncertainties in these products can influence hydrologic prediction. The session concluded with a discussion of machine learning methods to estimate the probability distribution of uncertainties in passive microwave precipitation retrievals at different temporal and spatial scales. Discussion of Future Missions, Observations, and Activities Relevant to GPM This session featured presentations on several other existing and upcoming missions in various stages of development, as well presentations covering the future of precipitation instruments and observations, each with applications relevant to GPM. Each presentation included information on plans to advance and support precipitation science in the near term and the coming decade, as described below. TROPICS The TROPICS Pathfinder CubeSat mission provides microwave observations of tropical cyclones with less than a 60-minute revisit time to capture better storm dynamics and improve forecasting. The Pathfinder has demonstrated all mission elements and provided new tropical cyclone imagery (12,000+ orbits and counting). The Cal/Val team hopes to release the data to the public in Fall 2023. (UPDATE: Provisional TROPICS data was released in January 2024.) The TROPICS pathfinder satellite showed that the compact TROPICS design performs comparably to the state-of-the-art sounders. Lessons learned will help the TROPICS Team as they work to improve efforts and operate the TROPICS constellation, which now holds a total of five satellites. AOS As discussed in Will McCarty’s remarks, AOS is a key component of the Earth System Observatory that was recommended in the 2017 Decadal Survey. The mission will deliver transformative observations fundamental to understanding coupled aerosol– and cloud–precipitation processes that profoundly impact weather, climate, and air quality. Two AOS projects are in the mission concept and technology development phase (Phase-A): AOS-Storm (to launch late 2020s), with a Ku Doppler radar, microwave radiometers, and backscatter lidar in a 55° inclined orbit; and AOS-Sky (to launch early 2030s) with cloud-profiling Doppler radar, backscatter lidar, microwave radiometer, polarimeter, far infrared (IR) radiometer, and aerosol and moisture limb sounders in polar orbit. (This paragraph reflects what was discussed during the meeting, however, AOS is undergoing changes that will be reflected on the website at a later date.) GPM Microwave Radiometer Constellation in the Next Decade The future passive microwave radiometer constellation looks robust, with multiple sensors to be launched in the next decade. Small/CubeSat constellations are becoming a reality, and a plan to incorporate them quickly into the overall precipitation constellation is needed. A point of emphasis was that a sensor in an inclined orbit is a necessity when it comes to providing a reference measurement to support this effort – see Figure 3. Figure 3. Evaluation of passive microwave (PMW) frequencies and coverage to assess data gaps and needs for the future of precipitation constellation.Figure credit: Rachael Kroodsma/GSFC JAXA Precipitation Measuring Mission (JAXA PMM) Radar Plans call for JAXA’s next generation of precipitation radar to be deployed as part of the agency’s future Precipitating Measuring Mission (PMM – yes, the same acronym as the Precipitation Measurement Mission). Objectives for this next-generation precipitation radar include Doppler observations, higher sensitivity measurements, and scanning capability. JAXA has collaborated with a Japanese science team and user community to explore the feasibility of a next-generation, dual-frequency precipitation radar. The discussion focused on the importance of measuring convection through Doppler velocities from spaceborne radar. The EarthCARE mission will feature the first Cloud Profiling Radar (CPR) with Doppler capability in space. JAXA has participated in NASA’s AOS Pre-Phase A activities. The synergy between the GPM DPR and PMM/KuDPR is expected to contribute to the construction of a longer-term precipitation dataset by providing overlapping observations. Update on Cloud Services at NASA GES DISC NASA’s Goddard Earth Sciences Data and Information Services Center (GES DISC), one of two data archive centers for GPM, is moving its data archive to the cloud – with all GES DISC data and services remaining free to all users. This will offer quick access to and subsetting capability for a large volume of data through multiple data access methods (e.g., Amazon Simple Storage Service) and cloud services. Multidisciplinary NASA data will be in one place – the Earthdata Cloud – and available for online analysis and in the cloud environment. Expanded services (e.g., access to the Common Metadata Repository–SpatioTemporal Asset Catalog (CMR-STAC), Harmony – a collective Earth Observing System Data and Information System (EOSDIS) effort to make data access more consistent and easier across all DAACs and Zarr – a data format designed to store compressed multidimensional arrays and thus well suited to cloud computing) are expected to be implemented in the near future. With the migration of GES DISC data to the cloud, some services may look different with details on the exact changes to services coming soon. GPM Core Observatory Boost As George Huffman discussed in his presentation, based on forecasted solar activity, the GPM Core Observatory could run out of fuel as early as October 2025 if the current orbit altitude is maintained. To prolong its operations, NASA and JAXA have decided to boost the GPM Core Observatory orbit by ~35 km (~22 mi), which places GPM at an altitude of ~435 km (~270 mi)) – placing it above the International Space Station orbital altitude. The post-boost operations of the satellite are expected to continue through the early 2030s. The boost is expected to last only 2–4 days and occur in the time window between November 2023 and March 2024 (likely November 7–9, 2023, as stated above), the boost will permanently change the sensors’ Field of Views (FOVs) and likely cause a gap of several months in DPR product delivery. Precipitation in 2040 Sarah Ringerud [GSFC] and George Huffman led this plenary discussion that explored two questions: What comes next? and What does the cutting edge of precipitation science look like 20 years from now? CubeSats, reduced volume of low-frequency-channel observations, shorter sensor lifetimes, increased sampling, and calibration challenges are recognized as inevitable. Exciting new developments are seen in the opportunity for data fusion and interdisciplinary work. Interagency and private sector collaborations are foreseen as critical points for maintaining optimal monitoring of Earth precipitation. Conclusion The 2023 PMM STM brought together scientists from around the world to engage on a range of topics that advance the understanding of precipitation science, algorithms, and contributions to applications. The STM highlighted updates and activities enabled by the PMM scientific community. The closing session provided an opportunity for quick updates from precipitation working group members, who held splinter sessions. These updates were followed by an open discussion and review of PMM action items led by George Huffman. He reminded PMM STM participants of several important and noteworthy items, including updates on the orbit boost and subsequent algorithm adjustments, which will be available on the GPM website and be at the forefront for the project for the next six months; V08 of GPM data products are anticipated by early 2026; the budget reduction for the project – but not for current ROSES projects – will impact activities, including next year’s PMM STM; and the next NASA ROSES call might have a different package of opportunities, not strictly focused on PMM/GPM. He concluded by encouraging the PMM ST to share highlights and publications with the GPM Science Program Management Team as well as to continue to initiate collaborations with other colleagues to keep pushing the boundaries of science and outreach. The next PMM STM will likely be held in September 2024. Details will be posted on the GPM website once they become available. Acknowledgements The author would like to recognize the following individuals, all of whom made contributions to this article: Ali Behrangi [University of Arizona], Anthony Didlake [Penn State University], Gerry Heymsfield [GSFC], George Huffman [GSFC], Matthew Igel [University of California Davis], Toshio Iguchi [Osaka University], Dorian Janney [GSFC/ADNET Systems], Chuntao Liu [Texas A&M Corpus Christi], Veljko Petkovic [UMD], Courtney Schumacher [Texas A&M Corpus Christi], and Joe Turk [NASA/Jet Propulsion Laboratory]. View the full article
-
9 Min Read Lagniappe for June 2024 Explore the June 2024 issue, featuring an innovative approach to infrastructure upgrades, how NASA Stennis has helped one family build a generational legacy and more! Explore Lagniappe for June 2024 featuring: NASA Employs Innovative Approach for Key Test Infrastructure Upgrade NASA Stennis Helps Family Build a Generational Legacy Employees Receive Awards and Recognitions Gator Speaks Gator SpeaksNASA/Stennis Gator is certain you have heard the saying, “Together, Everyone Achieves More” when referencing a benefit that comes with being part of a team. Whether you are a high school or college student graduating at this time of year, or an employee at NASA’s Stennis Space Center receiving a NASA Honor Award or Space Flight Awareness Honoree Award last month, we all reach a point where we recognize the positive impact others have had on where we are in life. Since NASA’s founding in 1958, the agency has pushed the boundaries of scientific and technical limits to explore the unknown. NASA has accomplished great things benefiting all of humanity because of people from all backgrounds coming together to contribute their skills as one team to further understanding of the universe. This month’s Lagniappe features multiple pieces of evidence where teamwork is the underpinning to success, including the ongoing High Pressure Water Industrial Facility project at NASA Stennis and a story highlighting one family’s role as part of larger team contributing to the successful engine testing that has taken place for decades at the south Mississippi site. If you need one last example of the benefit of coming together to achieve more, look no further than the Artemis Accords. A milestone was reached in May when Lithuania became the 40th nation to join NASA and the international coalition pursuing a safer space exploration by signing the Artemis Accords. Whether graduating high school or college, working at NASA, or joining the Artemis Accords with NASA, there is a good chance we all eventually arrive at a similar conclusion. While we can accomplish great things individually, being part of a team ultimately means that together, everyone achieves more. NASA Stennis Top News NASA Employs Innovative Approach for Key Test Infrastructure Upgrade Crews are using an innovative engineering approach to upgrade an essential test complex water system that will help ensure the future of large propulsion testing at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Read More About the Infrastructure Upgrades Center Activities NASA Stennis Helps Family Build a Generational Legacy For Lee English Jr., the sound of a ringing phone probably sounds a lot like the roar of a rocket engine test at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Read More About the English Family's Multi-Generational Legacy NASA’s Stennis Space Center Employees Receive NASA Honor Awards NASA Stennis Space Center Director John Bailey and NASA Associate Administrator for Space Operations Kenneth Bowersox presented NASA Honor Awards to Stennis employees during an onsite ceremony May 15. Read More About the NASA Stennis Award Recipients NASA Employee Earns Senior Executive Service Status Eli OuderNASA Longtime NASA employee Eli Ouder has achieved federal Senior Executive Service (SES) status and has been chosen director for the Office of Procurement for NASA’s Stennis Space Center and the NASA Shared Services Center, both located near Bay St. Louis, Mississippi. Created in 1979, SES classification is designed for federal employees who use well-developed executive skills to administer programs at the highest levels of government. The leadership program requires candidates to demonstrate skills in five key areas – leading change, leading people, results driven, business acumen, and building coalitions. Ouder has served as procurement officer since 2022 for NASA Stennis and the NASA Shared Services Center. During this time, he has led a combined 177-person procurement office responsible for managing a diverse and complex procurement portfolio valued at over $7 billion. This broad and high-volume portfolio includes the responsibility of overseeing local Center Support Contracts, Grants and Cooperative Agreements, Small Business Innovative Research contracts, Small Business Technology Transfer program support, Enterprise Software Procurements, agencywide Enterprise Contracts, Simplified Acquisition Threshold Purchases, Government Purchase Card Program management, and other activities in support of the NASA enterprise. During more than 18 years with NASA, Ouder has served in numerous roles while managing and leading the NASA Shared Services Center, including as chief of the Simplified Acquisition Threshold Branch. In that role, Ouder led a major transition of approximately 4,000 Simplified Acquisitions annually from 10 NASA centers to the NASA Shared Services Center. He continued to serve in the role until January 2022 when he became procurement officer for the services center. In December 2022, Ouder was assigned as procurement officer at NASA Stennis as well. 2024 Hurricane Guide Explore essential information for employees at NASA’s Stennis Space Center to navigate the 2024 hurricane season. Download the New Hurricane Guide NASA Space Flight Awareness Program Recognizes Stennis Employees NASA astronaut and Artemis II crew member Victor Glover stands with Honoree Award recipients from NASA’s Stennis Space Center following presentation of the awards during NASA’s Space Flight Awareness Program ceremony on May 4 in Orlando, Florida. Recipients (and their companies), along with ceremony presenters were: (left to right) NASA Stennis Associate Director Rodney McKellip, Shelly Lunsford (SaiTech Inc.), Odie Ladner (Aerojet Rocketdyne, an L3 Harris Technologies company), Rachel Deschamp (Alutiiq Essential Services), Peyton Pinson (NASA), Jack Conley (NASA), Ronnie Good (NASA), and Glover. NASA/Kennedy Space Center NASA’s Stennis Space Center employees were recognized with Honoree Awards from NASA’s Space Flight Awareness Program during a May 4 ceremony in Orlando, Florida, for outstanding support of human spaceflight. Jack Conley of Biloxi, Mississippi, is a NASA engineer in the Mechanical Operations Branch of the Engineering and Test Directorate at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. He was honored for his performance in test operations support of NASA’s core spaceflight mission. As backup test conductor, his work was instrumental in the successful Green Run testing of NASA’s SLS (Space Launch System) core stage at NASA Stennis prior to its use on the Artemis I mission. Rachel Deschamp of Pass Christian, Mississippi, is an order clerk for Alutiiq Essential Services at NASA Stennis. She was recognized for attention to detail and commitment to success in enabling Alutiiq’s ability to meet and support NASA Stennis’ requirements. Ronnie Good of Waveland, Mississippi, is a NASA engineer in the Safety, Quality and Management Systems Division of the Safety and Mission Assurance Directorate at NASA Stennis. He was recognized for contributions in leading a year-long systems transition used to record facility safety inspections and manage safety findings for NASA Stennis’ test and institutional facilities. Odie Ladner of Poplarville, Mississippi, is a lead welder and test technician for Aerojet Rocketdyne, an L3 Harris Technologies company, at NASA Stennis. Ladner was recognized for his commitment and support of human spaceflight initiatives and programs and performance of weld repairs to RS-25 nozzle tubes in support of certification testing at NASA Stennis. Shelly Lunsford of Long Beach, Mississippi, is a senior forms designer for SaiTech Inc. at NASA Stennis. She was honored for her professionalism and dedication in consolidating NASA Stennis and NASA Shared Services Center’s forms to enable customers and users to increase efficiency and create valid data and reports. Peyton Pinson of Madison, Mississippi, is a NASA engineer in the Mechanical Operations Branch of the Engineering and Test Directorate at NASA Stennis. He was honored for his performance in test operations support to NASA’s core mission of spaceflight. As a mechanical test operations engineer, Pinson supports propulsion activities across the NASA Stennis test complexes. NASA astronaut Victor Glover, Space Operations Mission Directorate Associate Administrator Kenneth Bowersox, Exploration Systems Development Mission Directorate Associate Administrator Catherine Koerner, and NASA Stennis Associate Director Rodney McKellip presented the Honoree Awards. Glover was selected as a NASA astronaut in 2013 and is currently assigned as the pilot of NASA’s Artemis II mission to the Moon. He previously served as the pilot of NASA’s SpaceX Crew-1 mission to the International Space Station as part of Expedition 64. In recognition of flight program contributions, the Stennis employees toured NASA’s Kennedy Space Center in Florida and participated in activities in conjunction with the first launch attempt of NASA’s Boeing Crew Flight Test of the Starliner spacecraft. The Crew Flight Test will launch Starliner and NASA astronauts Butch Wilmore and Suni Williams on a United Launch Atlas V rocket to the International Space Station as part of the agency’s Commercial Crew Program. NASA’s Space Flight Awareness Program recognizes outstanding job performances and contributions by civil service and contract employees throughout the year and focuses on excellence in quality and safety in support of human spaceflight. The Honoree Award is one of the highest honors presented to employees for their dedication to quality work and flight safety. Recipients must have contributed beyond their normal work requirements toward achieving a particular human spaceflight program goal; contributed to a major cost savings; been instrumental in developing material that increases reliability, efficiency or performance; assisted in operational improvements; or been a key player in developing a beneficial process improvement. For information about Space Flight Awareness awards, visit: Spaceflight Awareness Awards and Criteria – NASA For information about NASA’s Stennis Space Center, visit: Stennis Space Center – NASA NASA Stennis Leaders Attend Aerospace and Defense Symposium NASA Stennis Center Director John Bailey, right, is shown at the Mississippi Enterprise for Technology’s Mississippi Aerospace and Defense Symposium in Oxford, Mississippi. Bailey and Strategic Business Development Office Manager Duane Armstrong joined fellow aerospace and defense industry leaders and experts to explore opportunities and challenges facing the sector in the state during the event April 29 through May 2. Ole Miss Digital Imaging Services/Thomas Graning NASA Stennis Leaders Recognize Employees for Working Safely Rodney McKellip, associate director of NASA’s Stennis Space Center, and Gary Benton, director of the NASA Stennis Safety and Mission Assurance Directorate, are shown, from right to left, with employees working on the High Pressure Industrial Water Facility project near the Fred Haise Test Stand. The NASA Stennis leaders visited work sites on May 8 to recognize employees with NASA SHAKERS (Smart Human Actions Keep Everyone Really Safe) Awards for conducting work in a safe manner. NASA’s constant attention to safety, one of the agency’s five core values, is the cornerstone for mission success. Gary Parker, an employee with Healtheon, Inc., is presented a NASA SHAKERS (Smart Human Actions Keep Everyone Really Safe) Award from NASA Stennis Associate Director Rodney McKellip on May 8. Parker, left, received the award for leadership and dedication to safety of the crew working to upgrade an essential test complex water system at NASA Stennis. As one of the crew leaders, Parker ensured all took the safest approach for each task, even as the scale of the project increased. NASA’s constant attention to safety, one of the agency’s five core values, is the cornerstone for mission success. Matt Roberts, an employee with Healtheon, Inc., is presented a NASA SHAKERS (Smart Human Actions Keep Everyone Really Safe) Award from NASA Stennis Associate Director Rodney McKellip on May 8. Roberts, left, received the award for leadership and dedication to safety of the crew working to upgrade an essential test complex water system at NASA Stennis. As one of the crew leaders, Roberts ensured all took the safest approach for each task, even as the scale of the project increased. NASA’s constant attention to safety, one of the agency’s five core values, is the cornerstone for mission success. Joshua Laurent, an employee with Civil Works Contracting, is presented a NASA SHAKERS (Smart Human Actions Keep Everyone Really Safe) Award from NASA Stennis Associate Director Rodney McKellip on May 8. Laurent, left, received the award for continuously demonstrating safe work habits, utilizing the proper personal protective equipment for each task, and always considering environmental factors and hazards within the work area while working on the NASA Stennis potable water system. NASA’s constant attention to safety, one of the agency’s five core values, is the cornerstone for mission success. NASA in the News NASA Earns Best Place to Work in Government for 12 Straight Years – NASA X-59 Passes Milestone (nasa.gov) Artemis Accords Reach 40 Signatories as NASA Welcomes Lithuania – NASA NASA Tests Technology, Practices Artemis Moonwalks in Arizona Desert – NASA Employee Profile Cassi Meyer, attorney-adviser for the NASA Office of the General Counsel, is pictured at her home office in Cleveland, where she supports NASA’s efforts to collaborate with commercial industry at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. NASA/Cassi Meyer Cassi Meyer can certainly testify that the nontraditional path taken from law school to NASA has landed her in the right place to work with the diverse workforce at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. Read More About Cassi Meyer Looking Back: Seeing the Engine Up Close NASA Administrator Robert Frosch (left), along with astronaut candidates Sally Ride and Terry Hart, get a close look at a space shuttle main engine installed on the B-2 Test Stand at Stennis Space Center, then known as National Space Technology Laboratories, during a visit on June 1, 1979. A space agency filled with trailblazers, the late Sally Ride was a pioneer of a different sort. The soft-spoken California physicist broke the gender barrier on June 18, 1983, when she became the first American woman in space. Meanwhile, Hart flew as a mission specialist on STS-41C (April 6-13, 1984) and logged a total of 168 hours in space.NASA Additional Resources NASA Stennis Overview – Going Further Certifying Artemis Rocket Engines – NASA Subscription Info Lagniappe is published monthly by the Office of Communications at NASA’s Stennis Space Center. The NASA Stennis office may be contacted by at 228-688-3333 (phone); ssc-office-of-communications@mail.nasa.gov (email); or NASA OFFICE OF COMMUNICATIONS, Attn: LAGNIAPPE, Mail code IA00, Building 1111 Room 173, Stennis Space Center, MS 39529 (mail). The Lagniappe staff includes: Managing Editor Lacy Thompson, Editor Bo Black, and photographer Danny Nowlin. To subscribe to the monthly publication, please email the following to ssc-office-of-communications@mail.nasa.gov – name, location (city/state), email address. Explore More 6 min read Lagniappe for March 2024 Article 3 months ago 7 min read Lagniappe for April 2024 Article 2 months ago 5 min read Lagniappe for May 2024 Explore the NASA Stennis newsletter, Lagniappe for May 2024. This issue features NASA’s announcement of… Article 1 month ago View the full article