Jump to content

NASA

Publishers
  • Posts

    5,713
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 5 min read Sols 4473-4474: So Many Rocks, So Many Textures! NASA’s Mars rover Curiosity acquired this image using its Chemistry & Camera (ChemCam) of a boulder about 40 meters (about 131 feet) away from the rover at the time. Curiosity acquired the image, showing the variety of structures and textures around the rover, on March 5, 2025 — sol 4471, or Martian day 4,471 of the Mars Science Laboratory mission — at 01:47:03 UTC. NASA/JPL-Caltech/LANL Written by Susanne Schwenzer, Planetary Geologist at The Open University Earth planning date: Wednesday, March 5, 2025 The Martian landscape never ceases to amaze me, there is so much variation in texture and color! As a mineralogist, I marvel at them, but my colleagues trained in sedimentology regularly teach me how to see even more than the beauty of them: they can discern whether the materials that make up a rock were transported and laid down by the action of water or wind. The image above shows a rather unusual texture alongside more normal-looking laminated rocks. Just compare the small, brighter block in the foreground with the darker bigger rock in the center of the image. How should we interpret it? Well, that jury is still out. Are they sedimentary textures formed when the rock first was laid down, or shortly after, or are they textures that formed much later when water entered the rock and formed new minerals in the already existing rock? The latter would be more my area of research, and they are often called concretions. And I vividly remember the first concretions a rover ever found, the “blueberries.” Curiosity, of course, found many concretions, too. There is an interesting comparison between rocks that the Mars Exploration rover Opportunity found, and the one that Curiosity found very early in the mission, back at Yellowknife Bay. We have seen many more since, and the above might be another example. The landscape directly around the rover today also has some interesting textures and, most important, some more regular-looking bedrock targets. Bedrock is what the team perceives to be the rocks that make up the part of the hill we are driving through. The dark blocks, like the one above, that are also strewn occasionally in the path of the rover are called float rocks, and we always look higher up into the hills to find out where they might have come from. As interesting as all those blocks and boulders are, they pose a huge challenge for the rover drivers. Today, they had managed to get us all the way to the intended stopping point, which in itself is a huge achievement. A mixture of large rocks and sand is just not conducive to any form of travel, and I always wonder how tiring it would be to just walk through the area. But we made it to the intended stopping point, driving just under 20 meters (about 65 feet), as intended. Unfortunately though, one of the rover’s wheels was perched on a rock in ways that posed a risk of dropping off that rock during an arm move. So, as is usual in those cases, we accept that contact science is not possible. The risk would just be too great that the rover moves just at the wrong moment and the arm bumps into the rock that an instrument is investigating at that moment. So, safety first, we decided to keep the arm tucked in and focus on remote science. The team quickly pivoted to add some remote science to the already existing observations. As you might imagine in a terrain as interesting as this, Mastcam did get a workout. There are seven different observations in the plan! It looks into the distance to the Texoli Butte we are observing as we drive along it, and at a target, “Brown Mountain.” Looking into the many different features are also imaging activities on the targets “Placerita Canyon,” “Humber Park,” and two others just named “trough,” which is a descriptive term for little trough features the team is tracking for a while with the quest to better understand their formation. ChemCam has a LIBS investigation on target “Inspiration Point,” and two long-distance RMI (Remote Micro Imager) observations. One is truly at a long distance on Gould Mesa, another of the mounts we are observing as we go along. There is another RMI activity closer to the rover, to investigate more of those very interesting structures. We also have environmental observations in the plan, observing the opacity of the atmosphere and of REMS investigations are occurring throughout the plan. REMS is our “weather station” measuring atmospheric pressure, temperature, humidity, winds, and ultraviolet radiation levels. DAN looks at the surface to measure the water and chlorine content in the rocks that the rover traverses over and RAD is looking up to the sky to measure the radiation that reaches the Martian surface. We do not often mention those in our blocks, because we are so used to seeing them there every single sol, doing their job, quietly in the background. With so much to do, the only remaining question was where to drive. That was discussed at length, weighing the different science reasons to go to places along the path, and after much deliberation we decided to go to one of the float rocks, but reserve the option to make a right turn in the next plan, to get to another interesting place. All those discussions are so important to make sure we are making the most of the power we have at this cold time of the year, and getting all the science we can get. I am excited to see the data from today’s plan… and to find out where we end up. Not with a wheel on a rock, please, Mars — that would be a good start. But if we do, I am absolutely confident there will be lots to investigate anyway! Share Details Last Updated Mar 06, 2025 Related Terms Blogs Explore More 2 min read Sols 4471-4472: Marching Through the Canyon Article 1 day ago 2 min read Sols 4468-4470: A Wintry Mix of Mars Science Article 3 days ago 2 min read Smooshing for Science: A Flat-Out Success Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  2. Technicians with ESA (European Space Agency) and Airbus installed the four solar array wings on NASA’s Orion spacecraft for Artemis II on March 3. The solar array wings, attached to the service module, deploy after Orion reaches space to power the spacecraft. Orion’s service module provides propulsion, thermal control, and electrical power, as well as air and water for the crew during their mission around the Moon. Each solar array wing has 15,000 solar cells to convert sunlight to electricity and is nearly 23 feet in length when fully deployed. In space, the arrays can turn on two axes to remain aligned with the Sun. Artemis II is the first crewed mission under NASA’s Artemis campaign. Through Artemis, the agency will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars. Image credit: NASA/Kim Shiflett View the full article
  3. NASA’s SpaceX Crew-9 mission with agency astronauts Nick Hague, Butch Wilmore, and Suni Williams, and Roscosmos cosmonaut Aleksandr Gorbunov is preparing to return to Earth following their science mission aboard the International Space Station. Hague, Williams, and Wilmore completed more than 900 hours of research between over 150 unique scientific experiments and technology demonstrations during their stay aboard the orbiting laboratory. Here’s a look at some scientific milestones accomplished during their journey: Mighty microalgae NASA astronaut Nick Hague processes samples for Arthrospira C, an investigation from ESA (European Space Agency) that transplants and grows Arthrospiramicro-algae eboard the International Space Station. These organisms conduct photosynthesis and could be used to convert carbon dioxide exhaled by crew members into oxygen, helping maintain a safe atmosphere inside spacecraft. Arthrospira also could provide fresh food on long-duration space missions. NASA Improving astronaut exercise Researchers are testing the European Enhanced Exploration Exercise Device (E4D), a modular device that combines cycling, rowing, and resistance exercises to help keep crews healthy on long-duration missions. A single, small device effective at countering bone and muscle loss and improving cardiovascular health is needed for use on future spacecraft such as the Gateway lunar space station. NASA astronaut Butch Wilmore works on installing the device aboard the International Space Station ahead of its evaluation. NASA Watering the garden This red romaine lettuce growing in the International Space Station’s Advanced Plant Habitat is part of Plant Habitat-07, a study of how different moisture levels affect the microbial communities in plants and water. Results could show how less-than-ideal conditions affect plant growth and help scientists design systems to produce safe and nutritious food for crew members on future space journeys. NASA Packing it in Packed bed reactors are systems that “pack” materials such as pellets or beads inside a structure to increase contact between any liquids and gasses flowing through it. NASA astronaut Suni Williams installs hardware for the Packed Bed Reactor Experiment: Water Recovery Series (PBRE-WRS) investigation, which examines how gravity affects these systems aboard the International Space Station. Results could help scientists design better reactors for water recovery, thermal management, fuel cells, and other applications. NASA Fueling the flames During the Residence Time Driven Flame Spread (SOFIE-RTDFS) investigation at the International Space Station, this sheet of clear acrylic plastic burns at higher oxygen levels and half the standard pressure of Earth’s atmosphere. From left to right, the image sequence shows a side and top view of the fuel and the oxygen slowly diffusing into the flame. Studying the spread of flames in microgravity could help improve safety on future missions. NASA Monitoring microbes in space During a recent spacewalk, NASA astronaut Butch Wilmore swabbed the exterior of the International Space Station for ISS External Microorganisms, an investigation exploring whether microorganisms leave the spacecraft through its vents and, if so, which ones survive. Humans carry microorganisms along with them wherever they go, and this investigation could help scientists take steps to limit microbial spread to places like the Moon and Mars. NASA A hearty workout NASA astronaut Nick Hague exercises on the International Space Station’s Advanced Resistive Exercise Device while wearing the Bio-Monitor vest and headband. This set of garments contains sensors that unobtrusively collect data such as heart rate, breathing rate, blood pressure, and temperature. The data supports studies on human health, including Vascular Aging, a CSA (Canadian Space Agency) investigation that monitors cardiovascular function in space. NASA On-demand medical devices NASA astronaut Butch Wilmore works with hardware for InSPA Auxilium Bioprinter, a study that tests 3D printing of an implantable medical device that could facilitate recovery from peripheral nerve damage, a type of injury that can cause sensory and motor issues. In microgravity, this manufacturing technique produces higher-quality devices that may perform better, benefitting crew members on future long-duration missions and patients back home. NASA Could wood be better A deployer attached to the International Space Station’s Kibo laboratory module launches LignoSat into space. JAXA (Japan Aerospace Exploration Agency) developed the satellite to test using wood as a more sustainable alternative to conventional satellite materials. Researchers previously exposed different woods to space and chose magnolia as the best option for the study, including sensors to evaluate the wood’s strain and its response to temperature and radiation. Researchers also are monitoring whether Earth’s geomagnetic field interferes with the satellite’s data transmission. NASA Making microbes in space NASA astronaut Suni Williams poses with bacteria and yeast samples for Rhodium Biomanufacturing 03, part of an ongoing examination of microgravity’s effects on biomanufacturing engineered bacteria and yeast aboard the International Space Station. Microgravity causes changes in microbial cell growth, cell structure, and metabolic activity that can affect biomanufacturing processes. This investigation could clarify the extent of these effects and advance the use of microbes to make food, pharmaceuticals, and other products in space, reducing the cost of launching equipment and consumables from Earth. NASA A NICER spacewalk The International Space Station’s Neutron star Interior Composition Explorer, or NICER, studies neutron stars, the glowing cinders left behind when massive stars explode as supernovas. NASA astronaut Nick Hague installs patches during a spacewalk to repair damage to thermal shields that block out sunlight while allowing X-rays to pass through the instrument. NICER continues to generate trailblazing astrophysics discoveries reported in hundreds of scientific papers. NASA Earth from every angle From inside the International Space Station’s cupola, NASA astronaut Butch Wilmore photographs landmarks on Earth approximately 260 miles (418 kilometers) below. Crew members have taken millions of images of Earth from the space station for Crew Earth Observations, creating one of the longest-running records of how our planet changes over time. These images support a variety of research, including studies of phenomena such as flooding and fires, atmospheric processes affected by volcanic eruptions, urban growth, and land use. NASA An out-of-this-world sunrise This photograph captures an orbital sunrise above the lights of Rio de Janeiro and Sao Paulo as the International Space Station orbits above Brazil. This image is one of the millions of photographs taken by crew members for Crew Earth Observations. These images teach us more about our home planet, and studies show that taking them improves the mental well-being of crew members. Many spend much of their free time pursuing shots that, like this one, are only possible from space. NASA Vital vitamins The BioNutrients investigation demonstrates technology to produce nutrients during long-duration space missions using engineered microbes like yeast. Food stored for long periods can lose vitamins and other nutrients, and this technology could provide a way to make supplements on demand. NASA astronaut Suni Williams prepares specially designed growth packets for the investigation aboard the International Space Station. NASA Blowing in the solar wind The International Space Station’s robotic hand, Dextre, attached to the Canadarm2 robotic arm, moves hardware into position for the COronal Diagnostic EXperiment, or CODEX. This investigation examines solar wind and how it forms using a solar coronagraph, which blocks out bright light from the Sun to reveal details in its outer atmosphere or corona. Results could help scientists understand the heating and acceleration of the solar wind and provide insight into the source of the energy that generates it. NASA Can you hear me now? Roscosmos cosmonaut Aleksandr Gorbunov conducts a hearing test in the relative quiet of the International Space Station’s Quest airlock. Crew members often serve as test subjects for research on how spaceflight affects hearing and vision, the immune and cardiovascular systems, and other bodily functions. This research supports the development of ways to prevent or mitigate these effects. NASA Exposing materials to space Euro Material Ageing, an ESA (European Space Agency) investigation, studies how certain materials age when exposed to the harsh space environment. Findings could advance design for spacecraft and satellites, including improved thermal control, as well as the development of sensors for research and industrial applications. NASA astronaut Suni Williams installs the experiment into the Nanoracks Bishop airlock for transport to the outside of the International Space Station. NASA Sending satellites into space NASA astronauts Don Pettit and Butch Wilmore remove a small satellite deployer from an airlock on the International Space Station. The deployer had released several CubeSats into Earth orbit including CySat-1, a remote sensor that measures soil moisture, and DORA, a receiver that could provide affordable and accurate communications among small spacecraft. NASA Robotic relocation The Responsive Engaging Arms for Captive Care and Handling demonstration (Astrobee REACCH) uses the International Space Station’s Astrobee robots to test technology for capturing objects of any geometry or material orbiting in space. This ability could enable satellite servicing and movement to maximize the lifespan of these tools and removal of space debris that could damage satellites providing services to the people of Earth. NASA astronaut Suni Williams checks out an Astrobee fitted with tentacle-like arms and adhesive pads for the investigation. NASA Arms to hold As part of a program called High school students United with NASA to Create Hardware, or HUNCH, NASA astronaut Nick Hague demonstrates the HUNCH Utility Bracket, a student-designed tool to hold and position cameras, tablets, and other equipment that astronauts use daily. Currently, crew members on the International Space Station use devices called Bogen Arms, which have experienced wear and tear and need to be replaced. NASA A Dragon in flight The SpaceX Dragon spacecraft fires its thrusters after undocking from the International Space Station as it flies 260 miles (418 kilometers) above the Pacific Ocean west of Hawaii. NASA’s commercial resupply services deliver critical scientific studies, hardware, and supplies to the station. NASA Keep Exploring Discover More Topics From NASA Space Station Research and Technology Humans In Space Station Benefits for Humanity International Space Station News View the full article
  4. NASA/Michala Garrison, USGS The OLI (Operational Land Imager) on Landsat 8 captured an image of Kachemak Bay’s turbid, cloudy waters on September 20, 2024. This cloudiness comes from glacial flour: bits of pulverized rock ground down by glaciers that has the consistency of flour. Several meltwater streams rich with the particles, sometimes called suspended sediment, absorb and scatter sunlight in ways that turn water a milky blue-green hue. The water that flows into the bay from the Grewingk-Yalik Glacier Complex to the east carries sediment-infused waters that transform the appearance of the bay during the summer, raising questions about how much the influx of sediment affects the bay’s marine life. Learn more about efforts to study Kachemak Bay’s sediment plumes. Text credit: Adam Voiland Image credit: NASA/Michala Garrison, USGS View the full article
  5. A SpaceX Falcon 9 rocket carrying the company’s Dragon spacecraft is launched on NASA’s SpaceX Crew-9 mission to the International Space Station with NASA astronaut Nick Hague and Roscosmos cosmonaut Aleksandr Gorbunov onboard, Saturday, Sept. 28, 2024, from Cape Canaveral Space Force Station in Florida. NASA/Keegan Barber NASA invites the public to take part in virtual activities for the launch of the agency’s SpaceX Crew-10 mission to the International Space Station. NASA astronauts Anne McClain, commander, and Nichole Ayers, pilot, along with mission specialists JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi and Roscosmos cosmonaut Kirill Peskov, will embark on a flight aboard a SpaceX Dragon spacecraft to the orbiting laboratory. The launch, aboard a SpaceX Falcon 9 rocket, is targeted for 7:48 p.m. EDT Wednesday, March 12, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The public can register to be a virtual launch guest and receive curated resources, interactive opportunities, timely launch updates, and a mission-specific collectible stamp for their virtual guest passport after liftoff – all sent straight to their inbox. A new way to collect and share stamps has arrived. Print one for your virtual guest passport and receive another, made special for sharing on social media. Don’t have a passport yet? Print one here and be ready to add a stamp! Want to learn more about the mission and NASA’s Commercial Crew Program? Follow along with the Crew-10 mission blog, Commercial Crew blog, @commercial_crew on X, or check out Commercial Crew on Facebook. View the full article
  6. The official portrait of NASA’s SpaceX Crew-10 members with (from left) Mission Specialist Kirill Peskov of Roscosmos; Pilot Nicole Ayers and Commander Anne McClain, both NASA astronauts; and Mission Specialist Takuya Onishi from JAXA (Japan Aerospace Exploration Agency).NASA/Bill Stafford/Helen Arase Vargas Four crew members are preparing to launch to the International Space Station as part of NASA’s SpaceX Crew-10 mission to perform research, technology demonstrations, and maintenance activities aboard the microgravity laboratory. NASA astronauts Anne McClain, Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The flight is the 10th crew rotation mission with SpaceX to the space station, and the 11th human spaceflight as part of NASA’s Commercial Crew Program. As teams progress through Dragon spacecraft milestones for Crew-10, they also are preparing a second-flight Falcon 9 booster for the mission. Once all rocket and spacecraft system checkouts are complete and all components are certified for flight, teams will mate Dragon to the Falcon 9 rocket in SpaceX’s hangar at the launch site. The integrated spacecraft and rocket will then be rolled to the pad and raised to vertical for a dry dress rehearsal with the crew and an integrated static fire test prior to launch. Crew The four members of NASA’s SpaceX Crew-10 mission (from left) Mission Specialist Kirill Peskov of Roscosmos, NASA Astronauts Nichole Ayers, pilot, and Anne McClain, commander, along with Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency) are pictured training inside a Dragon training spacecraft at SpaceX in Hawthorne, California.SpaceX Selected by NASA as an astronaut in 2013, this will be McClain’s second spaceflight. A colonel in the U.S. Army, she earned her bachelor’s degree in Mechanical Engineering from the U.S. Military Academy at West Point, New York, and holds master’s degrees in Aerospace Engineering, International Security, and Strategic Studies. The Spokane, Washington, native was an instructor pilot in the OH-58D Kiowa Warrior helicopter and is a graduate of the U.S. Naval Test Pilot School in Patuxent River, Maryland. McClain has more than 2,300 flight hours in 24 rotary and fixed-wing aircraft, including more than 800 in combat, and was a member of the U.S. Women’s National Rugby Team. On her first spaceflight, McClain spent 204 days as a flight engineer during Expeditions 58 and 59 and completed two spacewalks, totaling 13 hours and 8 minutes. Since then, she has served in various roles, including branch chief and space station assistant to the chief of NASA’s Astronaut Office. Follow @astroannimal on X and @astro_annimal on Instagram. This mission will be the first spaceflight for Ayers, who was selected as a NASA astronaut in 2021. Ayers is a major in the U.S. Air Force and the first member of NASA’s 2021 astronaut class named to a crew. The Colorado native graduated from the Air Force Academy in Colorado Springs with a bachelor’s degree in Mathematics and a minor in Russian, and was a member of the academy’s varsity volleyball team. She later earned a master’s in Computational and Applied Mathematics from Rice University in Houston. Ayers served as an instructor pilot and mission commander in the T-38 ADAIR and F-22 Raptor, leading multinational and multiservice missions worldwide. She has more than 1,400 total flight hours, including more than 200 in combat. Follow @astro_ayers on X and @astro_ayers on Instagram. With 113 days in space, Crew-10 will mark Onishi’s second trip to the space station. After being selected as an astronaut by JAXA in 2009, he flew as a flight engineer for Expeditions 48 and 49, becoming the first Japanese astronaut to robotically capture the Cygnus spacecraft. He also constructed a new experimental environment aboard Kibo, the station’s Japanese experiment module. After his first spaceflight, Onishi became certified as a JAXA flight director, leading the team responsible for operating Kibo from JAXA Mission Control in Tsukuba, Japan. He holds a bachelor’s degree in Aeronautics and Astronautics from the University of Tokyo, and was a pilot for All Nippon Airways, flying more than 3,700 flight hours in the Boeing 767. Follow astro_onishi on X. The Crew-10 mission also will be Peskov’s first spaceflight. Before his selection as a cosmonaut in 2018, he earned a degree in Engineering from the Ulyanovsk Civil Aviation School and was a co-pilot on the Boeing 757 and 767 aircraft for airlines Nordwind and Ikar. Assigned as a test cosmonaut in 2020, he has additional experience in skydiving, zero-gravity training, scuba diving, and wilderness survival. Mission Overview NASA’s SpaceX Crew-10 members stand between Falcon 9 first-stage boosters at SpaceX’s HangarX facility at NASA’s Kennedy Space Center in Florida. From left are Mission Specialist Kirill Peskov of Roscosmos, Mission Specialist Takuya Onishi of JAXA (Japan Aerospace Exploration Agency), along with NASA Astronauts Commander Anne McClain and Pilot Nichole Ayers.SpaceX Following liftoff, the Falcon 9 rocket will accelerate Dragon to approximately 17,500 mph. Once in orbit, the crew and SpaceX mission control in Hawthorne, California, will monitor a series of maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually, if necessary. After docking, Crew-10 will be welcomed aboard the station by the seven-member crew of Expedition 72 and conduct a short handover period on science and maintenance activities with the departing Crew-9 crew members. Then, NASA astronauts Nick Hague, Suni Williams, Butch Wilmore, and Roscosmos cosmonaut Aleksandr Gorbunov will undock from the space station and return to Earth. Ahead of Crew-9 return, mission teams will review weather conditions at the splashdown sites off the coast of Florida prior to departure from station. Crew-10 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. The crew is scheduled to conduct material flammability tests for future spacecraft designs, engage with students via ham radio and use its existing hardware to test a backup lunar navigation solution, and participate in an integrated study to better understand physiological and psychological changes to the human body to provide valuable insights for future deep space missions. These are just a few of the more than 200 scientific experiments and technology demonstrations taking place during the mission. While aboard the orbiting laboratory, Crew-10 will welcome a Soyuz spacecraft with three new crew members, including NASA astronaut Jonny Kim, and they will bid farewell to the Soyuz carrying NASA astronaut Don Pettit. The crew also is expected to see the arrival of the SpaceX Dragon, Roscosmos Progress, and Northrop Grumman’s Cygnus cargo spacecraft, as well as the short-duration private Axiom Mission 4 crew. The cadre will fly aboard the SpaceX Dragon spacecraft, named Endurance, which previously flew NASA’s SpaceX Crew-3, Crew-5, and Crew-7 missions. Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 24 years, testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station benefits people on Earth and paves the way for future long-duration missions to the Moon and beyond through NASA’s Artemis missions. Learn more about the space station, its research, and crew, at: https://www.nasa.gov/station View the full article
  7. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) As NASA continues to enable a sustainable, cost-effective commercial space economy, the agency is seeking partnership proposals for the operations, sustaining engineering, and utilization of Astrobee, a free-flying robotic system aboard the International Space Station. The Announcement for Partnership Proposal contains instructions and criteria for transferring responsibility of the Astrobee system to a commercial provider. Submissions are due to NASA by Friday, March 21. Astrobee has operated aboard the space station since 2019, working autonomously or managed by flight controllers or researchers on the ground. Technology like the Astrobee system can help astronauts with routine duties, like inventory or documentation, freeing up time for complex work and additional experiments. The Astrobee system includes three cube-shaped robots aboard the space station, software, and a docking station for recharging. On the ground, three robots function as flight spares and are used for software and maintenance testing. The system is an important technology demonstration and science, technology, engineering, and mathematics outreach platform. The robots can fly freely through the station’s microgravity environment, with cameras and sensors to help guide them. Their perching arms can grasp station handrails or grab and hold items. Past experiments involving the Astrobee robots include testing mechanical adhesive technology, mapping the station, and identifying potential life support system issues. “Astrobee has been a beacon for robotic and autonomous research in space for many years, working with academia and industry partners across our country and internationally,” said Eugene Tu, center director at NASA’s Ames Research Center in California’s Silicon Valley, which led the Astrobee project. “We’re excited about the opportunity to continue this mission with a commercial partner.” As part of the agreement, the commercial partner will provide ground-based testing, equipment, and lab space as needed. The partner will be responsible for the Astrobee system through the end of the space station’s operational life. The commercial partner also will provide milestone objectives and ensure the continued development of Astrobee technology to support the future of commercial space. The International Space Station is a convergence of science, technology, and human innovation that enables research not possible on Earth. For more than 24 years, NASA has supported a continuous U.S. human presence aboard the orbiting laboratory, through which astronauts have learned to live and work in space for extended periods of time. The space station is a springboard for developing a low Earth orbit economy and NASA’s next great leaps in exploration, including missions to the Moon under Artemis and, ultimately, human exploration of Mars. Learn more about the International Space Station, its research, and its crew, at: https://www.nasa.gov/station Learn more about NASA Ames’ world-class research and development in aeronautics, science, and exploration technology at: https://www.nasa.gov/ames -end- Tara Friesen Ames Research Center, Silicon Valley 650-604-4789 tara.l.friesen@nasa.gov Request for Proposals https://sam.gov/opp/ad273ca16c3a4068902797f07df543be/view View the full article
  8. At Redshift Wrangler, anyone with a smartphone or laptop can help clock the expansion of the universe using light from distant galaxies. Sadie Coffin A “classification” is when a volunteer or citizen scientist finishes marking up or sorting one image or other piece of data. Each classification done by volunteers for the Redshift Wrangler project tells us something about the distance and age of a far-away galaxy, bringing us one step closer to understanding how galaxies evolve. These volunteers met a major milestone this week: 200,000 classifications completed! That’s not all. The Redshift Wrangler project has received over 3,000 comments on Zooniverse talk boards, and has begun preparing a paper on their first batch of 11,000 galaxies. The paper will incorporate data from the DEep Imaging Multi-Object Spectrograph (DEIMOS) from NASA’s Keck Observatory Archive, as well as data from the Gemini and Subaru telescopes. “NASA’s citizen science is a blessing, as I’ve found the Redshift Wrangler project to be such a rewarding experience,” said project volunteer, Baba Karthik Kalapatapu. “This project holds special meaning for me, as I had the unforgettable experience of visiting the Mauna Kea observatories, where I watched the Gemini North and Keck telescopes power on at sunset. I never could have imagined that I’d one day be working with data from those very telescopes—an incredible full-circle moment in my journey into understanding the cosmos.” Ready to wrassle some distant galaxies yourself? Join the Redshift Wrangler project today! Lasso not required. Explore More 2 min read 2025 Aviation Weather Mission: Civil Air Patrol Cadets Help Scientists Study the Atmosphere with GLOBE Clouds Article 2 days ago 2 min read An Afternoon of Family Science and Rocket Exploration in Alaska Article 3 weeks ago 2 min read Newly Minted Ph.D. Studies Phytoplankton with NASA’s FjordPhyto Project Article 3 weeks ago View the full article
  9. 7 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA / Maria Werries The ARMD 2024 Associate Administrator Awards were presented to NASA employees, contractors, and students or interns who distinguished themselves, either individually or as part of a group, through their overall approach to their work and through results they achieved during the award year. LEGEND: ARMD NASA CENTERS ARC = Ames Research Center AFRC = Armstrong Flight Research Center GRC = Glenn Research Center HQ = Headquarters LaRC = Langley Research Center Technology and Innovation Honoree (Individual) Kenneth R. Lyons, ARC Kenneth R. Lyons made significant contributions this past year that were successfully applied in advancing NASA’s state-of-the-art unsteady Pressure Sensitive Paint (uPSP) experimental measurement in NASA’s wind tunnels. Lyons was key to the development of innovative data processing capabilities such as custom software drivers necessary to transfer the high-speed uPSP data from NASA’s wind tunnels to its High-End Computer facility – as well as other data management and methodologies overall. The uPSP development team’s principal investigator referred to his work on replacing older legacy systems as a “masterpiece.” Honoree (Group) NASA GRX-810 Licensing Team NASA’s GRX-810 Licensing Team demonstrated exemplary performance by developing a technologically significant new material, meeting community demands for rapid evaluation, and enabling broad industry availability through timely commercialization. The team’s efforts led to successful licensing to multiple parties, pioneering a novel approach for NASA by using co-exclusive licenses, and the negotiation of four co-exclusive licenses with commercial partners. This license structure will increase competition within the marketplace and provide incentive for each company to fast-track product development. Team Lead: Dr. Timothy M. Smith, GRC View Group Honorees Honorable Mention Shishir Pandya, ARC Shishir Pandya’s exemplary actions as the formulation and technical lead for the Propulsion/Airframe Integration (PAI) emerging technical challenge were instrumental in creating an actionable project plan that will examine complex aerodynamic interactions between sustainable propulsor technologies – such as open rotor concepts envisioned in programs like General Electric’s Revolutionary Innovation for Sustainable Engines (RISE). Pandya was instrumental in classifying the current PAI analysis capabilities at NASA, and scoping NASA’s, GE’s, and Boeing’s roles and responsibilities for open fan integration studies, both computational and experimental. Honorable Mention (Group) Electric Vertical Takeoff and Landing (eVTOL) Propulsion Team The Revolutionary Vertical Lift and Technology project’s Electric Propulsion Team achieved major accomplishments – successfully completing a technical challenge to improve propulsion system component reliability by demonstrating significant improvements in 100-kilowatt electric motors. Through an integrated interdisciplinary approach including external partner collaborations, the team produced six major technological capabilities towards further development of NASA’s Advanced Air Mobility mission. Team Lead: Mark Valco, GRC View Honorable Mention Group Honorees Honorable Mention (Group) Self-Aligned Focusing Schlieren Team The Self-Aligned Focusing Schlieren Team developed a highly innovative and impactful Schlieren system that revolutionizes high-speed flow visualization in aeronautics research by enabling the use of a highly efficient, non-intrusive optical measurement technique in physically constrained environments. This new approach drastically improves efficiency in accurately capturing and analyzing complex, high-speed airflows around advanced aerospace vehicles in a non-intrusive manner – providing precise visualization without requiring the cumbersome alignment procedures of traditional Schlieren systems. Team Lead: Brett Bathel, LaRC View Honorable Mention Group Honorees Leadership and Management Excellence Honoree Anthony Nerone, GRC Anthony Nerone demonstrated strong leadership in formulating and leading the implementation of the Hybrid Thermally Efficient Core project. He has successfully set up a framework to establish a high-performing project team that has been an example for other Aeronautics projects. Nerone’s strong project management has led industry to accelerate the development of advanced engine technologies which have started to see infusion into products – continuing United States leadership in sustainable aviation. Program and Mission Support Honoree Diana Fitzgerald, LaRC (Booz Allen Hamilton) Diana Fitzgerald has demonstrated innovation, responsiveness, and impact in her contributions to the Transformational Tools and Technologies (TTT) project. Her creative and comprehensive approach to enhancing TTT’s communication processes has significantly improved the efficiency and effectiveness of the project’s operations, enabling ARMD to advance critical strategic capabilities and partnerships. Her dedication has garnered widespread recognition from colleagues and leadership and has had a substantial and measurable impact. Honoree (Group) Airspace Operations Safety Program (AOSP) Resource Analyst Group The AOSP Resource Analyst Group worked tirelessly to skillfully review and analyze the NASA Aeronautics budget – preparing programs and projects for planning, budget, and execution inputs. Their extraordinary performance in numerous AOSP activities building, tracking, and executing milestones resulted in a smooth and transparent execution of the program’s annual budget. The group has gone beyond the call of duty and their hard work and dedication is reflected in their discipline and commitment to NASA through critical, time-sensitive attention to detail and solution-focused problem solving. Team Leads: Michele Dodson, HQ and Jeffrey Farlin, HQ View Group Honorees Honorable Mention (Individual) Shannon Eichorn, GRC Shannon Eichorn developed and authored a compelling, creative vision for the future of aeronautics research and of NASA’s working environment. She envisioned and described a future in which NASA’s aeronautics research goals, future technologies, workforce, and capabilities are in synergy to maximize research quality and impact. Eichorn presented this vision to numerous leaders and groups at NASA, and the excitement in the room at each presentation led to engaging follow-on discussions and several workstream groups requested Eichorn to present to their full group. Her efforts inspire not only ARMD, but the entire agency. High Potentials Honoree Matthew Webster, LaRC Matthew Webster has had significant impact and contributions to meeting goals in the Convergent Aeronautics Solutions and Transformational Tools and Technologies projects. In his short time at NASA, he has rapidly demonstrated exceptional ability to adapt and apply technical expertise across multiple NASA projects to advance towards project technical goals. Webster has shown his leadership ability, providing exceptional skills at creating a healthy team environment enabling the group to successfully meet project goals. Honorable Mention Dahlia Pham, ARC Dhalia Pham’s contributions as a system analyst, researcher, and teammate in support of NASA’s efforts in electrified aircraft propulsion have shown an ability to creatively solve problems, analyze impacts, present results with strong communication skills, and collaborate with and mentor others. Her technical acumen and leadership ability raise the bar, making her an established leader amongst her peers. Strategic Partnerships Honoree Salvatore Buccellato, LaRC Salvatore Buccellato identified collaborative opportunities in hypersonics research that were mutually beneficial to NASA, the Defense Advanced Research Projects Agency (DARPA), and other non-NASA entities through his program management experience and knowledge of NASA people and capabilities. Buccellato was able to leverage NASA and non-NASA expertise and capabilities, along with DARPA funding, to further mature and advance hypersonic technologies via ground and flight tests with the goal of enabling operational flight systems. His exemplary work helped to significantly advanced hypersonic technologies and its workforce, and are expected to lead to further partnered activities for NASA. Pushing the Envelope Honoree (Group) Advanced Power Electronics Team, GRC The Advanced Power Electronics Team of the Advanced Air Transport Technology project completed an ambitious design of a prototype flight-packaged, altitude-capable electric motor drive for aviation. Their work pushed past the state of the art in flight motor drives in several areas including power density, efficiency, and power quality – and is a steppingstone towards megawatt-level, cryogenically cooled motor drives. The electric motor design underwent many successful tests and exercises, and the team’s subsequent publications and expertise help the electrified aircraft industry push past several barriers. Team Leads: Matthew G. Granger, GRC View Group Honorees 2024 AA Award Honorees PDF ARMD Associate Administrator Award Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA Aeronautics Research Mission Directorate Aeronautics Drones & You Green Aviation Tech Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related TermsAssociate Administrator Awards View the full article
  10. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA GRX-810 Licensing Team, GRC * Denotes Team Lead NASA Ames Research Center John Lawson NASA Glenn Research Center Steven M. Arnold Aaron B. Brister Robert W. Carter Robert H. Earp Timothy P. Gabb Christopher J. Giuffre Paul R. Gradl Jason M. Hanna Bryan J. Harder Amy B. Hiltabidel Dale A. Hopkins Christopher A. Kantzos Michael J. Kulis Geoffrey S. Minter Brian T. Newbacher Callista M. Puchmeyer Richard W. Rauser Harvey L. Schabes Timothy M. Smith* Aaron C. Thompson Mary F. Wadel Austin J. Whitt Laura G. Wilson NASA’s Marshall Space Flight Center Paul Gradl HX5, LLC Christopher J. Giuffre Aaron C. Thompson Austin J. Whitt University of Toledo Richard W. Rauser 2024 AA Award Honorees 2024 AA Award Honorees PDF ARMD Associate Administrator Awards Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related TermsAssociate Administrator Awards View the full article
  11. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) eVTOL Propulsion Team, GRC * Denotes Team Lead NASA Glenn Research Center Aaron D. Anderson Devin K. Boyle Jeffryes W. Chapman Peggy A. Cornell Timothy P. Dever Justin P. Elchert Henry B. Fain Xavier Collazo Fernandez Matthew G. Granger Jonathan M. Gutknecht Michael C. Halbig Patrick A. Hanlon Hashmatullah Hasseeb David Hausser Scott A. Hensley Keith R. Hunker Michael J. Hurrell Keith P. Johnson Greg L. Kimnach John M. Koudelka Timothy L. Krantz Brian P. Malone Sandi G. Miller Nuha S. Nawash Paul M. Nowak Joseph J. Pinakidis Meelad Ranaiefar Trey D. Rupp David J. Sadey Jonathan A. Salem Justin J. Scheidler Andrew D. Smith Mark A. Stevens Thomas F. Tallerico Linda M. Taylor Casey J. Theman Mark J. Valco* Joseph S. Wisniewski NASA’s Goddard Space Flight Center Zachary A. Cameron Amentum Francis R. Gaspare David J. Henrickson Ryan M. McManamon Alan J. Revilock Connecticut Reserve Technologies Eric H. Baker HX5 Sierra Nathan A. Baker John W. Gresh George E. Horning Sigurds L. Lauge Brett M. Norris Nicolas Umpierre Bill J. Vaccareillo John Veneziano NASA Financial Support Services Madeline Duncan Ohio Aerospace Institute Mrityunjay Singh Universities Space Research Association Paula J. Heimann 2024 AA Award Honorees 2024 AA Award Honorees PDF ARMD Associate Administrator Awards Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related TermsAssociate Administrator Awards View the full article
  12. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Self-Aligned Focusing Schlieren Team * Denotes Team Lead NASA Langley Research Center Brett F. Bathel* Wayne E. Page Josh M. Weisberger 2024 AA Award Honorees 2024 AA Award Honorees PDF ARMD Associate Administrator Awards Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History View the full article
  13. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Airspace Operations Safety Program (AOSP) Resource Analyst Group * Denotes Team Lead NASA Ames Research Center Warcquel D. Frieson Mary Nguyen Sandra E. Ramirez Tiana (Thuy) D. Vo NASA Glenn Research Center Julie A. Blackett NASA Headquarters Michele D. Dodson* Jeffrey S. Farlin* NASA Langley Research Center Yolanda Keiller 2024 AA Award Honorees 2024 AA Award Honorees PDF ARMD Associate Administrator Awards Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related TermsAssociate Administrator Awards View the full article
  14. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Advanced Power Electronics Team * Denotes Team Lead NASA Glenn Research Center David Avanesian Julie A. Blystone Rebecca A. Buehrle Marc A. Carbone Ariel E. Dimston Matthew G. Granger* Susanah R. Kowalewski Alex M. Leary John M. Maroli Erik J. Stalcup HX5 Gregor Liederbach Scott L. Metzger Wesley A. Miller Peraton Inc. Nicholas C. Purpera 2024 AA Award Honorees 2024 AA Award Honorees PDF ARMD Associate Administrator Awards Facebook logo @NASA@NASAaero@NASAes @NASA@NASAaero@NASAes Instagram logo @NASA@NASAaero@NASAes Linkedin logo @NASA Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Mar 06, 2025 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related TermsAssociate Administrator Awards View the full article
  15. Skywatching Science Skywatching The Next Full Moon is the Worm… Skywatching Home What’s Up What to See Tonight Moon Guide Eclipses Meteor Showers More Tips & Guides Skywatching FAQ 22 Min Read The Next Full Moon is the Worm Moon Cockspur Island Lighthouse in Savannah, Georgia, on a full moon night in March 2019. Credits: NPS/Joel Cadoff The next full moon is called the Worm Moon. Also, there will be a total lunar eclipse this full moon. The Moon will be full early Friday morning, March 14, at 2:55 a.m. EDT, but will appear full for about three days around this time, from Wednesday evening into Saturday morning. The phases of the Moon for March 2025. As the Moon passes opposite the Sun it will move through the shadow of Earth creating a total eclipse of the Moon. The Moon will begin entering the partial shadow Thursday night at 11:57 p.m. EDT, but the gradual dimming of the Moon will not be noticeable until it starts to enter the full shadow Friday morning at 1:09 a.m. The round shadow of Earth will gradually shift across the face of the Moon (from lower left to upper right) until the Moon is fully shaded beginning at 2:26 a.m. The period of full shadow, or total eclipse, will last about 65 minutes, reaching the greatest eclipse at 2:59 a.m. and ending at 3:31 a.m. Even though it will be in full shadow, the Moon will still be visible. The glow of all of the sunrises and sunsets on Earth will give the Moon a reddish-brown hue, sometimes called a “Blood Moon” — although this name is also used for one of the full moons near the start of fall. From 3:31 a.m. until 4:48 a.m., the Moon will exit the full shadow of Earth, with the round shadow again shifting across the face of the Moon (from upper left to lower right). The Moon will leave the last of the partial shadow at 6 a.m. ending this eclipse. The Maine Farmers’ Almanac began publishing Native American names for full moons in the 1930s, and these names are now widely known and used. According to this almanac, the tribes of the northeastern U.S. called the full moon in March the Crow, Crust, Sap, Sugar, or Worm Moon. The more northern tribes of the northeastern United States knew this as the Crow Moon, with the cawing of crows signaling the end of winter. Other northern names were the Crust Moon, because the snow cover became crusted from thawing by day and freezing by night, or the Sap (or Sugar) Moon as this was the time for tapping maple trees. The more southern tribes called this the Worm Moon after the earthworm casts that appeared as the ground thawed. It makes sense that only the southern tribes called this the Worm Moon. When glaciers covered the northern part of North America they wiped out the native earthworms. After these glaciers melted about 12,000 years ago the more northern forests grew back without earthworms. Most of the earthworms in these areas are invasive species introduced from Europe and Asia. Continuing the tradition of naming moons after prominent phenomena tied to the time of year, a few years ago my friend Tom Van Wagner suggested naming this the Pothole Moon. It may be a case of confirmation bias, but whether in my car or on my bicycle I’ve noticed more potholes lately. As usual, the wearing of suitably celebratory celestial attire is encouraged in honor of the full moon. Enjoy the total lunar eclipse (if you are in a part of the world that can see it), anticipate the coming of spring and watch out for potholes! Gordon johnston NASA Program Executive (Retired) Here are the other celestial events between now and the full moon after next with times and angles based on the location of NASA Headquarters in Washington: As winter in the Northern Hemisphere ends and spring begins, the daily periods of sunlight continue to lengthen, changing fastest around the vernal (spring) equinox on March 20. On Friday, March 14 (the day of the full moon), morning twilight will begin at 6:23 a.m. EDT, sunrise will be at 7:20 a.m., solar noon will be at 1:17 p.m. when the Sun will reach its maximum altitude of 48.9 degrees, sunset will be at 7:14 p.m., and evening twilight will end at 8:12 p.m. By Saturday, April 12 — the day of the full moon after next — morning twilight will begin at 5:36 a.m., sunrise will be at 6:36 a.m., solar noon will be at 1:09 p.m. when the Sun will reach its maximum altitude of 60.1 degrees, sunset will be at 7:43 p.m., and evening twilight will end at 8:43 p.m. During this lunar cycle, a backyard telescope should still provide interesting views of Jupiter and Mars high in the evening sky. Venus and Mercury will only be visible near the start at this cycle and will be too low to see easily unless you have access to a location with clear views toward the western horizon. With a telescope, you should be able to see Jupiter’s four bright moons, Ganymede, Callisto, Europa, and Io, noticeably shifting positions in the course of an evening. Jupiter was at its closest and brightest in early December. Mars was at its closest and brightest for the year just a month ago. The planet Uranus will be too dim to see without a telescope when the Moon is in the sky, but later in the lunar cycle, if you are in a very dark area with clear skies and no interference from moonlight, it will still be brighter than the faintest visible stars, making it barely visible. Uranus was at its closest and brightest in mid-November. Comets and Meteor Shower No meteor showers are predicted to peak during this lunar cycle, and no comets are expected to be visible without a telescope. Evening Sky Highlights On the evening of Thursday, March 13 — the night of the full moon — as twilight ends at 8:11 p.m. EDT, the rising Moon will be 14 degrees above the eastern horizon. The brightest planet in the sky will be Venus at 4 degrees above the west-southwestern horizon, appearing as a thin, 4% illuminated crescent through a telescope. Next in brightness will be Jupiter at 62 degrees above the west-southwestern horizon. Third in brightness will be Mars at 72 degrees above the southeastern horizon. Mercury, to the left of Venus, will also be 4 degrees above the western horizon. Uranus, on the edge of what is visible under extremely clear, moonless, and dark skies, will be 45 degrees above the western horizon. The bright star closest to overhead will be Capella at 75 degrees above the northwestern horizon. Capella is the 6th brightest star in our night sky, and the brightest star in the constellation Auriga (shaped like a charioteer). Although we see Capella as a single star it is actually four stars — two pairs of stars orbiting each other. Capella is about 43 light-years from Earth. Also high in the sky will be the constellation Orion, easily identifiable because of the three stars that form Orion’s Belt. This time of year, we see many bright stars at evening twilight, with bright stars scattered from the south-southeast toward the northwest. We see more stars in this direction because we are looking toward the Local Arm of our home galaxy (also called the Orion Arm, Orion-Cygnus Arm, or Orion Bridge). This arm is about 3,500 light years across and 10,000 light years long. Some of the bright stars we see from this arm are the three stars of Orion’s Belt, along with Rigel (860 light-years from Earth), Betelgeuse (548 light-years), Polaris (about 400 light-years), and Deneb (about 2,600 light-years). As this lunar cycle progresses, the background of stars will rotate by about a degree westward each evening around the pole star Polaris. March 16 will be the last evening Venus will be above the horizon, and March 17 will be the last evening Mercury will be above the horizon as twilight ends. On March 30, Mars will pass by the bright star Pollux for the third time in 6 months, having passed by in mid-October 2024, changed direction (called apparent retrograde motion) and passed again in mid-January, then changed directions again for this March 30 pass. The waxing moon will appear near the Pleiades star cluster on April 1, Jupiter on April 2, Mars and Pollux on April 5, and Regulus on April 7 and 8. By the evening of Saturday, April 12 — the evening of the night of the full moon after next — as twilight ends at 8:43 p.m. EDT, the rising Moon will be 10 degrees above the east-southeastern horizon with the bright star Spica about a half degree to the upper left. The brightest planet in the sky will be Jupiter at 38 degrees above the western horizon. Next in brightness will be Mars at 70 degrees above the southwestern horizon. Uranus, on the edge of what is visible under extremely clear, moonless dark skies, will be 18 degrees above the western horizon. The bright star closest to overhead will be Pollux at 71 degrees above the west-southwestern horizon. Pollux is the 17th brightest star in our night sky and the brighter of the twin stars in the constellation Gemini the twins. It is an orange-tinted star about 34 light-years from Earth. Pollux is not quite twice the mass of our Sun, but is about 9 times the diameter and 33 times the brightness. Morning Sky Highlights On the morning of Friday, March 14 — the morning of the full moon — as twilight begins at 6:23 a.m. EDT, the setting full moon will be 12 degrees above the western horizon. No visible planets will appear in the sky. The bright star closest to overhead will be Vega at 68 degrees above the eastern horizon. Vega is the 5th brightest star in our night sky and the brightest star in the constellation Lyra (the lyre). Vega is one of the three bright stars of the “Summer Triangle” along with Deneb and Altair. It is about 25 light-years from Earth, has twice the mass of our Sun, and shines 40 times brighter than our Sun. As this lunar cycle progresses, the background of stars will rotate westward by about a degree each morning around the pole star Polaris. The waning moon will appear near Spica on March 16 and 17, and Antares on March 20. Bright Venus — now the morning star — will begin to emerge from the glow of dawn around March 21 and will be above the horizon as twilight begins after March 29. Mercury and Saturn will begin emerging from the glow of dawn in early April, rising after morning twilight begins. Initially Saturn will appear brighter than Mercury, but Mercury will brighten each morning as it becomes a fuller crescent, showing more illuminated area to Earth. After about April 8, Mercury will appear brighter than Saturn. By the morning of Sunday, April 13 — the morning of the night of the full moon after next — as twilight begins at 5:34 a.m. EDT, the setting full moon will be 10 degrees above the west-southwestern horizon with the bright star Spica 4 degrees to the right. The only planet in the sky as twilight begins will be bright Venus as the morning star at 5 degrees above the eastern horizon. However, both Mercury and the fainter Saturn should be visible below Venus after they rise 4 and 7 minutes later (Saturn at 5:37 a.m. and Mercury at 5:40 a.m.). The bright star closest to overhead still will be Vega at 81 degrees above the eastern horizon. Detailed Daily Guide Here for your reference is a day-by-day listing of celestial events between now and the full moon on April 12, 2025. The times and angles are based on the location of NASA Headquarters in Washington, and some of these details may differ for where you are (I use parentheses to indicate times specific to the D.C. area). If your latitude is significantly different than 39 degrees north (and especially for my Southern Hemisphere readers), I recommend using an astronomy app that is set up for your location or a star-watching guide from a local observatory, news outlet, or astronomy club. March 8 Just after midnight on Saturday morning, March 8, the planet Mercury will reach its greatest angular separation from the Sun as seen from Earth for this apparition (called greatest elongation). Saturday evening, March 8, Mercury will appear at its highest (6 degrees) above the western horizon as evening twilight ends (at 7:06 p.m. EST). Mercury will set 34 minutes later (at 7:40 p.m.). This will also be the evening Mercury will have dimmed to the brightness of Mars, after which Mars will be the third brightest visible planet again. March 8 – 9 On Saturday evening into Sunday morning, March 8 to 9, Mars will appear near the waxing gibbous moon with the bright star Pollux (the brighter of the twin stars in the constellation Gemini) nearby. As evening twilight ends at 7:06 p.m. EST, Mars will be 1.5 degrees to the lower right of the Moon and Pollux will be 6 degrees to the lower left. As the Moon reaches its highest for the night more than an hour later at 8:22 p.m., Mars will be 1.5 degrees to the lower right of the Moon and Pollux will be 5.5 degrees to the upper left. By the time Mars sets on the northwestern horizon (at 4:53 a.m.) it will be 4 degrees to the lower left of the Moon and Pollux will be 3 degrees above the Moon. March 9 Don’t forget to reset your clocks (if they don’t automatically set themselves) as we “spring forward” to Daylight Saving Time! For much of the U.S., 2 to 3 a.m. on March 9, 2025, might be a good hour for magical or fictional events (as it doesn’t actually exist). March 11 – 12 Tuesday evening into Wednesday morning, March 11 to 12, the bright star Regulus will appear near the nearly full moon. As evening twilight ends at 8:09 p.m. EDT, Regulus will be 4 degrees to the lower right of the Moon. When the Moon reaches its highest for the night at 11:52 p.m., Regulus will be 3 degrees to the lower right. By the time morning twilight begins at 6:26 a.m., Regulus will be about one degree below the Moon. Wednesday morning, March 12, Saturn will be passing on the far side of the Sun as seen from Earth, called conjunction. Because Saturn orbits outside of the orbit of Earth it will be shifting from the evening sky to the morning sky. Saturn will begin emerging from the glow of dawn on the eastern horizon in early April (depending upon viewing conditions). Wednesday evening, March 12, will be when Venus and Mercury will appear closest to each other low on the western horizon, 5.5 degrees apart. They will be about 5 degrees above the horizon as evening twilight ends at 8:10 p.m. EDT, and Mercury will set first 27 minutes later at 8:37 p.m. March 14 As mentioned above, the full moon will be early Friday morning, March 14, at 2:55 a.m. EDT. There will be a total eclipse of the Moon. As the Moon passes opposite the Sun it will move through the shadow of Earth. The Moon will begin entering the partial shadow Thursday night at 11:57 p.m., but the gradual dimming of the Moon will not be noticeable until it starts to enter the full shadow Friday morning at 1:09 a.m. The round shadow of Earth will gradually shift across the face of the Moon (from lower left to upper right) until the Moon is fully shaded beginning at 2:26 a.m. The period of full shadow or total eclipse will last about 65 minutes, reaching the greatest eclipse at 2:59 a.m. and ending at 3:31 a.m. Even though it will be in full shadow, the Moon will still be visible. The glow of all of the sunrises and sunsets on Earth will give the Moon a reddish-brown hue, sometimes called a “Blood Moon” — although this name is also used for one of the full moons near the start of fall. From 3:31 a.m. until 4:48 a.m. the Moon will exit the full shadow of Earth, with the round shadow of Earth again shifting across the face of the Moon (from upper left to lower right). The Moon will leave the last of the partial shadow at 6 a.m., ending this eclipse. This full moon will be on Thursday evening from Pacific Daylight Time and Mountain Standard Time westward to the International Date Line in the mid Pacific. The Moon will appear full for about three days around this time, from Wednesday evening into Saturday morning. March 16 Sunday morning, March 16, the bright star Spica will appear near the waning gibbous moon. As the Moon reaches its highest at 2:34 a.m. EDT, Spica will be 6.5 degrees to the lower left. As morning twilight begins at 6:20 a.m. Spica will be 5 degrees to the upper left. During the day on Sunday, March 16, for parts of Eastern Africa, the southern tip of the Arabian Peninsula, the Indian Ocean, and the southern tip of Western Australia, the Moon will pass in front of Spica. Sunday evening, March 16, will be the last evening that Venus will be above the west-northwestern horizon as evening twilight ends at 8:14 p.m. EDT, with Venus setting 1 minute later. March 16 – 17 Sunday night into Monday morning, March 16 to 17, the waning gibbous moon will have shifted to the other side of the bright star Spica. As the Moon rises on the east-southeastern horizon at 9:49 p.m. EDT, Spica will be 4 degrees above the Moon. By the time the Moon reaches its highest at 3:15 a.m., Spica will be 6.5 degrees to the upper right. As morning twilight begins at 6:18 a.m., Spica will be 7.5 degrees to the right of the Moon. Monday midday, March 17, at 12:27 p.m. EDT, the Moon will be at apogee, its farthest from Earth for this orbit. Monday evening, March 17, will be the last evening that Mercury will be above the western horizon as evening twilight ends at 8:15 p.m. EDT, with Mercury setting 3 minutes later. March 19 Wednesday evening, March 19, Neptune will be passing on the far side of the Sun as seen from Earth, called conjunction. Because it orbits outside of the orbit of Earth, Neptune will be shifting from the evening sky to the morning sky. Neptune is faint enough that it is only visible with a telescope. March 20 Thursday morning, March 20, the bright star Antares will appear near the waning gibbous moon. As Antares rises on the southeastern horizon at 1:17 a.m. EDT, it will be 5 degrees to the lower left of the Moon. By the time the Moon reaches its highest for the night at 5:31 a.m., Antares will be 3.5 degrees to the left of the Moon. Morning twilight will begin 42 minutes later at 6:13 a.m. For parts of Australia and New Zealand the Moon will pass in front of Antares. Thursday morning at 5:01 a.m. EDT will be the vernal equinox, the astronomical end of winter and start of spring. March 21 Starting around Friday morning, March 21, Venus as the morning star will begin to emerge from the glow of dawn, rising on the east-northeastern horizon more than 30 minutes before sunrise. Interestingly, this is just before inferior conjunction, when Venus passes “between” Earth and the Sun (passing through the same ecliptic longitude as the Sun as seen from Earth). March 22 Saturday morning, March 22, the waning moon will appear half-full as it reaches its last quarter at 7:29 a.m. EDT. Saturday night, Venus will be passing through the same ecliptic longitude as the Sun as seen from Earth, called inferior conjunction. Planets that orbit inside of the orbit of Earth can have two types of conjunctions with the Sun, inferior (when passing between Earth and Sun) and superior (when passing on the far side of the Sun as seen from Earth). Venus will be shifting from the evening sky to the morning sky but will be passing far enough away from the Sun that it may have already begun to be visible in the glow of dawn on the east-northeastern horizon (depending upon viewing conditions). March 24 Monday afternoon, March 24, Mercury will be passing between Earth and Sun as seen from Earth, called inferior conjunction. It also will be shifting from the evening sky to the morning sky and will begin emerging from the glow of dawn on the eastern horizon in early April (depending upon viewing conditions). March 29 Saturday morning, March 29, will be the first morning that Venus as the morning star will be above the horizon as twilight begins at 5:59 a.m. EDT. Saturday morning, March 29, at 6:58 a.m. EDT, will be the new moon, when the Moon passes between Earth and the Sun and is usually not visible from Earth. However, for parts of northwestern Africa, northwestern Eurasia, and northeastern North America, part of the silhouette of the Moon will be visible as it passes in front of the Sun in a partial solar eclipse. The viewing from the Washington area will not be very good. As the Sun rises on the eastern horizon at 6:57 a.m., the Moon will be blocking a small sliver of the left side of the Sun, with the eclipse ending 5 minutes later at 7:02 a.m. March 30 Early Sunday morning, March 30, at 1:19 a.m. EDT, the Moon will be at perigee, its closest to Earth for this orbit. For the third time since mid-October 2024, Mars will be passing by the bright star Pollux, the brighter of the twin stars in the constellation Gemini (the twins). Planets that orbit farther from the Sun than Earth’s orbit usually appear to shift westward each night, like the stars, but more slowly, so that they shift eastward relative to the stars. This is because the planets all move in the same direction around the Sun. But around the time when an outer planet is closest to Earth it appears to move the other direction, shifting westward relative to the stars, called apparent retrograde motion. This tendency to “wander” relative to the stars is where the word “planet” comes from (based on the Greek word for “wanderer”). In mid-October 2024 Mars passed by Pollux for the first time as it moved eastward relative to the stars. Beginning Dec. 6, 2024, Mars started its retrograde motion. On Jan. 15, 2025, Mars was at its closest and brightest for the year. On January 23 Mars passed by Pollux for the second time, just 2.5 degrees apart, this time shifting westward relative to the stars. Mars ended its retrograde motion on February 23. It is now shifting eastward again relative to the stars and will pass Pollux a third time on March 30, this time 4 degrees apart. Mars and Pollux will be nearly overhead as evening twilight ends at 8:29 p.m. EDT. Mars will set first on the west-northwestern horizon the morning of March 31 at 3:43 a.m. This also is the first morning that Mercury will be above the eastern horizon 30 minutes before sunrise. Mercury will be relatively dim, as it will only present a narrow crescent toward Earth. It will brighten significantly each morning, but it’s difficult to predict when it will be bright enough to see in the glow of dawn. April 1 Tuesday morning, April 1, will be the first morning that Saturn will be above the eastern horizon 30 minutes before sunrise, a rough approximation of when it might start being visible in the glow of dawn. Tuesday evening, the Pleiades star cluster will appear 1.5 degrees below the waxing crescent moon. The Moon will be 36 degrees above the western horizon as evening twilight ends at 8:31 p.m. EDT, and the Pleiades will set first on the west-northwestern horizon 3 hours later at about 11:40 p.m. April 2 Wednesday evening, April 2, Jupiter will appear 5.5 degrees to the lower left of the waxing crescent moon. The Moon will be 49 degrees above the western horizon as evening twilight ends at 8:32 p.m. EDT. Jupiter will set first on the west-northwestern horizon 4 hours later Thursday morning at 12:43 a.m. April 4 Friday night, April 4, the Moon will appear half-full as it reaches its first quarter at 10:15 p.m. EDT. April 5 – 6 Saturday night into Sunday morning, April 5 to 6, the waxing gibbous moon, Mars, and the bright star Pollux will appear to form a triangle. As evening twilight ends at 8:35 p.m. EDT, Mars will be 3 degrees to the lower right and Pollux 5 degrees to the upper right. As the night progresses, Mars and Pollux will appear to rotate clockwise and away from the Moon. As Mars sets first on the west-northwestern horizon 7 hours later at 3:26 a.m. it will be 6 degrees to the lower right, with Pollux 8.5 degrees to the right of the Moon. April 7 – 8 Monday night into Tuesday morning, April 7 to 8, the bright star Regulus will appear near the waxing gibbous moon. As evening twilight ends at 8:37 p.m. EDT, Regulus will be 7 degrees below the Moon. As the Moon reaches its highest in the sky at 9:51 p.m., Regulus will be 6.5 degrees to the lower left. By the time Regulus and the Moon set together on the west-northwestern horizon at 4:52 a.m., Regulus will be 3.5 degrees to the left of the Moon. Tuesday morning, April 8, will be when Mercury will become as bright as Saturn in the glow of dawn (with both Mercury and Saturn rising after morning twilight begins). After this, Mercury will continue brightening each morning as more of its sunlit crescent faces Earth. April 8 – 9 Tuesday night into Wednesday morning, April 8 to 9, the waxing gibbous moon will have shifted to the other side of the bright star Regulus. As evening twilight ends at 8:38 p.m. EDT, Regulus will be 6 degrees to the upper right of the Moon. As the Moon reaches its highest in the sky at 10:34 p.m., Regulus will be 7 degrees to the right. The pair will continue to separate as the night progresses. April 10 Thursday morning, April 10, the planets Mercury and Saturn will appear nearest each other, 2 degrees apart, in the glow of dawn. Mercury — the brighter of the two — will be on the left and Saturn will be on the right. Saturn will rise last on the eastern horizon at 5:48 a.m. EDT, 9 minutes after morning twilight begins. You will only have about 20 minutes to view the pair, as by 30 minutes before sunrise (i.e., 6:09 a.m.) the sky will become too bright to see them. April 12 Saturday, April 12, 2025, is the International Day of Human Space Flight as declared by the United Nations to mark the date of the first human space flight. The full moon after next will be April 12 at 8:22 p.m. EDT. This will be on April 13 in Coordinated Universal Time (UTC) and from the Azores, Iceland, Liberia, and Senegal times zones eastward across Africa, Eurasia, and Australia to the International Date Line in the mid-Pacific. Most commercial calendars are based on UTC and will show this full moon on April 13. The Moon will appear full for about three days around this time, from Friday evening into Monday morning, making this a full moon weekend. Saturday evening into Sunday morning, the bright star Spica will appear close to the full moon. As evening twilight ends at 8:43 p.m., Spica will be less than a degree to the upper left of the Moon. Spica will appear to rotate clockwise and shift away from the Moon as the night progresses. Keep Exploring Discover More Topics From NASA Skywatching Moons Solar System Exploration Planets View the full article
  16. Rotor Optimization for the Advancement of Mars eXploration (ROAMX) team members and test stand at NASA Ames Research Center.NASA During 2024-2025, helicopter blades optimized for Mars were tested in the Planetary Aeolian Laboratory (PAL) at NASA Ames Research Center as part of the Rotor Optimization for the Advancement of Mars eXploration (ROAMX) project. The experimental test-chamber of the PAL can be depressurized to create atmospheric air pressures of different planetary bodies such as Mars. The full-scale ROAMX blades were spun in hover configuration up to 4000 RPM at an atmospheric density of Mars (approximately 0.015 kilograms per cubic meter). The Ingenuity blades were also tested in the PAL to compare the performance of the optimized blades against the Ingenuity Mars Helicopter Technology Demonstrator. The test was conducted to validate computational models of the performance of the optimized blades. Simulations show that the optimized ROAMX blades perform significantly better than the Ingenuity blades, allowing helicopters on Mars to fly farther, faster, and carry a science payload. The next phase of testing will occur with higher RPMs and additional collective angles. Rotor Optimization for the Advancement of Mars eXploration (ROAMX) hover test stand with ROAMX blades installed in the Planetary Aeolian Laboratory (PAL) low-pressure chamber at NASA Ames Research Center.NASAView the full article
  17. Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio Mosaics More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions Mars Home 2 min read Sols 4471-4472: Marching Through the Canyon NASA’s Mars rover Curiosity acquired this image using its Mast Camera (Mastcam), a close-up of the rover’s Alpha Particle X-Ray Spectrometer (APXS), an instrument that measures the abundance of chemical elements in rocks and soils on the Martian surface. Located on the turret at the end of Curiosity’s robotic arm, APXS is about the size of a cupcake, and this image shows the handwritten markings on the instrument’s sensor head. Curiosity captured this image on March 23, 2024 — sol 4134, or Martian day 4,134 of the Mars Science Laboratory mission — at 21:59:21 UTC. NASA/JPL-Caltech/MSSS Written by Scott VanBommel, Planetary Scientist at Washington University Earth planning date: Monday, March 3, 2025 Curiosity continued steady progress through the upper sulfate unit and toward its next major science waypoint: the boxwork structures. Our rover is currently driving south through a local canyon between “Texoli” and “Gould Mesa.” This route may expose the same rock layers observed while climbing along the eastern margin of the Gediz Vallis channel, prompting several science activities in today’s plan. With winter still gripping Gale crater and limiting the power available for science, the team carefully balanced a number of priorities. The weekend’s drive positioned the rover within reach of light-toned laminated bedrock and gray float rock. We kicked off our two-sol plan by removing dust on a representative bedrock target, “Ramona Trail,” before analyzing with APXS and imaging with MAHLI. ChemCam acquired compositional analyses on a laminated gray float rock, “Josephine Peak,” in addition to long-distance images of Texoli. Mastcam documented key features, capturing images of Josephine Peak, Texoli, “Gobblers Knob,” and “Fort Tejon.” In addition to these science-driven images, Mastcam also acquired two images of APXS before a planned drive of about 21 meters (about 69 feet). As Curiosity continues toward the boxwork structures, the intricate patterns we observe will provide valuable clues about the history of Mars. While the Mastcam images acquired today of the APXS sensor head won’t directly contribute to the boxwork study, they capture a more human aspect of the mission. With each “APXS horseshoe” image, such as the one featured in this blog from sol 4134, hand-written markings on the APXS sensor head appear alongside Martian terrain, a reminder that this incredible journey is driven by the human touch of a dedicated team on Earth who designed, built, and continue to operate this remarkable spacecraft. Share Details Last Updated Mar 05, 2025 Related Terms Blogs Explore More 2 min read Sols 4468-4470: A Wintry Mix of Mars Science Article 2 days ago 2 min read Smooshing for Science: A Flat-Out Success Article 5 days ago 4 min read Sols 4466-4468: Heading Into the Small Canyon Article 7 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
  18. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) What is a NASA Spinoff? Well, to answer that question, we’re going to have to go all the way back to 1958, back to the legislation that originally created the space agency, NASA. So in that legislation, there’s some forward-looking language that says, “Make sure that all the cool stuff you develop for space doesn’t just get blasted off into the universe, but comes back down to the Earth in the form of practical and terrestrial benefits.” I’m paraphrasing, of course. The legislation is actually a little bit dry like legislation should be. Since that time, NASA has worked to get the technologies it created into the hands of the public. These become products and services and they save lives, they improve lives, they generate income, they create jobs, they boost the economy, they increase crop yields, they make airplane travel safer, they make train transportation safer. NASA’s everywhere you look. One example I like to bring up is the camera in your cell phone. That was actually developed at JPL. We were working on a lightweight, high resolution camera for a satellite application, and that became the very first camera on a chip, camera in the cell phone. We’ve also worked on things like indoor agriculture, which is increasingly important as the world gets denser and people need access to healthy foods. During the pandemic, some researchers developed a ventilator that had fewer than 100 parts, none of which were required in the supply chain to make other ventilators. We gave that to dozens of companies all around the world to help save lives. If you check out spinoff.nasa.gov you can find thousands of examples of how NASA is everywhere in your life. [END VIDEO TRANSCRIPT] Full Episode List Full YouTube Playlist Share Details Last Updated Mar 05, 2025 Related TermsSpace Technology Mission DirectorateSpinoffsTechnologyTechnology TransferTechnology Transfer & Spinoffs Explore More 1 min read Novel Recuperator Design for Cryogenic Fluid Management System Article 5 hours ago 3 min read NASA Successfully Acquires GPS Signals on Moon Article 1 day ago 5 min read Fourth Launch of NASA Instruments Planned for Near Moon’s South Pole Article 7 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  19. The crew of NASA’s SpaceX Crew-10 mission pictured during an equipment test at the agency’s Kennedy Space Center in Florida.Credit: SpaceX NASA will provide coverage of the upcoming prelaunch and launch activities for the agency’s SpaceX Crew-10 mission to the International Space Station. Liftoff is targeted for 7:48 p.m. EDT, Wednesday, March 12, from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. The targeted docking time is approximately 10 a.m., Thursday, March 13. Coverage of the mission overview teleconference will be available on the agency’s website. The crew news conference, launch, the postlaunch news conference, and docking will be live on NASA+. Learn how to stream NASA content through a variety of platforms, including social media. The SpaceX Dragon spacecraft will carry NASA astronauts Anne McClain, commander; and Nichole Ayers, pilot; along with mission specialists JAXA (Japan Aerospace Exploration Agency) astronaut Takuya Onishi, and Roscosmos cosmonaut Kirill Peskov to the orbiting laboratory for a science mission of about four months. This is the 10th crew rotation mission and the 11th human spaceflight mission for NASA to the space station supported by the Dragon spacecraft since 2020 as part of the agency’s Commercial Crew Program. The deadline for media accreditation for in person coverage of this launch has passed. The agency’s media credentialing policy is available online. For questions about media accreditation, please email: ksc-media-accreditat@mail.nasa.gov. Media who need access to NASA live video feeds may subscribe to the agency’s media resources distribution list to receive daily updates and links. NASA’s mission coverage is as follows (all times Eastern and subject to change based on real-time operations): Friday, March 7 2 p.m. – Crew arrival media event at NASA Kennedy with the following participants: Anne McClain, Crew-10 spacecraft commander, NASA Nichole Ayers, Crew-10 pilot, NASA Takuya Onishi, Crew-10 mission specialist, JAXA Kirill Peskov, Crew-10 mission specialist, Roscosmos Watch live coverage of the crew arrival media event on NASA Kennedy’s social media accounts. This event is open to in person media only previously credentialed for this event, and questions will be taken only during the crew news conference scheduled for later that day. Follow @CommercialCrew and @NASAKennedy on X for the latest arrival updates. 5:30 p.m. – Mission overview teleconference at NASA Kennedy (or no earlier than one hour after the completion of the Flight Readiness Review) with the following participants: Ken Bowersox, associate administrator, Space Operations Mission Directorate, NASA Headquarters in Washington Steve Stich, manager, Commercial Crew Program, NASA Kennedy Dana Weigel, manager, International Space Station Program, NASA’s Johnson Space Center in Houston Meg Everett, deputy chief scientist, NASA’s International Space Station Program, NASA Johnson William Gerstenmaier, vice president, Build and Flight Reliability, SpaceX Junichi Sakai, manager, International Space Station Program, JAXA NASA will provide audio-only coverage of the teleconference. Media may ask questions in person and via phone. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 4 p.m., Friday, March 7, at ksc-newsroom@mail.nasa.gov. 6:30 p.m. – Crew-10 crew news conference (or directly following the completion of the mission overview news conference) with the following participants: Anne McClain, Crew-10 spacecraft commander, NASA Nichole Ayers, Crew-10 pilot, NASA Takuya Onishi, Crew-10 mission specialist, JAXA Kirill Peskov, Crew-10 mission specialist, Roscosmos Watch live coverage of the mission overview news conference on NASA+. Media may ask questions via phone only. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than 4 p.m., Friday, March 7, at: ksc-newsroom@mail.nasa.gov. Wednesday, March 12 3:45 p.m. – Launch coverage begins on NASA+. 7:48 p.m. – Launch Following the conclusion of launch and ascent coverage, NASA will switch to audio only and continue audio coverage through Thursday, March 13. Continuous coverage resumes on NASA+ at the start of rendezvous and docking and continues through hatch opening and the welcome ceremony. 9:30 p.m. – Postlaunch news conference with the following participants: Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate Steve Stich, manager, Commercial Crew Program, NASA Kennedy Dana Weigel, manager, International Space Station Program, NASA Johnson Sarah Walker, director, Dragon Mission Management, SpaceX Mayumi Matsuura, vice president and director general, Human Spaceflight Technology Directorate, JAXA Watch live coverage of the postlaunch news conference on NASA+. Media may ask questions in person and via phone. Limited auditorium space will be available for in person participation. For the dial-in number and passcode, please contact the Kennedy newsroom no later than 8:30 p.m., Wednesday, March 12, at ksc-newsroom@mail.nasa.gov. Thursday, March 13 8:15 a.m. – Arrival coverage begins on NASA+. 10 a.m. – Targeted docking to the forward-facing port of the station’s Harmony module 11:45 a.m. – Hatch opening 12:20 p.m. – Welcome ceremony All times are estimates and could be adjusted based on real-time operations after launch. Follow the space station blog for the most up-to-date operations information. Live Video Coverage Prior to Launch NASA will provide a live video feed of Launch Complex 39A approximately six hours prior to the planned liftoff of the Crew-10 mission. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA+, approximately four hours prior to launch. Once the feed is live, find it online at: http://youtube.com/kscnewsroom. NASA Website Launch Coverage Launch day coverage of the mission will be available on the NASA website. Coverage will include livestreaming and blog updates beginning no earlier than 3:45 p.m., March 12, as the countdown milestones occur. On-demand streaming video on NASA+ and photos of the launch will be available shortly after liftoff. For questions about countdown coverage, contact the NASA Kennedy newsroom at 321-867-2468. Follow countdown coverage on the commercial crew or Crew-10 blog. Attend Launch Virtually Members of the public may register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch. Watch, Engage on Social Media Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Crew10 and #NASASocial. You may also stay connected by following and tagging these accounts: X: @NASA, @NASAKennedy, @NASASocial, @Space_Station, @ISS_Research, @ISS National Lab, @SpaceX, @Commercial_Crew Facebook: NASA, NASAKennedy, ISS, ISS National Lab Instagram: @NASA, @NASAKennedy, @ISS, @ISSNationalLab, @SpaceX Coverage en Espanol Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comuníquese con Antonia Jaramillo: 321-501-8425; antonia.jaramillobotero@nasa.gov; o Messod Bendayan: 256-930-1371; messod.c.bendayan@nasa.gov. NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low Earth orbit and the International Space Station to more people, more science, and more commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars. For more information about the mission, visit: https://www.nasa.gov/commercialcrew -end- Joshua Finch / Jimi Russell Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / james.j.russell@nasa.gov Steven Siceloff / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 steven.p.siceloff@nasa.gov / stephanie.n.plucinsky@nasa.gov Kenna Pell Johnson Space Center, Houston 281-483-5111 kenna.m.pell@nasa.gov Share Details Last Updated Mar 05, 2025 LocationNASA Headquarters Related TermsHumans in SpaceAstronautsCommercial CrewInternational Space Station (ISS)ISS ResearchJohnson Space CenterKennedy Space Center View the full article
  20. Tess Caswell, a stand-in crew member for the Artemis III Virtual Reality Mini-Simulation, executes a moonwalk in the Prototype Immersive Technology (PIT) lab at NASA’s Johnson Space Center in Houston. The simulation was a test of using VR as a training method for flight controllers and science teams’ collaboration on science-focused traverses on the lunar surface. Credit: NASA/Robert Markowitz When astronauts walk on the Moon, they’ll serve as the eyes, hands, and boots-on-the-ground interpreters supporting the broader teams of scientists on Earth. NASA is leveraging virtual reality to provide high-fidelity, cost-effective support to prepare crew members, flight control teams, and science teams for a return to the Moon through its Artemis campaign. The Artemis III Geology Team, led by principal investigator Dr. Brett Denevi of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, participated in an Artemis III Surface Extra-Vehicular VR Mini-Simulation, or “sim” at NASA’s Johnson Space Center in Houston in the fall of 2024. The sim brought together science teams and flight directors and controllers from Mission Control to carry out science-focused moonwalks and test the way the teams communicate with each other and the astronauts. “There are two worlds colliding,” said Dr. Matthew Miller, co-lead for the simulation and exploration engineer, Amentum/JETSII contract with NASA. “There is the operational world and the scientific world, and they are becoming one.” NASA mission training can include field tests covering areas from navigation and communication to astronaut physical and psychological workloads. Many of these tests take place in remote locations and can require up to a year to plan and large teams to execute. VR may provide an additional option for training that can be planned and executed more quickly to keep up with the demands of preparing to land on the Moon in an environment where time, budgets, and travel resources are limited. VR helps us break down some of those limitations and allows us to do more immersive, high-fidelity training without having to go into the field. It provides us with a lot of different, and significantly more, training opportunities. BRI SPARKS NASA co-lead for the simulation and Extra Vehicular Activity Extended Reality team at Johnson. Field testing won’t be going away. Nothing can fully replace the experience crew members gain by being in an environment that puts literal rocks in their hands and incudes the physical challenges that come with moonwalks, but VR has competitive advantages. The virtual environment used in the Artemis III VR Mini-Sim was built using actual lunar surface data from one of the Artemis III candidate regions. This allowed the science team to focus on Artemis III science objectives and traverse planning directly applicable to the Moon. Eddie Paddock, engineering VR technical discipline lead at NASA Johnson, and his team used data from NASA’s Lunar Reconnaissance Orbiter and planet position and velocity over time to develop a virtual software representation of a site within the Nobile Rim 1 region near the south pole of the Moon. Two stand-in crew members performed moonwalk traverses in virtual reality in the Prototype Immersive Technology lab at Johnson, and streamed suit-mounted virtual video camera views, hand-held virtual camera imagery, and audio to another location where flight controllers and science support teams simulated ground communications. A screen capture of a virtual reality view during the Artemis III VR Mini-Simulation. The lunar surface virtual environment was built using actual lunar surface data from one of the Artemis III candidate regions. Credit: Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston. The crew stand-ins were immersed in the lunar environment and could then share the experience with the science and flight control teams. That quick and direct feedback could prove critical to the science and flight control teams as they work to build cohesive teams despite very different approaches to their work. The flight operations team and the science team are learning how to work together and speak a shared language. Both teams are pivotal parts of the overall mission operations. The flight control team focuses on maintaining crew and vehicle safety and minimizing risk as much as possible. The science team, as Miller explains, is “relentlessly thirsty” for as much science as possible. Training sessions like this simulation allow the teams to hone their relationships and processes. Members of the Artemis III Geology Team and science support team work in a mock Science Evaluation Room during the Artemis III Virtual Reality Mini-Simulation at NASA’s Johnson Space Center in Houston. Video feeds from the stand-in crew members’ VR headsets allow the science team to follow, assess, and direct moonwalks and science activities. Credit: NASA/Robert Markowitz Denevi described the flight control team as a “well-oiled machine” and praised their dedication to getting it right for the science team. Many members of the flight control team have participated in field and classroom training to learn more about geology and better understand the science objectives for Artemis. “They have invested a lot of their own effort into understanding the science background and science objectives, and the science team really appreciates that and wants to make sure they are also learning to operate in the best way we can to support the flight control team, because there’s a lot for us to learn as well,” Denevi said. “It’s a joy to get to share the science with them and have them be excited to help us implement it all.” Artemis III Geology Team lead Dr. Brett Denevi of the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, left, Artemis III Geology Team member, Dr. Jose Hurtado, University of Texas at El Paso, and simulation co-lead, Bri Sparks, work together during the Artemis III Virtual Reality Mini-Simulation at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz This simulation, Sparks said, was just the beginning for how virtual reality could supplement training opportunities for Artemis science. In the future, using mixed reality could help take the experience to the next level, allowing crew members to be fully immersed in the virtual environment while interacting with real objects they can hold in their hands. Now that the Nobile Rim 1 landing site is built in VR, it can continue to be improved and used for crew training, something that Sparks said can’t be done with field training on Earth. While “virtual” was part of the title for this exercise, its applications are very real. “We are uncovering a lot of things that people probably had in the back of their head as something we’d need to deal with in the future,” Miller said. “But guess what? The future is now. This is now.” Test subject crew members for the Artemis III Virtual Reality Mini-Simulation, including Grier Wilt, left, and Tess Caswell, center, execute a moonwalk in the Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz Grier Wilt, left, and Tess Caswell, crew stand-ins for the Artemis III Virtual Reality Mini-Simulation, execute a moonwalk in the Prototype Immersive Technology (PIT) lab at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz Engineering VR technical discipline lead Eddie Paddock works with team members to facilitate the virtual reality components of the Artemis III Virtual Reality Mini-Simulation in the Prototype Immersive Technology lab at NASA’s Johnson Space Center in Houston. Credit: Robert Markowitz Flight director Paul Konyha follows moonwalk activities during the Artemis III Virtual Reality Mini-Simulation at NASA’s Johnson Space Center in Houston. Credit: NASA/Robert Markowitz Rachel Barry NASA’s Johnson Space Center Keep Exploring Discover More Topics From NASA Astromaterials Artemis Science A Time Capsule The Moon is a 4.5-billion-year-old time capsule, pristinely preserved by the cold vacuum of space. It is… Lunar Craters Earth’s Moon is covered in craters. Lunar craters tell us the history not only of the Moon, but of our… Solar System View the full article
  21. 5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) An artist’s concept depicts one of NASA’s Voyager probes. The twin spacecraft launched in 1977.NASA/JPL-Caltech The farthest-flung human-made objects will be able to take their science-gathering even farther, thanks to these energy-conserving measures. Mission engineers at NASA’s Jet Propulsion Laboratory in Southern California turned off the cosmic ray subsystem experiment aboard Voyager 1 on Feb. 25 and will shut off Voyager 2’s low-energy charged particle instrument on March 24. Three science instruments will continue to operate on each spacecraft. The moves are part of an ongoing effort to manage the gradually diminishing power supply of the twin probes. Launched in 1977, Voyagers 1 and 2 rely on a radioisotope power system that generates electricity from the heat of decaying plutonium. Both lose about 4 watts of power each year. “The Voyagers have been deep space rock stars since launch, and we want to keep it that way as long as possible,” said Suzanne Dodd, Voyager project manager at JPL. “But electrical power is running low. If we don’t turn off an instrument on each Voyager now, they would probably have only a few more months of power before we would need to declare end of mission.” The two spacecraft carry identical sets of 10 science instruments. Some of the instruments, geared toward collecting data during planetary flybys, were turned off after both spacecraft completed their exploration of the solar system’s gas giants. The instruments that remained powered on well beyond the last planetary flyby were those the science team considered important for studying the solar system’s heliosphere, a protective bubble of solar wind and magnetic fields created by the Sun, and interstellar space, the region outside the heliosphere. Voyager 1 reached the edge of the heliosphere and the beginning of interstellar space in 2012; Voyager 2 reached the boundary in 2018. No other human-made spacecraft has operated in interstellar space. Last October, to conserve energy, the project turned off Voyager 2’s plasma science instrument, which measures the amount of plasma — electrically charged atoms — and the direction it is flowing. The instrument had collected only limited data in recent years due to its orientation relative to the direction that plasma flows in interstellar space. Voyager 1’s plasma science instrument had been turned off years ago because of degraded performance. Interstellar Science Legacy The cosmic ray subsystem that was shut down on Voyager 1 last week is a suite of three telescopes designed to study cosmic rays, including protons from the galaxy and the Sun, by measuring their energy and flux. Data from those telescopes helped the Voyager science team determine when and where Voyager 1 exited the heliosphere. Scheduled for deactivation later this month, Voyager 2’s low-energy charged particle instrument measures the various ions, electrons, and cosmic rays originating from our solar system and galaxy. The instrument consists of two subsystems: the low-energy particle telescope for broader energy measurements, and the low-energy magnetospheric particle analyzer for more focused magnetospheric studies. Both systems use a rotating platform so that the field of view is 360 degrees, and the platform is powered by a stepper motor that provides a 15.7-watt pulse every 192 seconds. The motor was tested to 500,000 steps — enough to guarantee continuous operation through the mission’s encounters with Saturn, which occurred in August 1980 for Voyager 2. By the time it is deactivated on Voyager 2, the motor will have completed more than 8.5 million steps. “The Voyager spacecraft have far surpassed their original mission to study the outer planets,” said Patrick Koehn, Voyager program scientist at NASA Headquarters in Washington. “Every bit of additional data we have gathered since then is not only valuable bonus science for heliophysics, but also a testament to the exemplary engineering that has gone into the Voyagers — starting nearly 50 years ago and continuing to this day.” Addition Through Subtraction Mission engineers have taken steps to avoid turning off science instruments for as long as possible because the science data collected by the twin Voyager probes is unique. With these two instruments turned off, the Voyagers should have enough power to operate for about a year before the team needs to shut off another instrument on both spacecraft. In the meantime, Voyager 1 will continue to operate its magnetometer and plasma wave subsystem. The spacecraft’s low-energy charged particle instrument will operate through the remainder of 2025 but will be shut off next year. Voyager 2 will continue to operate its magnetic field and plasma wave instruments for the foreseeable future. Its cosmic ray subsystem is scheduled to be shut off in 2026. With the implementation of this power conservation plan, engineers believe the two probes could have enough electricity to continue operating with at least one science instrument into the 2030s. But they are also mindful that the Voyagers have been weathering deep space for 47 years and that unforeseen challenges could shorten that timeline. Long Distance Voyager 1 and Voyager 2 remain the most distant human-made objects ever built. Voyager 1 is more than 15 billion miles (25 billion kilometers) away. Voyager 2 is over 13 billion miles (21 billion kilometers) from Earth. In fact, due to this distance, it takes over 23 hours to get a radio signal from Earth to Voyager 1, and 19½ hours to Voyager 2. “Every minute of every day, the Voyagers explore a region where no spacecraft has gone before,” said Linda Spilker, Voyager project scientist at JPL. “That also means every day could be our last. But that day could also bring another interstellar revelation. So, we’re pulling out all the stops, doing what we can to make sure Voyagers 1 and 2 continue their trailblazing for the maximum time possible.” For more information about NASA’s Voyager missions, visit: https://science.nasa.gov/mission/voyager News Media Contacts DC Agle / Calla Cofield Jet Propulsion Laboratory, Pasadena, Calif. 818-653-6297 / 626-808-2469 agle@jpl.nasa.gov / calla.e.cofield@jpl.nasa.gov 2025-032 Share Details Last Updated Mar 05, 2025 Related TermsJet Propulsion Laboratory Explore More 3 min read University High Knows the Answers at NASA JPL Regional Science Bowl Article 2 days ago 3 min read NASA Uses New Technology to Understand California Wildfires Article 5 days ago 6 min read NASA’s Europa Clipper Uses Mars to Go the Distance Article 1 week ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  22. Cryocoolers are essential systems in many space exploration missions to maintain propellants at cryogenic temperatures. Cryogenic recuperators are a key component of these cryocoolers and dictate the performance of the system. NASA is seeking to reduce the cost and increase the performance of cryogenic recuperators (also called Heat Exchangers) by utilizing Additive Manufacturing (AM) technologies. Award: $7,000 in total prizes Open Date: March 5, 2025 Close Date: May 2, 2025 For more information, visit: https://grabcad.com/challenges/novel-recuperator-design-for-cryogenic-fluid-management-system View the full article
  23. ESA/Hubble & NASA, R. Sankrit In this NASA/ESA Hubble Space Telescope image, Hubble once again lifts the veil on a famous — and frequently photographed — supernova remnant: the Veil Nebula. The remnant of a star roughly 20 times as massive as the Sun that exploded about 10,000 years ago, the Veil Nebula is situated about 2,400 light-years away in the constellation Cygnus. Hubble images of this photogenic nebula were first taken in 1994 and 1997, and again in 2015. This view combines images taken in three different filters by Hubble’s Wide Field Camera 3, highlighting emission from hydrogen, sulfur, and oxygen atoms. The image shows just a small fraction of the Veil Nebula; if you could see the entire nebula without the aid of a telescope, it would be as wide as six full Moons placed side-by-side. Although this image captures the Veil Nebula at a single point in time, it helps researchers understand how the supernova remnant evolves over decades. Combining this snapshot with Hubble observations from 1994 will reveal the motion of individual knots and filaments of gas over that span of time, enhancing our understanding of this stunning nebula. View the full article
  24. What is a NASA Spinoff? We Asked a NASA Expert
  25. Pictured from left: Roscosmos cosmonaut Kirill Peskov, NASA astronauts Nichole Ayers and Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut mission specialist Takuya Onishi train at SpaceX facilities in Hawthorne, California (Credit: SpaceX). During NASA’s SpaceX Crew-10 mission to the International Space Station, which is scheduled to launch in March, select members of the four-person crew will participate in exercise and medical research aimed at keeping astronauts fit on future long-duration missions. Crew members living and working aboard the space station have access to a designated training area outfitted with a weight-lifting system, a stationary bike, and a specialized treadmill called T2. The space station is expansive enough for bulky exercise equipment that helps preserve the health and performance of astronauts in space and when they return to Earth. However, as NASA looks to explore beyond low Earth orbit, the agency anticipates future spacecraft will not have room for large exercise equipment, like treadmills. Since walking and running are essential parts of workouts aboard the space station, NASA does not fully understand how long-duration spaceflights without a treadmill will impact crews’ health and motor functions. Consequently, NASA researchers are adjusting astronauts’ training regimens, including eliminating the use of the treadmill in some cases, to study ways that maintain crews’ strength, fitness, bone health, and balance. In an ongoing study called Zero T2, expedition crews are divided into three groups with different workout regimens. One group continues exercising normally, using all the available equipment aboard the orbiting complex. A second group forgoes using the treadmill, relying solely on the other available equipment. While a third group will only exercise using a new, experimental, less bulky workout machine. NASA compares the groups’ health data collected before, during, and after flight to determine if the lack of treadmill use negatively impacts the crews’ fitness, muscle performance, and recovery after return to Earth. “A treadmill takes up a lot of mass, space, and energy. This is not great for missions to Mars where every kilogram counts,” explained NASA astronaut Matthew Dominick, who participated in the same study while serving as commander of NASA’s SpaceX Crew-8 mission in 2024. “The Zero T2 experiment is helping us figure out if we can go without a treadmill and still be healthy.” Results of the Zero T2 study will help researchers determine how treadmill-free workouts may affect crew health, which will, in turn, help NASA build realistic exercise protocols for future deep space missions. Additionally, this investigation could support design improvements for exercise devices used to prevent or treat bone, muscle, and cardiovascular health on Earth. Beyond the Zero T2 study, select NASA crew members will perform additional studies supported by the agency’s Human Research Program during their mission. Participating crew will conduct medical exams, provide biological samples, and document spaceflight-related injuries, among other tasks. “Astronauts choose which studies to participate in based on their interests,” explained Cherie Oubre, a NASA scientist at the agency’s Johnson Space Center in Houston, who helps oversee human research studies carried out aboard the space station. “The experiments address important risks and gaps associated with human spaceflight.” One set of experiments, called CIPHER (Complement of Integrated Protocols for Human Exploration Research), will help researchers understand how multiple systems within the human body adjust to varying mission durations. CIPHER study members will complete vision assessments, cognitive tests, and MRI scans to help provide a clearer picture of how the entire body is affected by space. “The CIPHER experiment tracks changes in the eyes, bones, heart, muscles, immune system, and more,” Oubre said. “The investigation provides the most comprehensive overview of how long-duration spaceflight affects the entire human body ever conducted, helping us advance human expeditions to the Moon, Mars, and elsewhere.” Some crew members also will contribute to a core set of measurements called Spaceflight Standard Measures. The measurements represent how the human body and mind adapt to space travel over time and serve as a basis for other spaceflight studies like CIPHER. Additionally, crew members may provide biological samples for Omics Archive, a separate study analyzing how the body reacts to long-duration spaceflight at the molecular level. In another study, select crew members will test a potential treatment for spaceflight-associated neuro-ocular syndrome, a condition associated with brain changes and swelling of the back of the eye. Researchers are unsure what causes the syndrome or why only certain astronauts develop it, but the shift of bodily fluids toward the head in weightlessness may play a role. Some scientists believe genetics related to how the body processes B vitamins may affect how astronauts respond to those fluid shifts. Participating crew will test whether a daily B vitamin supplement can ease or prevent the development of symptoms. They also will investigate if cuffs worn on astronauts’ thighs to keep fluids in the legs could be an effective intervention. Upon return, the select crew members will complete surveys that record any discomfort or injuries associated with landing, such as scrapes and bruises. Results of the surveys­­ ̶ when combined with data retrieved by sensors in the vehicle­­ ̶ will help researchers catalog these injuries and improve the design of spacecraft. Crew members began participating in the studies about a year before their mission, learning about the work and offering baseline health data. They will continue to provide data for the experiments for up to two years after returning home. ____ NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, commercial missions, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research drives NASA’s quest to innovate ways that keep astronauts healthy and mission-ready as human space exploration expands to the Moon, Mars, and beyond. Learn More About Exercising in Space Astronauts aboard the International Space Station typically exercise for two hours each day. From running to cycling to weightlifting, learn how crew members complete fitness regimens in space and commit to staying healthy – even in microgravity (Credit: NASA). Explore More 2 min read NASA Prepares Gateway Lunar Space Station for Journey to Moon Assembly is underway for Gateway's Power and Propulsion Element, the module that will power the… Article 1 week ago 5 min read NASA Marks Artemis Progress With Gateway Lunar Space Station NASA and its international partners are making progress on Gateway – the lunar space station… Article 2 weeks ago 5 min read NASA Readies Moon Rocket for the Future with Manufacturing Innovation Article 3 weeks ago Keep Exploring Discover More Topics From NASA Living in Space Artemis Human Research Program Space Station Research and Technology View the full article
×
×
  • Create New...