Jump to content

NASA

Publishers
  • Posts

    4,764
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. A growing body of research suggests a link between epigenetic mechanisms and a wide variety of illnesses and behaviors, including cancer, cardiovascular and autoimmune illnesses, and cognitive dysfunction. Epigenetics also plays a role in the changes humans and other living things experience in space. This phenomenon has become part of studies in a wide variety of fields, including microgravity research conducted aboard the International Space Station. So just what is epigenetics? According to a paper from the National Institute of Environmental Health Sciences, it includes any process that alters gene activity without changing the actual DNA sequence and that leads to modifications that can pass to offspring. Essentially, it involves information added to the DNA sequence of four bases: adenine (A), guanine (G), cytosine (C), and thymine (T). The sequence of these bases forms the genetic code for development and functioning – essentially the blueprint for every living thing. Epigenetics changes an organism by changing which genes are expressed – essentially turned on or off – without changing that basic blueprint. In other words, epigenetics results in a change through modification of gene expression rather than alteration of the genetic code itself. Epigenetic changes can be caused by many outside stimuli, from chemicals to trauma to exercise. And unlike a genetic change or mutation, an epigenetic change can reverse if the stimulus is removed. Many epigenetic changes are positive, or even essential, but some cause serious adverse health and behavioral effects. Years of analysis have shown that the spaceflight environment changes gene expression in every organism and cell type. Epigenetics could help scientists figure out how that happens and why. Studying epigenetics could reveal the pathway that cells use to adapt and survive in microgravity and reveal ways to control positive changes or prevent negative ones. The Epigenetics investigation from JAXA (Japan Aerospace Exploration Agency) looked at whether the round worm C. elegans experienced epigenetic changes and if those changes transmitted from one generation to another. Researchers did observe epigenetic changes and concluded that the expression of certain genes, including negative regulators of growth and development, is epigenetically fine-tuned to adapt to microgravity.1 ESA astronaut Samantha Cristoforetti prepares samples for the Epigenetics experiment. NASA JAXA’s Mouse Epigenetics studied altered gene expression patterns in mice and DNA changes in their offspring. The investigation identified genetic alterations that happen after exposure to the microgravity environment of space. An Italian Space Agency study of the bone loss experienced by astronauts on extended missions is associated with epigenetic alterations. Role of the Endocannabinoid System in Pluripotent Human Stem Cell Reprogramming under Microgravity Conditions (SERISM) evaluated the formation of bone cells in microgravity using human blood-derived stem cells as a model. Researchers reported specific epigenetic changes that occurred in the cells in space.2 APEX-03 plates containing Arabidopsis thaliana plants. NASA One epigenetic process that researchers can detect is methylation, the addition or removal of a methyl group (CH3) into DNA bases, predominantly where cytosine or C bases occur consecutively. The APEX-03-1 and APEX-03-2 experiments examined DNA methylation and gene expression in Arabidopsis thaliana plants grown from seeds aboard the space station and found widespread changes in patterns of gene expression.3 They also observed epigenetic changes, indicating that they play a role in a plant’s physiological adaptation to spaceflight.4 APEX-04 confirmed this finding. When investigators disrupted the ability of a plant to make those epigenetic changes, that plant struggled more in space.5 Plant Habitat-03 then examined whether these epigenetic changes pass to subsequent generations. In general, this work showed that plants change gene expression patterns when they experience strange environments and use epigenetic processes to mark genes that help prepare the next generation for the same environment. Those markers show which genes are important for the plant to live in space. Researchers can use that information to breed plants better adapted to space and to harsh environments on Earth. The MinION DNA sequencer in use on the space station.NASA Expect to see more research on epigenetics on orbit now that more tools are available to provide the ability to immediately sequence DNA at the level that reveals epigenetic changes such as methylation. Traditional DNA sequencers do not provide that level of information without prior processing of the sample, but the space station’s MinION can. Scientists can use these tools to get real-time snapshots of changes as they are happening and potentially how they are passed to subsequent generations. Melissa Gaskill International Space Station Program Science Office Johnson Space Center Search this database of scientific experiments to learn more about those mentioned above. Citations: 1 Higashitani A, Hashizume T, Takiura M, Higashitani N, Teranishi M, Oshima R, Yano S, Kuriyama K, Higashibata A. Histone deacetylase HDA-4-mediated epigenetic regulation in space-flown C. elegans. npj Microgravity. 2021 September 1; 7(1): 33. DOI: 10.1038/s41526-021-00163-7.PMID: 34471121. 2 Gambacurta A, Merlini G, Ruggiero C, Diedenhofen G, Battista N, Bari M, Balsamo M, Piccirillo S, Valentini G, Mascetti G, Maccarrone M. Human osteogenic differentiation in Space: proteomic and epigenetic clues to better understand osteoporosis. Scientific Reports. 2019 June 6; 9(1): 8343. DOI: 10.1038/s41598-019-44593-6.PMID: 31171801. 3 Nakashima J, Pattathil S, Avci U, Chin S, Sparks JA, Hahn MG, Gilroy S, Blancaflor EB. Glycome profiling and immunohistochemistry uncover changes in cell walls of Arabidopsis thaliana roots during spaceflight. npj Microgravity. 2023 August 22; 9(1): 1-13. DOI: 10.1038/s41526-023-00312-0. 4 Zhou M, Sng NJ, LeFrois CE, Paul AL, Ferl RJ. Epigenomics in an extraterrestrial environment: Organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genomics. 2019 March 12; 20(1): 205. DOI: 10.1186/s12864-019-5554-z. 5 Paul AL, Haveman NJ, Califar B, Ferl RJ. Epigenomic regulators elongator complex subunit 2 and methyltransferase 1 differentially condition the spaceflight response in Arabidopsis. Frontiers in Plant Science. 2021 September 13; 12691790. DOI: 10.3389/fpls.2021.691790. Keep Exploring Discover More Topics Station Science 101: Biology and Biotechnology Latest News from Space Station Research Space Station Technology Demonstration Space Station Research and Technology View the full article
  2. What You Need to Know About Europa
  3. 2 min read Hubble Spies a Spinning Spiral This new NASA Hubble Space Telescope image features the face-on spiral and Seyfert galaxy, ESO 420-G013. NASA/ESA/A. Evans (University of Virginia)/Processing: Gladys Kober (NASA/Catholic University of America) Looking like a baseball lobbed into the depths of the universe, ESO 420-G013 is a face-on spiral galaxy known as a Seyfert galaxy. Dark lanes of dust are visible against the background glow of the galaxy’s many stars. About 10 percent of all the galaxies in the universe are thought to be Seyfert galaxies. They are typically spiral galaxies and have very bright nuclei, the result of supermassive black holes at their centers accreting material that releases vast amounts of radiation. The cores of these “active galaxies” are brightest when observing light outside the visible spectrum. Often galaxies with these kinds of active galactic nuclei are so bright that the host galaxy itself cannot be seen, washed out by the glow of its nuclei, but Seyfert galaxies are distinctive because the galaxy itself is also visible. In the case of ESO 420-G013, we can enjoy the galaxy’s almost perfectly round disk, brighter core, and whirled filaments of dark dust. NASA’s Hubble Space Telescope observed ESO 420-G013 as part of a study of Luminous Infrared Galaxies, or LIRGs, which are known to be extremely bright in the infrared part of the spectrum. Galactic interactions trigger new regions of star formation in LIRGs, causing them to be highly luminous in infrared light. LEARN MORE: Hubble’s Cosmic Collisions Hubble Science: Galaxy Details and Mergers Hubble Science: Tracing the Growth of Galaxies Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Jan 30, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Seyfert Galaxies Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories Stars Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
  4. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Members of the cast and crew of “The Wiz” pose inside the National Full-Scale Aerodynamic Complex 40 by 80 foot wind tunnel at NASA’s Ames Research Center in Silicon Valley.NASA\Brandon Torres Members of the cast and crew of Broadway production “The Wiz,” currently on tour at San Francisco’s Golden Gate Theatre, visited NASA’s Ames Research Center in California’s Silicon Valley on Jan. 29 to learn more about the center’s work in air and space. The group met with center leadership and members of Ames employee advisory groups and toured the Vertical Motion Simulator (VMS), the National Full-Scale Aerodynamics Complex (NFAC), and observed progress on the Automated Reconfigurable Mission Adaptive Digital Assembly Systems (ARMADAS) robots, which use pre-fabricated modular blocks to build structures autonomously, before following the yellow brick road back “home” to Oz. Share Details Last Updated Jan 29, 2024 Related TermsAmes Research CenterSimLabsVertical Motion Simulator Explore More 4 min read NASA Autonomous Flight Software Successfully Used in Air Taxi Stand-Ins Article 4 days ago 5 min read Robot Team Builds High-Performance Digital Structure for NASA Greater than the sum of its parts: NASA tests the capability of a system that… Article 2 weeks ago 1 min read NASA Astronaut, Congresswoman Discuss STEM Careers with Students Article 3 weeks ago Keep Exploring Discover Related Topics Ames Research Center Vertical Motion Simulator NASA Ames Unitary Plan Wind Tunnel Ames Media Resources View the full article
  5. NASA has selected Inspiritec Inc. of Philadelphia, to provide contractor support for the Shared Services Center at the agency’s Stennis Space Center in Bay St. Louis, Mississippi. This indefinite-delivery/indefinite-quantity contract allows for special project task orders at either the firm-fixed-price or based on level of effort. The contract includes a 60-day transition period beginning on Thursday, Feb. 1, followed by a one-year base period and four one-year option periods. The total award value is $35 million over a five-year potential performance period. The contract’s services include support of NASA’s Customer Contact Center, Enterprise Service Desk, and Document Imaging and Mailroom. For information about the agency and its programs, visit: https://www.nasa.gov -end- Abbey Donaldson Headquarters, Washington 202-358-1600 abbey.a.donaldson@nasa.gov Jamie Mettler Stennis Space Center, Miss. 228-813-6490 jamie.m.mettler@nasa.gov View the full article
  6. Squishy Robotics’ Tensegrity Sensor Robots help first responders determine their approach to a disaster scene. Firefighters used the robots during a subway attack exercise at the 2021 Unmanned Tactical Application Conference to detect gas leaks and other hazards. Credits: FLYMOTION LLC As NASA innovates for the benefit of all, what the agency develops for exploration has the potential to evolve into other technologies with broader use here on Earth. Many of those examples are highlighted in NASA’s annual Spinoff book including dozens of NASA-enabled medical innovations, as well other advancements. This year’s publication, NASA’s 2024 Spinoff, features several commercialized technologies using the agency’s research and development expertise to impact everyday lives, including: Spherical “squishy” robots capable of dropping into dangerous situations before first responders enter “Digital winglets” aircraft-routing technology that’s enabling increased fuel efficiency and smoother flights Lighter, more durable disc brake designs that produce less dust than traditional disc brakes Computer software to help businesses and communities cope with and recover from natural disasters like wildfires New 3D printing methods to additively manufacture rocket engines and other large aluminum parts “As we continue to push new frontiers and do the unimaginable, NASA’s scientists and engineers are constantly innovating and advancing technologies,” said NASA Administrator Bill Nelson. “A critical part of our mission is to quickly get those advances into the hands of companies and entrepreneurs who can use them to grow their businesses, open new markets, boost the economy, and raise the quality of life for everyone.” The medical innovations include the first wireless arthroscope – a small tube carrying a camera inserted into the body during surgery – to receive clearance from the U.S. Food and Drug Administration, which benefited from NASA’s experience with spacesuits and satellite batteries. Technologies for diagnosing illnesses like the coronavirus, hepatitis, and cancer have also stemmed from NASA’s space exploration and science endeavors. Even certain types of toothpaste originated from the agency’s efforts to grow crystals for electronics. Additional 2024 Spinoff highlights include developments under NASA’s Artemis campaign, like a small, rugged video camera used to improve aircraft safety and a new method for detecting defects or damage in composite materials. Meanwhile, another spinoff story details the latest benefits of fuel cell technology created more than 50 years ago for Apollo, which is now poised to support terrestrial power grids based on renewable energy. The book also features several technologies NASA has identified as promising future spinoffs and information on how to license agency tech. Since the 1970s, thousands of NASA technologies have found their way into many scientific and technical disciplines, impacting nearly every American industry. “As NASA’s longest continuously running program, we continue to increase the number of technologies we license year-over-year while streamlining the development path from the government to the commercial sector,” said Daniel Lockney, Technology Transfer program executive at NASA Headquarters in Washington. “These commercialization success stories continually prove the benefits of transitioning agency technologies into private hands, where the real impacts are made.” Spinoffs are part of NASA’s Space Technology Mission Directorate and its Technology Transfer program. Tech Transfer is charged with finding broad, innovative applications for NASA-developed technology through partnerships and licensing agreements, ensuring agency investments benefit the nation and the world. To read the latest issue of Spinoff, visit: https://spinoff.nasa.gov -end- Jimi Russell Headquarters, Washington 202-358-1600 james.j.russell@nasa.gov Share Details Last Updated Jan 29, 2024 LocationNASA Headquarters Related TermsSpace Technology Mission DirectorateSpinoffsTechnology Transfer View the full article
  7. NASA/Joel Kowsky The Ingenuity Mars Helicopter’s aerial prototype is seen at the Smithsonian National Air and Space Museum’s Steve F. Udvar-Hazy Center in Chantilly, Va, Dec. 15, 2023. The prototype, which was the first to prove it was possible to fly in a simulated Mars environment at NASA’s Jet Propulsion Laboratory, was donated to the museum. Ingenuity’s history-making mission on Mars recently came to an end after one or more of its rotor blades sustained damage during landing, rendering it incapable of flight. Originally designed as a technology demonstration to perform up to five experimental test flights over 30 days, the first aircraft on another world operated from the Martian surface for almost three years, performed 72 flights, and flew more than 14 times farther than planned while logging more than two hours of total flight time. Join the celebration of Ingenuity’s successful mission by using the #ThanksIngenuity hashtag on social media. Image Credit: NASA/Joel Kowsky View the full article
  8. 1 min read Thank You, Jovian Vortex Hunters! The Hunt Is Over…for Now. Some of the vortices identified by Jovian Vortex Hunter volunteers. NASA/JPL-Caltech/SwRI/MSSS/Sankar We did it! The Jovian Vortex Hunter project, launched on Zooniverse in June 2022, is out of data as of December 23, 2023. Over 6,000 registered volunteers joined the project to view images from NASA’s JunoCam instrument of the swirling clouds in Jupiter’s atmosphere and draw on them using a computer mouse. Together, they contributed over a million marked-up images indicating exciting features such as vortices, where winds move in circular patterns. If you’re one of these volunteers, thank you! The newly marked-up data from the Jovian Vortex Hunters project revealed more than 7,000 vortexes, a much bigger collection than earlier studies contained. The hard work of our volunteers resulted in trends nobody had seen before! For example, the new data shows that white and dark ovals are more prominent in the higher latitudes, while the brown vortices are in the mid-latitudes. Want to see those trends (and others) for yourself? Read the Jovian Vortex Hunters Blog! And stay tuned… The science team is hard at work analyzing the data and writing up papers on the results. They hope to launch another round of the Jovian Vortex Hunters project soon. Share Details Last Updated Jan 29, 2024 Editor NASA Science Editorial Team Related Terms Citizen Science Planetary Science View the full article
  9. Launch of Northrop Grumman’s 20th Cargo Mission to the Space Station (Official NASA Broadcast)
  10. An Axiom Space engineer wearing the AxEMU (Axiom Extravehicular Mobility Unit) spacesuit kneels to collect simulated lunar samples using a scoop during testing at NASA’s Johnson Space Center.Axiom Space As part of NASA’s Artemis campaign, the agency is working to land astronauts on the lunar surface during Artemis III, laying the groundwork for a long-term human presence at the Moon for the benefit of all. When the Artemis astronauts take their first steps near the South Pole of the Moon, they will be wearing a spacesuit developed by Axiom Space. In the time since NASA selected the company to provide the spacesuit and supporting systems for Artemis III, Axiom Space has continued to progress with spacesuit design and testing. In late 2023, NASA and Axiom Space test subjects wore the next-generation lunar spacesuit during testing at NASA’s Johnson Space Center in Houston, where they performed a number of maneuverability tasks that will be required during moonwalks, such as bending down to pick up lunar samples while using lunar geology tools. Axiom Space will continue to test the lunar spacesuit in facilities such as NASA’s Neutral Buoyancy Laboratory, one of the world’s largest indoor pools that can simulate a partial gravity environment, as the company works to finalize the spacesuit’s design. These tests are integral to ensuring the spacesuit is effective and complies with NASA’s safety and performance requirements. Through Artemis, NASA will land the first woman, the first person of color, and its first international partner astronaut on the surface of the Moon, paving the way for a long-term lunar presence and serving as a steppingstone to send the first astronauts to Mars. An Axiom Space engineer uses a hammer and chisel to chip off simulated lunar rocks while wearing the AxEMU (Axiom Extravehicular Mobility Unit) spacesuit during testing at NASA’s Johnson Space Center.Axiom Space An Axiom Space engineer uses tongs to pick up a simulated lunar rock while wearing the AxEMU (Axiom Extravehicular Mobility Unit) spacesuit during testing at NASA’s Johnson Space Center.Axiom SpaceView the full article
  11. 6 Min Read NASA’s Webb Depicts Staggering Structure in 19 Nearby Spiral Galaxies Webb’s set of 19 PHANGS images of face-on spiral galaxies. Credits: NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team It’s oh-so-easy to be absolutely mesmerized by these spiral galaxies. Follow their clearly defined arms, which are brimming with stars, to their centers, where there may be old star clusters and – sometimes – active supermassive black holes. Only NASA’s James Webb Space Telescope can deliver highly detailed scenes of nearby galaxies in a combination of near- and mid-infrared light – and a set of these images was publicly released today. The James Webb Space Telescope observed 19 nearby face-on spiral galaxies in near- and mid-infrared light as part of its contributions to the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) program. PHANGS also includes images and data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, which included observations taken in ultraviolet, visible, and radio light. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), PHANGS Team, Elizabeth Wheatley (STScI) These Webb images are part of a large, long-standing project, the Physics at High Angular resolution in Nearby GalaxieS (PHANGS) program, which is supported by more than 150 astronomers worldwide. Before Webb took these images, PHANGS was already brimming with data from NASA’s Hubble Space Telescope, the Very Large Telescope’s Multi-Unit Spectroscopic Explorer, and the Atacama Large Millimeter/submillimeter Array, including observations in ultraviolet, visible, and radio light. Webb’s near- and mid-infrared contributions have provided several new puzzle pieces. Face-on spiral galaxy, NGC 628, is split diagonally in this image: The James Webb Space Telescope’s observations appear at top left, and the Hubble Space Telescope’s on bottom right. Webb and Hubble’s images show a striking contrast, an inverse of darkness and light. Why? Webb’s observations combine near- and mid-infrared light and Hubble’s showcase visible light. Dust absorbs ultraviolet and visible light, and then re-emits it in the infrared. In Webb’s images, we see dust glowing in infrared light. In Hubble’s images, dark regions are where starlight is absorbed by dust. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team Hubble’s image of NGC 628 shows a densely populated face-on spiral galaxy anchored by its central region, which has a light yellow haze that takes up about a quarter of the view. The core is brightest at the center, washing out light from other objects. Delicate spiral arms start near the center and extend to the edges, rotating counterclockwise. There is more brown dust beginning at the center, but as the arms extend outward, brown dust lanes alternate with diffuse lines of bright blue stars. Throughout the spiral arms, there are bright pink patches of star-forming clusters. NASA, STScI Spiral galaxy NGC 628 is 32 million light-years away in the constellation Pisces. Webb’s image of NGC 628 shows a densely populated face-on spiral galaxy anchored by its central region, which has a light blue haze that takes up about a quarter of the view. In this circular core is the brightest blue area. Within the core are populations of older stars, represented by many pinpoints of blue light. Spiny spiral arms made of stars, gas, and dust also start at the center, largely starting in the wider area of the blue haze. The spiral arms extend to the edges, rotating counterclockwise. The spiraling filamentary structure looks somewhat like a cross section of a nautilus shell. The arms of the galaxy are largely orange, ranging from dark to bright orange. Scattered across the packed scene are some additional bright blue pinpoints of light, which are stars spread throughout the galaxy. In areas where there is less orange, it is darker, and some dark regions look more circular. A prominent dark “bubble” appears to the top left of the blue core. And a wider, elliptical “bubble” to the bottom right. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team “Webb’s new images are extraordinary,” said Janice Lee, a project scientist for strategic initiatives at the Space Telescope Science Institute in Baltimore. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.” Excitement rapidly spread throughout the team as the Webb images flooded in. “I feel like our team lives in a constant state of being overwhelmed – in a positive way – by the amount of detail in these images,” added Thomas Williams, a postdoctoral researcher at the University of Oxford in the United Kingdom. Spiral galaxy NGC 1300 is 69 million light-years away in the constellation Eridanus. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team Spiral galaxy NGC 1087 is 80 million light-years away in the constellation Cetus. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team Follow the Spiral Arms Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images, which sparkle in blue tones. Some stars are spread throughout the spiral arms, but others are clumped tightly together in star clusters. The telescope’s MIRI (Mid-Infrared Instrument) data highlights glowing dust, showing us where it exists around and between stars. It also spotlights stars that haven’t yet fully formed – they are still encased in the gas and dust that feed their growth, like bright red seeds at the tips of dusty peaks. “These are where we can find the newest, most massive stars in the galaxies,” said Erik Rosolowsky, a professor of physics at the University of Alberta in Edmonton, Canada. Spiral galaxy NGC 1566 is 60 million light-years away in the constellation Dorado. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team Something else that amazed astronomers? Webb’s images show large, spherical shells in the gas and dust. “These holes may have been created by one or more stars that exploded, carving out giant holes in the interstellar material,” explained Adam Leroy, a professor of astronomy at the Ohio State University in Columbus. Now, trace the spiral arms to find extended regions of gas that appear red and orange. “These structures tend to follow the same pattern in certain parts of the galaxies,” Rosolowsky added. “We think of these like waves, and their spacing tells us a lot about how a galaxy distributes its gas and dust.” Study of these structures will provide key insights about how galaxies build, maintain, and shut off star formation. Spiral galaxy NGC 2835 is 35 million light-years away in the constellation Hydra. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team Dive Into the Interior Evidence shows that galaxies grow from inside out – star formation begins at galaxies’ cores and spreads along their arms, spiraling away from the center. The farther a star is from the galaxy’s core, the more likely it is to be younger. In contrast, the areas near the cores that look lit by a blue spotlight are populations of older stars. What about galaxy cores that are awash in pink-and-red diffraction spikes? “That’s a clear sign that there may be an active supermassive black hole,” said Eva Schinnerer, a staff scientist at the Max Planck Institute for Astronomy in Heidelberg, Germany. “Or, the star clusters toward the center are so bright that they have saturated that area of the image.” Spiral galaxy NGC 1512 is 30 million light-years away in the constellation Horologium. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team Spiral galaxy NGC 1385 is 30 million light-years away in the constellation Fornax. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team Research Galore There are many avenues of research that scientists can begin to pursue with the combined PHANGS data, but the unprecedented number of stars Webb resolved are a great place to begin. “Stars can live for billions or trillions of years,” Leroy said. “By precisely cataloging all types of stars, we can build a more reliable, holistic view of their life cycles.” In addition to immediately releasing these images, the PHANGS team has also released the largest catalog to date of roughly 100,000 star clusters. “The amount of analysis that can be done with these images is vastly larger than anything our team could possibly handle,” Rosolowsky emphasized. “We’re excited to support the community so all researchers can contribute.” Spiral galaxy NGC 1672 is 60 million light-years away in the constellation Dorado. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team Webb Telescopes view face-on of spiral galaxy NGC 4254. NASA, ESA, CSA, STScI, Janice Lee (STScI), Thomas Williams (Oxford), and the PHANGS team See the full set of 19 images from both Webb and Hubble and download them at full resolution. The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency. Downloads Right click the images in this article to open a larger version in a new tab/window. Download full resolution images for this article from the Space Telescope Science Institute. Access These Images on the MAST Archive Media Contacts Laura Betz/NASA – laura.e.betz@nasa.gov, Rob Gutro/NASA– rob.gutro@nasa.gov NASA’s Goddard Space Flight Center, , Greenbelt, Md. Claire Blome – cblome@stsci.edu, Christine Pulliam/STScI – cpulliam@stsci.edu Space Telescope Science Institute, Baltimore, Md. Related Information Galaxy Types Galaxy Evolution Infrared Astronomy Related Article: NASA’s Webb Reveals Intricate Networks of Gas and Dust in Nearby Galaxies PHANGS Website for Researchers Access These Images on the MAST Archive More Webb News – https://science.nasa.gov/mission/webb/latestnews/ More Webb Images – https://science.nasa.gov/mission/webb/multimedia/images/ Webb Mission Page – https://science.nasa.gov/mission/webb/ Related For Kids What is a galaxy? Types of galaxies What is the Webb Telescope? SpacePlace for Kids En Español Ciencia de la NASA NASA en español Space Place para niños Keep Exploring Related Topics James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Galaxies Galaxies Stories Universe Discover the universe: Learn about the history of the cosmos, what it’s made of, and so much more. Share Details Last Updated Jan 29, 2024 Editor ssabia Related Terms Astrophysics Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Hubble Space Telescope James Webb Space Telescope (JWST) Missions Science & Research Spiral Galaxies The Universe View the full article
  12. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA completed a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 27, marking the halfway point in a critical test series to support future SLS (Space Launch System) missions to the Moon and beyond as NASA explores the secrets of the universe for the benefit of all. NASA/Danny Nowlin NASA completed the sixth of 12 scheduled RS-25 engine certification tests in a critical series for future flights of the agency’s SLS (Space Launch System) rocket as engineers conducted a full-duration hot fire Jan. 27 at NASA’s Stennis Space Center near Bay St. Louis, Mississippi. The current series builds on previous hot fire testing conducted at NASA Stennis to help certify production of new RS-25 engines by lead contractor Aerojet Rocketdyne, an L3 Harris Technologies company. The new engines will help power NASA’s SLS rocket on future Artemis missions to the Moon and beyond, beginning with Artemis V. Having reached the halfway point in a 12-test RS-25 certification series, teams at NASA’s Stennis Space Center will install a second production nozzle (shown) on the engine to gather additional performance data during the remaining scheduled hot fires. Aerojet Rocketdyne NASA completed a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 27, marking the halfway point in a critical test series to support future SLS (Space Launch System) missions to the Moon and beyond as NASA explores the secrets of the universe for the benefit of all. NASA/Danny Nowlin NASA completed a full-duration, 500-second hot fire of an RS-25 certification engine Jan. 27, marking the halfway point in a critical test series to support future SLS (Space Launch System) missions to the Moon and beyond as NASA explores the secrets of the universe for the benefit of all. NASA/Danny Nowlin Operators fired the RS-25 engine on the Fred Haise Test Stand for almost eight-and-a-half minutes (500 seconds) – the same amount of time needed to help launch SLS – and at power levels ranging between 80% to 113%. New RS-25 engines will power up to the 111% level to provide additional thrust for launch of SLS. Testing up to the 113% power level provides a margin of operational safety. Now at the halfway point in the series, teams will install a new certification nozzle on the engine. Installation of the new nozzle will allow engineers to gather additional performance data from a second production unit. Following installation next month, testing will resume at Stennis with six additional hot fires scheduled through March. For each Artemis mission, four RS-25 engines, along with a pair of solid rocket boosters, power the SLS, producing more than 8.8 million pounds of thrust at liftoff. Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. For information about NASA’s Stennis Space Center, visit: Stennis Space Center – NASA Share Details Last Updated Jan 29, 2024 EditorNASA Stennis CommunicationsContactC. Lacy Thompsoncalvin.l.thompson@nasa.gov / (228) 688-3333LocationStennis Space Center Related TermsStennis Space CenterMarshall Space Flight CenterSpace Launch System (SLS) Explore More 23 min read The Marshall Star for January 24, 2024 Article 5 days ago 3 min read NASA’s IXPE Awarded Prestigious Prize in High-energy Astronomy Article 6 days ago 28 min read The Marshall Star for January 17, 2024 Article 2 weeks ago Keep Exploring Discover More Topics From NASA Doing Business with NASA Stennis About NASA Stennis Visit NASA Stennis NASA Stennis Media Resources View the full article
  13. Remembering Our Fallen Heroes on This Week @NASA – January 26, 2024
  14. NASA NASA has awarded a contract to Booz Allen Hamilton Inc. of McLean, Virginia, for the maintenance and operation of incident reporting programs and continuing development to improve current and future reporting systems. The Aviation Safety Reporting System and Related Systems award is a cost-plus-fixed-fee indefinite-delivery/indefinite-quantity contract managed by the Human Systems Integration Division at NASA’s Ames Research Center in California’s Silicon Valley. The contract will support NASA’s Aviation Safety Reporting System and the agency’s Confidential Close Call Reporting System (C3RS). The award for continuation of work includes a 60-day phase-in period beginning Friday, Feb. 9, a two-year base period beginning April 9, followed by a two-year and a one-year option ending on April 8, 2029. The potential total value of the contract is roughly $38.4 million. The Aviation Safety Reporting System, managed out of NASA Ames on behalf of the Federal Aviation Administration, collects voluntarily submitted aviation safety incident and situation reports and alerts the FAA to related hazards. The group also works to diagnose the underlying causes of each reported event. The C3RS railroad reporting system, also managed by Ames, collects and analyzes reports on unsafe conditions or events in the railroad industry to help prevent more serious incidents in the future. Work performed under the contract will be conducted at Booz Allen Hamilton’s facilities in Sunnyvale, California, may include development of additional related systems by providing maintenance and operation of voluntary, independent, and confidential incident reporting programs. For more information about NASA and agency programs, visit: https://www.nasa.gov. -end- Abbey Donaldson Headquarters, Washington 202-358-1600 abbey.a.donaldson@nasa.gov Hillary Smith Ames Research Center, Silicon Valley, Calif. 650-604-4789 hillary.smith@nasa.gov Share Details Last Updated Jan 26, 2024 LocationNASA Headquarters Related TermsAmes Research Center View the full article
  15. Northrop Grumman’s Cygnus cargo craft is pictured moments away from being captured by the Canadarm2 robotic arm controlled by NASA astronaut and Expedition 69 Flight Engineer Woody Hoburg from inside the International Space Station.NASA NASA invites the public to participate in virtual activities ahead of the launch of Northrop Grumman’s 20th commercial resupply services mission for the agency. Mission teams are targeting 12:29 p.m. EST Monday, Jan. 29, for launch of Northrop Grumman’s Cygnus cargo spacecraft on a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Cygnus will deliver new science investigations, food, supplies, and equipment to the crew aboard the International Space Station. Members of the public can register to attend the launch virtually. As a virtual guest, you have access to curated resources, schedule changes, and mission-specific information delivered straight to your inbox. Following each activity, virtual guests will receive a commemorative stamp for their virtual guest passport. Live launch coverage will begin at 12:15 p.m. and air on NASA+, NASA Television, the NASA app, YouTube, and on the agency’s website, with prelaunch events starting Wednesday, Jan. 24. Learn how to stream NASA TV through a variety of platforms. For more information, follow NASA’s International Space Station blog. View the full article
  16. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) On Jan. 19, 2024, at 10:20 a.m. EST, the JAXA (Japan Aerospace Exploration Agency) Smart Lander for Investigating Moon (SLIM) landed on the lunar surface. Five days later, NASA’s Lunar Reconnaissance Orbiter (LRO) spacecraft passed over the landing site and photographed SLIM. NASA’s Lunar Reconnaissance Orbiter captured this image of the JAXA (Japan Aerospace Exploration Agency) SLIM lander on the Moon’s surface on Jan. 24, 2024. SLIM landed at 13.3160 degrees south latitude, 25.2510 degrees east longitude, at an elevation of minus 2,992 feet (minus 912 meters). The image is 2,887 feet wide (880 meters), and lunar north is up. (LROC NAC frame M14607392143L)NASA/Goddard/Arizona State University LRO acquired the image at an altitude of about 50 miles (80 km). Bright streaks on the left side of the image are rocky material ejected from the nearby, relatively young Shioli crater. Japan is the fifth nation to complete a soft landing on the lunar surface. This image pair shows LRO views of the area surrounding the SLIM site before (frame M1254087075L) and after (frame M1460739214L) its landing. Note the slight change in reflectance around the lander due to engine exhaust sweeping the surface. These images are enlarged by a factor of two, and are about 1,444 feet (440 meters) wide.NASA/Goddard/Arizona State University A composite image dividing the before image from after. Features that are the same in both images disappear, highlighting the changes in surface brightness from the rocket plume. The image is 2,887 feet wide (880 meters), and lunar north is up.NASA/Goddard/Arizona State University LRO is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, for the agency’s Science Mission Directorate at NASA Headquarters in Washington. Launched on June 18, 2009, LRO has collected a treasure trove of data with its seven powerful instruments, making an invaluable contribution to our knowledge about the Moon. Arizona State University manages and operates the Lunar Reconnaissance Orbiter Camera, LROC. More on this story from Arizona State University's LRO Camera website Media Contact: Nancy N. Jones NASA’s Goddard Space Flight Center, Greenbelt, Md. Facebook logo @NASAGoddard@NASAMoon @NASAGoddard@NASAMoon Instagram logo @NASAGoddard@NASASolarSystem Share Details Last Updated Jan 26, 2024 EditorMadison ArnoldContactNancy N. Jonesnancy.n.jones@nasa.govLocationGoddard Space Flight Center Related TermsLunar Reconnaissance Orbiter (LRO)Earth's MoonGoddard Space Flight CenterThe Solar System View the full article
  17. 5 min read 2023 NASA International Space Apps Challenge Announces 10 Global Winners This Earth observation was captured during a day pass by the Expedition 40 crew aboard the International Space Station on September 2, 2014. European Space Agency Astronaut Alexander Gerst Ten teams from around the world have been named the Global Winners of the 2023 NASA International Space Apps Challenge. The Challenge is the largest annual global hackathon, and gives participants the opportunity to engage with real world problems we face on Earth and in space. The 2023 NASA Space Apps Challenge welcomed 57,999 registered participants, including space, science, technology, and storytelling enthusiasts of all ages. Participants came together from 152 countries and territories to celebrate a Year of Open Science with the theme of “Explore Open Science Together” in collaboration with NASA’s Transform to Open Science (TOPS). Teams used NASA and Space Agency Partner free and open data to address challenges written by NASA Subject Matter Experts. Challenges ranged in topic from climate change to biodiversity, space exploration, and data visualization. The 2023 Global Winners represent the highest rated projects out of 5,556 submissions, as determined by subject matter experts from NASA and 13 Space Agency Partners. “The NASA International Space Apps Challenge is the perfect example of global cooperation – uniting the next generation of innovators across 152 countries this year into a community that contributes to NASA’s mission for the benefit of all,” said Nicola Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington. “Lowering the boundaries of science through the NASA Space Apps Challenge is paramount for inspiring the next generation – the Artemis Generation – so that they can solve today’s problems on Earth and in space for tomorrow’s future. Congratulations to the 2023 Global Winners of the NASA Space Apps Challenge.” In this year’s live Global Winners announcement, former NASA astronaut Dr. Cady Coleman praised the innovation and collaboration of the NASA Space Apps community and the Global Winners. “Participants’ innovative solutions using NASA and Space Agency Partner open data and their commitment to global collaboration are paving the way for a more inclusive scientific community for the next generation of scientists, technologists, designers, and storytellers,” said Coleman. “Their projects show the power of what we can accomplish with open science and knowledge sharing.” The ten 2023 NASA Space Apps Challenge Global Winners are: Best Use of Science Award: LunarTech Ensemble Challenge: Make a Moonquake Map 2.0! Country/Territory: Egypt This team developed a website and immersive game to help people understand and visualize the lunar seismic data gathered by instruments left behind during NASA’s Apollo missions. Learn more about LunarTech Ensemble’s winning project Best Use of Data Award: Storm Prophet Challenge: Develop the Oracle of DSCOVR Country/Territory: Ukraine Team “Storm Prophet” created a data model to accurately predict geomagnetic storm levels using data analysis and LSTM models. Learn more about Storm Prophet’s winning project Best Use of Technology Award: Spacebee Challenge: Make a Moonquake Map 2.0! Country/Territory: United States and Argentina (Universal Event) This team developed a website that integrates moonquake data collected by seismometers deployed on Apollo missions, including the moonquake locations, type of moonquake, and date and data plots based on ALSEP Apollo experiments data. Learn more about Spacebee’s winning project Galactic Impact Award: Greetings from Earth!! Challenge: Ocean Gardens Country/Territory: Brazil This team developed an interactive website that provides a visualization of NASA data that allows the user to visualize oceans not merely as vast expanses of water, but as the gardens of our planet, regulating climate and nurturing diverse life forms. Learn more about Greetings from Earth!!’s winning project Best Mission Concept Award: ASTROGENESIS Challenge: Planetary Tourism Office Country/Territory: Peru This team created an interactive platform that allows you to explore the cosmos by creating personalized itineraries to visit planets, moons, and other celestial destinations. Learn more about ASTROGENESIS’s winning project Most Inspirational Award: Space Quest Maidens – Donzelas da Missao Espacial Challenge: Eclipses: Perspective is Everything Country/Territory: Brazil This team developed an interactive educational tool called ECLIPSE: CELESTIAL SHADOWS to teach children about the mechanics of eclipses. Learn more about Space Quest Maidens – Donzelas da Missão Espacials winning project Best Storytelling Award: TeamVoyagers Challenge: Everything Starts with Water Country/Territory: Bangladesh Team Voyagers built an interactive web-based game that tells the imperative story of the complexities of the water cycle, as well as the urgent need to understand the climate’s impact on freshwater resources. Learn more about Team Voyagers’ winning project Global Connection Award: Arcobaleno Challenge: Immersed in the Sounds of Space Country/Territory: Brazil Team Arcoboleno created a method that transforms 2D and 3D images into a sensory experience. Their project aims to provide people with sight impairments a way to connect with the world and explore the cosmos through the sonification of NASA open data. Learn more about Arcobaleno’s winning project Art & Technology Award: Oogway Comics Challenge: Habitable Exoplanets: Creating Worlds Beyond Our Own Country/Territory: Tajikistan Oogway Comics used NASA data to conceptualize an exoplanet suitable for life and developed a comic book to tell the planet’s story. Learn more about Oogway Comics’ winning project Local Impact Award: $quality_over_quantity Challenge: Explore a Biodiversity Hotspot with Imaging Spectroscopy Country/Territory: Taiwan This team developed a method to explore local biodiversity hotspots and prioritize protection of areas with more efficiency. Learn more about $quality_over_quantitys’ winning project You can watch the Global Winners Announcement HERE. Interested in participating in the 2024 NASA Space Apps Challenge? Mark your calendars for Oct. 5 and 6! Registration will open later this year. At that time, participants will be able to register for a Local Event hosted by NASA Space Apps Local Leads around the world. Space Apps is funded by NASA’s Earth Science Division through a contract with Booz Allen Hamilton, Mindgrub, and SecondMuse. Share Details Last Updated Jan 26, 2024 Related Terms Astrophysics Biological & Physical Sciences Earth Science Get Involved Heliophysics Planetary Science Science Mission Directorate Uncategorized Explore More 1 min read Hubble Studies a Sparkling Galaxy Pair Article 4 hours ago 1 min read Hubble Views a Galaxy Settling into Old Age Article 6 hours ago 2 min read Hubble Captures a Faint Bridge of Stars Article 1 day ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  18. Teams with NASA’s Exploration Ground Systems Program began installing the four emergency egress baskets at Launch Pad 39B in preparation for NASA’s Artemis II crewed mission at the agency’s Kennedy Space Center in Florida. In the event of an emergency at the pad during the launch countdown, these baskets, similar to gondolas on ski lifts, will take the astronauts and pad personnel safely from the mobile launcher to the base of the pad where emergency transport vehicles will drive them away. Following installation, teams will thoroughly test the baskets by placing water tanks filled at different levels to help simulate the different weights of the passengers and releasing them. Once the basket testing is complete, teams will perform an emergency egress demonstration with the Artemis II crew to practice the route the astronauts will take during an emergency. The emergency egress system is one of several new systems and upgrades being installed in support of safety for crewed Artemis missions. To see more of the egress basket installations, click here. Image Credit: NASA/Isaac Watson View the full article
  19. jsc2023e070781 (Oct. 4, 2023) — Official SpaceX Crew-8 portrait with Roscosmos cosmonaut and Mission Specialist Aleksandr Grebenkin, and Pilot Michael Barratt, Commander Matthew Dominick, and Mission Specialist Jeanette Epps, all three NASA astronauts.NASA/Bill Stafford Four new crew members are preparing to launch to the International Space Station as part of NASA’s SpaceX Crew-8 mission. NASA astronauts Matthew Dominick, Michael Barratt, and Jeanette Epps, and Roscosmos cosmonaut Alexander Grebenkin will lift off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida to perform research, technology demonstrations, and maintenance activities aboard the microgravity laboratory. The flight is the eighth crew rotation mission with SpaceX to station, and the ninth human spaceflight as part of NASA’s Commercial Crew Program. The cadre will fly aboard the SpaceX Dragon spacecraft, named Endeavour, which previously flew NASA’s SpaceX Demo Mission-2, Crew-2 and Crew-6, in addition to Axiom Mission 1, the first commercial astronaut mission to the space station. As teams progress through Dragon milestones for Crew-8, they also are preparing a first-flight Falcon 9 booster for the mission. Once all rocket and spacecraft system checkouts are complete and all components are certified for flight, teams will mate Dragon to the Falcon 9 rocket in SpaceX’s hangar at the launch site. The integrated spacecraft and rocket will then be rolled to the pad and raised to vertical for a dry dress rehearsal with the crew and an integrated static fire test prior to launch. The Crew jsc2024e005947 (Jan. 12, 2024) — The crew of NASA’s SpaceX Crew-8 mission to the International Space Station poses for a photo during their Crew Equipment Interface Test at NASA’s Kennedy Space Center in Florida. The goal of the training is to rehearse launch day activities and get a close look at the spacecraft that will take them to the International Space Station.SpaceX Matthew Dominick will serve as commander for Crew-8, his first spaceflight, after being selected as an astronaut by NASA in 2017. He is from Wheat Ridge, Colorado, and earned a bachelor’s degree in electrical engineering from the University of San Diego, California, and a master’s in systems engineering from the Naval Postgraduate School in Monterey, California. He is an active-duty U.S. Navy astronaut. He graduated from the U.S. Naval Test Pilot School in Patuxent River, Maryland, and then served as a test pilot specializing in testing aircraft carriers’ landings and catapult launches. Follow @dominickmatthew on X. Michael Barratt is the Crew-8 pilot, making his third visit to the space station. In 2009, Barratt served as a flight engineer for Expeditions 19/20 as the station transitioned its standard crew complement from three to six and performed two spacewalks. He flew aboard the space shuttle Discovery in 2011 on STS-133, which delivered the Permanent Multipurpose Module and fourth Express Logistics Carrier. He has spent a total of 212 days in space. Born in Vancouver, Washington, he considers Camas, Washington, to be his hometown. Barratt earned a bachelor’s in zoology from the University of Washington, Seattle, and a Doctor of Medicine degree from Northwestern University in Chicago. He completed residencies in internal and aerospace medicine at Northwestern along with a master’s degree at Wright State University in Dayton, Ohio. After nine years as a NASA flight surgeon and project physician, Barratt joined the astronaut corps in 2000. During Expedition 70/71 on the International Space Station, he will serve as a mission specialist. Jeanette Epps was selected by NASA as an astronaut in 2009 and is a mission specialist aboard Crew-8, her first spaceflight, working with the commander and pilot to monitor the spacecraft during the dynamic launch and re-entry phases of flight. She is from Syracuse, New York, and earned a bachelor’s in physics from LeMoyne College in Syracuse, and a master’s in science and a doctorate in aerospace engineering from the University of Maryland at College Park. Prior to joining NASA, she worked at Ford Motor Co. and the Central Intelligence Agency. She was selected as an astronaut in July 2009 and has served on the Generic Joint Operation Panel working on space station crew efficiency, as a crew support astronaut for two expeditions, and as lead capsule communicator at NASA Johnson. Epps previously was assigned to NASA’s Boeing Starliner-1 mission. NASA reassigned Epps to allow Boeing time to complete development of Starliner while also continuing plans for astronauts to gain spaceflight experience for future mission needs. Follow @Astro_Jeanette on X. Roscosmos cosmonaut Alexander Grebenkin, who graduated from Irkutsk High Military Aviation School, Irkutsk, Russia, majoring in engineering, maintenance, and repair of aircraft radio navigation systems, also is flying on his first mission. He graduated from Moscow Technical University of Communications and Informatics with a degree in radio communications, broadcasting, and television. Grebenkin will serve as a flight engineer during Expeditions 70/71 aboard the International Space Station. Mission Overview jsc2023e066245 (Oct. 15, 2023) — The four SpaceX Crew-8 crew members (from left) Alexander Grebenkin from Roscosmos; Michael Barratt, Matthew Dominick, and Jeanette Epps, all NASA astronauts, are pictured training inside a Dragon mockup crew vehicle at SpaceX headquarters in Hawthorne, California.SpaceX Lifting off from Launch Pad 39A on a Falcon 9 rocket, Dragon will accelerate to approximately 17,500 mph, to dock with the space station. Once in orbit, the crew and SpaceX mission control in Hawthorne, California, will monitor a series of automatic maneuvers that will guide Dragon to the forward-facing port of the station’s Harmony module. The spacecraft is designed to dock autonomously, but the crew can take control and pilot manually, if necessary. After docking, Crew-8 will be welcomed inside the station by the seven-member crew of Expedition 70 and conduct several days of handover activities with the departing astronauts of NASA’s SpaceX Crew-7 mission. After a handover period, NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andy Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov of Crew-7 will undock from the space station and splash down off the coast of Florida. Crew-8 will conduct new scientific research to prepare for human exploration beyond low Earth orbit and benefit humanity on Earth. Experiments include using stem cells to create organoid models to study degenerative diseases, studying the effects of microgravity and UV radiation on plants at a cellular level, and testing whether wearing pressure cuffs on the legs could prevent fluid shifts and reduce health problems in astronauts. These are just a few of the more than 200 scientific experiments and technology demonstrations taking place during their mission. While aboard the orbiting laboratory, Crew-8 will see the arrival of both the SpaceX Dragon and the Roscosmos Progress cargo spacecraft. Crew-8 also is expected to welcome the agency’s Boeing Crew Flight Test astronauts and the first cargo flight of Sierra Space’s Dream Chaser. A Soyuz spacecraft with three new crew members, including NASA astronaut Tracy Dyson, will also launch during their stay, and the Soyuz carrying NASA astronaut Loral O’Hara will return to Earth. After completing a short handover with Crew-9 at the completion of the mission, Dragon with the four crew members aboard will autonomously undock, depart the space station, and re-enter Earth’s atmosphere. After splashdown off Florida’s coast, a SpaceX recovery vessel will pick up the spacecraft and crew, who then will be helicoptered back to shore. Commercial crew missions enable NASA to maximize use of the space station, where astronauts have lived and worked continuously for more than 23 years testing technologies, performing research, and developing the skills needed to operate future commercial destinations in low Earth orbit, and explore farther from Earth. Research conducted on the space station provides benefits for people on Earth and paves the way for future long-duration trips to the Moon and beyond through NASA’s Artemis missions. Get breaking news, images, and features from the space station on Instagram, Facebook, and X. Learn more about the space station, its research, and crew, at: https://www.nasa.gov/station View the full article
  20. NASA

    Astronaut Bob Hines

    “I have been interested in aviation for as long as I can remember. There are pictures of me at two years old and younger with my face pinned against the window, watching airplanes taxi around the airport. I had never not known that I wanted to be a pilot. The amazing engineering that goes into [airplanes], but certainly the freedom of flight is just spectacular. Being able to see the world from a different perspective is incredible, and getting to fly in space was the culmination of that, seeing the world from an entirely new vantage point. “One thing that surprised me was how emotional the launch piece is, especially for a first-time flier. One, it’s the culmination of these lifehood dreams where it’s taken so long to get here, and you’re finally getting to launch to space, which so few people have the privilege to do. Then, for a long-duration mission, you’re leaving your family and kids behind, and there’s that emotion as well. So, all those things piled up, it just makes for an incredibly special experience, and it’s amazing because eight and a half minutes later, after that engine lights, you’re in space, and you look back on it.” — Bob Hines, Astronaut, NASA’s Johnson Space Center Image Credit: NASA / Kjell Lindgren Interviewer: NASA / Tahira Allen Check out some of our other Faces of NASA. View the full article
  21. 1 min read Hubble Studies a Sparkling Galaxy Pair This new NASA Hubble Space Telescope image features a pair of interacting galaxies called, NGC 5410 and UGC 8932/PGC 49896. NASA/ESA/D. Bowen (Princeton University)/Processing: Gladys Kober (NASA/Catholic University of America) A pair of small, interacting galaxies shine in this new NASA Hubble Space Telescope image. The larger of the two galaxies is named NGC 5410 and was discovered in 1787 by British astronomer William Herschel. It spans 80,000 light-years across and has a bright white bar of stars at its center. It is also a spiral galaxy with a medium-sized nucleus and spread-out arms. NGC 5410 contains many young, blue star clusters, especially along its arms. The smaller of the two galaxies is called UGC 8932 or PGC 49896 and has a diameter of 60,000 light-years. It has a bright blue bar of stars at its core, indicating that it contains younger stars. Its shape is irregular, likely due to distortions from NGC 5410’s gravitational pull. The pair lies 180 million light-years away in the Canes Venatici constellation and can be seen from the northern hemisphere. Between the two galaxies lies a stream of stars, almost like a bridge, caused by their interaction. Hubble imaged this galaxy in 2023 to examine if interactions between dwarf galaxies create reservoirs of particles that fuel star formation. LEARN MORE: Hubble’s Cosmic Collisions Hubble Science: Galaxy Details and Mergers Hubble Science: Tracing the Growth of Galaxies Download this image Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Jan 26, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms Astrophysics Division Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Spiral Galaxies The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories Stars Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
  22. 1 min read Hubble Views a Galaxy Settling into Old Age The galaxy NGC 3384 takes center stage in this NASA Hubble Space Telescope image. ESA/Hubble & NASA/B. Lehmer et al. NGC 3384, visible in this image, has many of the characteristic features of so-called elliptical galaxies. Such galaxies glow diffusely, are rounded in shape, display few visible features, and rarely show signs of recent star formation. Instead, they are dominated by old, aging, and red-hued stars. This stands in contrast to the liveliness of spiral galaxies such as our home galaxy, the Milky Way, which possess significant populations of young, blue stars in spiral arms swirling around a bright core. However, NGC 3384 also displays a hint of disc-like structure towards its center, in the form of a central ‘bar’ of stars. Many spirals also boast such a bar, the Milky Way included; galactic bars are thought to funnel material through and around a galaxy’s core, which helps maintain and fuel the activities and processes occurring there. NGC 3384 is located approximately 35 million light-years away in the constellation Leo (The Lion). This image was taken using the NASA/ESA Hubble Space Telescope’s Advanced Camera for Surveys. Download this image Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Jan 25, 2024 Editor Andrea Gianopoulos Location Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Elliptical Galaxies Galaxies Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories Stars Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
  23. 3 Min Read Landing On Mars: A Tricky Feat! Perseverance Rover’s Entry, Descent and Landing Profile: This illustration shows the events that occur in the final minutes of the nearly seven-month journey that NASA’s Perseverance rover takes to Mars. In honor of Ingenuity’s final flight on The Red Planet, learn from Dave Prosper about what it takes to land on Mars. The Perseverance rover and Ingenuity helicopter landed in Mars’s Jezero crater on February 18, 2021, NASA’s latest mission to explore the red planet. Landing on Mars is an incredibly difficult feat that has challenged engineers for decades: while missions like Curiosity have succeeded, its surface is littered with the wreckage of many failures as well. Why is landing on Mars so difficult? Mars presents a unique problem to potential landers as it possesses a relatively large mass and a thin, but not insubstantial, atmosphere. The atmosphere is thick enough that spacecraft are stuffed inside a streamlined aeroshell sporting a protective heat shield to prevent burning up upon entry – but that same atmosphere is not thick enough to rely on parachutes alone for a safe landing, since they can’t catch sufficient air to slow down quickly enough. This is even worse for larger explorers like Perseverance, weighing in at 2,260 lbs (1,025 kg). Fortunately, engineers have crafted some ingenious landing methods over the decades to allow their spacecraft to survive what is called Entry, Descent, and Landing (EDL). Illustrations of the Entry, Descent, and Landing (EDL) sequences for Viking in 1976, NASA The Viking landers touched down on Mars in 1976 using heat shields, parachutes, and retrorockets. Despite using large parachutes, the large Viking landers fired retrorockets at the end to land at a safe speed. This complex combination has been followed by almost every mission since, but subsequent missions have innovated in the landing segment. The 1997 Mars Pathfinder mission added airbags in conjunction with parachutes and retrorockets to safely bounce its way to a landing on the Martian surface. Then three sturdy “petals” ensured the lander was pushed into an upright position after landing on an ancient floodplain. The Opportunity and Spirit missions used a very similar method to place their rovers on the Martian surface in 2004. Phoenix (2008) and Insight (2018) actually utilized Viking-style landings. Perseverance Rover’s Entry, Descent and Landing Profile: This illustration shows the events that occur in the final minutes of the nearly seven-month journey that NASA’s Perseverance rover takes to Mars. NASA/JPL-Caltech The large and heavy Curiosity rover required extra power at the end to safely land the car-sized rover, and so the daring “Sky Crane” deployment system was successfully used in 2012. After an initial descent using a massive heat shield and parachute, powerful retrorockets finished slowing down the spacecraft to about two miles per hour. The Sky Crane then safely lowered the rover down to the Martian surface using a strong cable. Its job done, the Sky Crane then flew off and crash-landed a safe distance away. Having proved the efficacy of the Sky Crane system, NASA used this same method to attempt a safe landing for Perseverance in February 2021! To rediscover the Mars 2020 mission, visit: https://mars.nasa.gov/mars2020/ Originally posted by Dave Prosper: December 2021 Last Updated by Kat Troche: January 2024 View the full article
  24. From left to right, NASA Administrator Bill Nelson, NASA Deputy Administrator Pam Melroy, and Deputy Chief of Mission for the Embassy of Israel Eliav Benjamin, place wreaths at the Space Shuttle Columbia Memorial during a ceremony that was part of NASA’s Day of Remembrance, Thursday, Jan. 25, 2024, at Arlington National Cemetery in Arlington, Va. The wreaths were laid in memory of those men and women who lost their lives in the quest for space exploration.NASA/Keegan Barber In honor of the members of the NASA family who lost their lives while furthering the cause of exploration and discovery for the benefit all, the agency hosted its annual Day of Remembrance Thursday, Jan. 25, 2024. Traditionally held on the fourth Thursday in January each year, NASA Day of Remembrance commemorates the crews of Apollo 1 and space shuttles Challenger and Columbia. “Our annual Day of Remembrance honors the sacrifice of the NASA family who lost their lives in the pursuit of discovery,” said NASA Administrator Bill Nelson. “While it is a solemn day, we are forever thankful that our fallen heroes shared their spirt of exploration with NASA, our country, and the world. Today, and every day, we embrace NASA’s core value of safety as we expand our reach in the cosmos for the benefit of all humanity.” Learn more about the Day of Remembrance. Image Credit: NASA/Keegan Barber View the full article
  25. NASA’s Northrop Grumman 20th commercial resupply mission will launch atop a SpaceX Falcon 9 rocket to deliver science and supplies to the International Space Station.NASA NASA’s Northrop Grumman 20th commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. NASA NASA, Northrop Grumman, and SpaceX are targeting 12:29 p.m. EST on Monday, Jan. 29, for the next launch to deliver science investigations, supplies, and equipment to the International Space Station. Filled with more than 7,800 pounds of supplies, the Cygnus cargo spacecraft, carried atop the SpaceX Falcon 9 rocket, will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. This launch is the 20th Northrop Grumman commercial resupply services mission to the orbital laboratory for the agency. The backup launch opportunity will be at 12:07 p.m. Tuesday, Jan. 30. Live launch coverage will begin at 12:15 p.m. and air on NASA+, NASA Television, the NASA app, YouTube, and on the agency’s website, with prelaunch events starting Wednesday, Jan. 24. Learn how to stream NASA TV through a variety of platforms Learn more at: nasa.gov/northropgrumman Northrop Grumman S.S. Patricia “Patty” Hilliard Robertson Patricia Robertson was selected as a NASA astronaut in 1998 and scheduled to fly to the International Space Station in 2002, before her untimely death in 2001 from injuries sustained in a private plane crash.NASA Arrival & Departure The Cygnus spacecraft will arrive at the orbiting laboratory at 3:35 a.m. Wednesday, Jan. 31, filled with supplies, hardware, and critical materials to directly support dozens of science and research investigations during Expeditions 70 and 71. NASA astronaut Jasmin Moghbeli will capture Cygnus using the station’s robotic arm, and NASA astronaut Loral O’Hara will act as backup. After capture, the spacecraft will be installed on the Unity module’s Earth-facing port and will spend about six months connected to the orbiting laboratory before departing in May. Cygnus also provides the operational capability to reboost the station’s orbit. After departure, the Kentucky Re-entry Probe Experiment-2 (KREPE-2), stowed inside Cygnus, will take measurements to demonstrate a thermal protection system for spacecraft and their contents during re-entry in Earth’s atmosphere, which can be difficult to replicate in ground simulations. Live coverage of Cygnus’ arrival will begin at 2 a.m., Wednesday, Jan. 31. NASA astronauts Jasmin Moghbeli and Loral O’Hara will be on duty during the Cygnus cargo craft’s aproach and rendezvous. Moghbeli will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as O’Hara monitors the vehicle’s arrival.NASA Research Highlights Scientific investigations traveling in the Cygnus spacecraft include tests of a 3D metal printer, semiconductor manufacturing, and thermal protection systems for re-entry to Earth’s atmosphere. 3D Printing in Space Samples produced by the Metal 3D Printer prior to launch to the space station.ESA (European Space Agency) An investigation from ESA (European Space Agency), Metal 3D Printer tests additive manufacturing or 3D printing of small metal parts in microgravity. “This investigation provides us with an initial understanding of how such a printer behaves in space,” said Rob Postema of ESA. “A 3D printer can create many shapes, and we plan to print specimens, first to understand how printing in space may differ from printing on Earth and second to see what types of shapes we can print with this technology. In addition, this activity helps show how crew members can work safely and efficiently with printing metal parts in space.” Results could improve understanding of the functionality, performance, and operations of metal 3D printing in space, as well as the quality, strength, and characteristics of the printed parts. Resupply presents a challenge for future long-duration human missions. Crew members could use 3D printing to create parts for maintenance of equipment on future long-duration spaceflight and on the Moon or Mars, reducing the need to pack spare parts or to predict every tool or object that might be needed, saving time and money at launch. Advances in metal 3D printing technology also could benefit potential applications on Earth, including manufacturing engines for the automotive, aeronautical, and maritime industries and creating shelters after natural disasters. Semiconductor Manufacturing in Microgravity The gas supply modules and production module for Redwire’s MSTIC investigation.Redwire Manufacturing of Semiconductors and Thin-Film Integrated Coatings (MSTIC) examines how microgravity affects thin films that have a wide range of uses. This technology could enable autonomous manufacturing to replace the many machines and processes currently used to make a wide range of semiconductors, potentially leading to the development of more efficient and higher-performing electrical devices. Manufacturing semiconductor devices in microgravity also may improve their quality and reduce the materials, equipment, and labor required. On future long-duration missions, this technology could provide the capability to produce components and devices in space, reducing the need for resupply missions from Earth. The technology also has applications for devices that harvest energy and provide power on Earth. Modeling Atmospheric Re-Entry An artist’s rendering of one of the Kentucky Re-entry Probe Experiment-2 (KREPE-2) capsules during re-entry.University of Kentucky Scientists who conduct research on the space station often return their experiments to Earth for additional analysis and study. But the conditions that spacecraft experience during atmospheric reentry, including extreme heat, can have unintended effects on their contents. Thermal protection systems used to shield spacecraft and their contents are based on numerical models that often lack validation from actual flight, which can lead to significant overestimates in the size of system needed and take up valuable space and mass. Kentucky Re-entry Probe Experiment-2 (KREPE-2), part of an effort to improve thermal protection system technology, uses three capsules outfitted with different heat shield materials and a variety of sensors to obtain data on actual reentry conditions. “Building on the success of KREPE-1, we have improved the sensors to gather more measurements and improved the communication system to transmit more data,” said Alexandre Martin, principal investigator at the University of Kentucky. “We have the opportunity to test several heat shields provided by NASA that have never been tested before, and another manufactured entirely at the University of Kentucky, also a first.” The capsules can be outfitted for other atmospheric re-entry experiments, supporting improvements in heat shielding for applications on Earth, such as protecting people and structures from wildfires. Remote Robotic Surgery The surgical robot during testing on the ground before launch.Virtual Incision Corporation Robotic Surgery Tech Demo tests the performance of a small robot that can be remotely controlled from Earth to perform surgical procedures. Researchers plan to compare procedures in microgravity and on Earth to evaluate the effects of microgravity and time delays between space and ground. The robot uses two “hands” to grasp and cut rubber bands, which simulate surgical tissue and provide tension that is used to determine where and how to cut, according to Shane Farritor, chief technology officer at Virtual Incision Corp., developer of the investigation with the University of Nebraska. Longer space missions increase the likelihood that crew members may need surgical procedures, whether simple stiches or an emergency appendectomy. Results from this investigation could support development of robotic systems to perform these procedures. In addition, the availability of a surgeon in rural areas of the country declined nearly a third between 2001 and 2019. Miniaturization and the ability to remotely control the robot help make surgery available anywhere and anytime on Earth. NASA has sponsored research on miniature robots for more than 15 years. In 2006, remotely operated robots performed procedures in the underwater NASA’s Extreme Environment Mission Operations (NEEMO) 9 mission. In 2014, a miniature surgical robot performed simulated surgical tasks on the zero-g parabolic airplane. Growing Cartilage Tissue in Space The Janus Base Nano-matrix anchor cartilage cells (red) and facilitates the formation of the cartilage tissue matrix (green).University of Connecticut Compartment Cartilage Tissue Construct demonstrates two technologies, Janus Base Nano-Matrix and Janus Base Nanopiece. Nano-Matrix is an injectable material that provides a scaffold for formation of cartilage in microgravity, which can serve as a model for studying cartilage diseases. Nanopiece delivers an RNA (ribonucleic acid)-based therapy to combat diseases that cause cartilage degeneration. Cartilage has a limited ability to self-repair and osteoarthritis is a leading cause of disability in older patients on Earth. Microgravity can trigger cartilage degeneration that mimics the progression of aging-related osteoarthritis but happens more quickly, so research in microgravity could lead to faster development of effective therapies. Results from this investigation could advance cartilage regeneration as a treatment for joint damage and diseases on Earth and contribute to development of ways to maintain cartilage health on future missions to the Moon and Mars. Cargo Highlights SpaceX’s Falcon 9 rocket will launch the Northrop Grumman Cygnus spacecraft to the International Space Station NASA’s Northrop Grumman 20th commercial resupply mission will carry 7,805 pounds (3,540 kilograms) of cargo to the International Space Station.NASA Hardware Hydrogen Dome Assembly includes all hydrogen and oxygen electrolysis replacement components within the International Space Station’s Oxygen Generation Assembly. These items are contained in a sub-ambient dome maintained at near vacuum pressure, designed to contain an explosion or fire in the electrolysis cell stack during operation. The dome provides a second barrier to protect against cabin air internal leakage and external leakage into the rack environment, and is pressurized with nitrogen gas for launch. This will launch as an on-orbit spare. Ion Exchange Bed — The ion exchange bed replacement unit consists of a pair of tubes in series containing ion exchange resins, which remove organic acids from the catalytic reactor effluent, and microbial check valve resin, which injects iodine into the water as a biocide agent. This will launch as an on-orbit spare. Catalytic Reactor — The catalytic reactor replacement unit oxidizes volatile organics from the wastewater so they can be removed by the gas separator and ion exchange bed replacement units as part of the station’s water recycling system. This will launch as an on-orbit spare. Biocide Maintenance Canister — The Internal Thermal Control System Coolant Maintenance Assembly is designed to administer o-phthalaldehyde, a biocide used to purify the internal cooling loops in the Destiny laboratory, and the Harmony, Tranquility, Columbus, and Japanese Experiment Modules, to prevent the growth of microorganisms in the thermal control system. This unit will replace the current one installed in the laboratory. Cylinder Flywheel — The ARED (Advanced Resistive Exercise Device) cylinder-flywheel assemblies provide the resistive loads for astronaut anaerobic exercise. The cylinder flywheels impart inertial forces to simulate Earth’s gravity during exercise. International Space Station Roll Out Solar Array Modification Kit 7 – This upgrade kit consists of upper, mid, and lower struts (one each for left and right), a backbone, brackets, and support hardware for the new solar panels. This is the third in series of four modification kits needed to support the installation of the fourth set of upgraded solar arrays. The new arrays are designed to augment the station’s original solar arrays which have degraded over time. The replacement solar arrays are installed on top of existing arrays to provide a net increase in power with each array generating more than 20 kilowatts of power. Urine Processor Assembly Pressure Control and Pump Assembly — The assembly evacuates the urine distillation assembly at startup and periodically purges non-condensable gases and water vapor and pumps them to the separator plumbing assembly. The purge pump housing and pressure control and pump assembly manifolds are liquid cooled to promote steam condensation, thereby reducing the volume of the purge gas. All these systems make up the system used to covert urine to drinking water. Collection Packet and Adapter — Required for minimal, nominal water microbial sampling. In-flight water quality assessment is needed to assure that water of acceptable, defined quality will be available aboard the space station. Watch and Engage Live coverage of the launch from Cape Canaveral Space Force Station in Cape Canaveral, Florida, will air on NASA TV, NASA+ and the agency’s website. Live coverage will begin at 12:15 p.m. Live coverage of Cygnus’ rendezvous and capture at the space station will begin at 3:35 a.m. Jan. 31. Read more about how to watch and engage. View the full article
×
×
  • Create New...