Jump to content

NASA

Publishers
  • Posts

    5,737
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. Boeing’s Starliner spacecraft that launched NASA’s Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module’s forward port. This long-duration photograph was taken at night from the orbital complex as it soared 258 miles above western China. Leadership from NASA and Boeing will participate in a media teleconference at 11:30 a.m. EDT Thursday, July 25, to provide the latest status of the agency’s Boeing Crew Flight Test mission aboard the International Space Station. Audio of the media teleconference will stream live on the agency’s website: https://www.nasa.gov/nasatv Participants include: Steve Stich, manager, NASA’s Commercial Crew Program Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Media interested in participating must contact the newsroom at NASA’s Kennedy Space Center in Florida no later than one hour prior to the start of the call at ksc-newsroom@mail.nasa.gov. A copy of NASA’s media accreditation policy is online. Engineering teams with NASA and Boeing recently completed ground hot fire testing of a Starliner reaction control system thruster at White Sands Test Facility in New Mexico. The test series involved firing the engine through similar in-flight conditions the spacecraft experienced during its approach to the space station, as well as various stress-case firings for what is expected during Starliner’s undocking and the deorbit burn that will position the spacecraft for a landing in the southwestern United States. Teams are analyzing the data from these tests, and leadership plans to discuss initial findings during the call. NASA astronauts Butch Wilmore and Suni Williams arrived at the orbiting laboratory on June 6, after lifting off aboard a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on June 5. Since their arrival, the duo has been integrated with the Expedition 71 crew, performing scientific research and maintenance activities as needed. As part of NASA’s Commercial Crew Program, the mission is an end-to-end test of the Starliner system. Following a successful return to Earth, NASA will begin the process of certifying Starliner for rotational missions to the International Space Station. Through partnership with American private industry, NASA is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. For NASA’s blog and more information about the mission, visit: https://www.nasa.gov/commercialcrew -end- Josh Finch / Jimi Russell Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / james.j.russell@nasa.gov Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov Leah Cheshier / Sandra Jones Johnson Space Center, Houston 281-483-5111 leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov View the full article
  2. 3 Min Read NASA Sponsors New Research on Orbital Debris, Lunar Sustainability From lunar orbit, astronauts pointed cameras out the window of their spacecraft to capture photos of the moon's surface. Credits: NASA As part of NASA’s commitment to foster responsible exploration of the universe for the benefit of humanity, the Office of Technology, Policy, and Strategy (OTPS) is funding space sustainability research proposals from five university-based teams to analyze critical economic, social, and policy issues related to Earth’s orbit and cislunar space. The new research awards reflect the agency’s commitment identified in NASA’s Space Sustainability Strategy to ensure safe, peaceful, and responsible space exploration for future generations, and encourage sustainable behaviors in cislunar space and on the lunar surface by ensuring that current operations do not impact those yet to come. Three of the five awards will fund research that addresses the growing problem of orbital debris, human-made objects in Earth’s orbit that no longer serve a purpose. This debris can endanger spacecraft, jeopardize access to space, and impede the development of a low-Earth orbit economy. The remaining two awards focus on lunar surface sustainability and will address key policy questions such as the protection of valuable locations and human heritage sites as well as other technical, economic, or cultural considerations that may factor into mission planning. “The sustainable use of space is critical to current and future space exploration,” said Ellen Gertsen, deputy associate administrator for the Office of Technology, Policy, and Strategy (OTPS) at NASA Headquarters in Washington. “Mitigating the risks of orbital debris and ensuring future generations can utilize the lunar surface are of paramount importance. These awards will fund research to help us understand the economics, the policy considerations, and the social elements of sustainability, generating new tools and evidence so we can make better-informed decisions.” A panel of NASA experts selected the following proposals, awarding a total of about $550,000 to fund them: Lunar surface sustainability “A RAD Framework for the Moon: Applying Resist-Accept-Direct Decision-Making,” submitted by Dr. Caitlin Ahrens of the University of Maryland, College Park “Synthesizing Frameworks of Sustainability for Futures on the Moon,” submitted by research scientist Afreen Siddiqi of Massachusetts Institute of Technology Orbital Debris and Space Sustainability “Integrated Economic-Debris Modeling of Active Debris Removal to Inform Space Sustainability and Policy,” submitted by researcher Mark Moretto of the University of Colorado, Boulder “Avoiding the Kessler Syndrome Through Policy Intervention,” submitted by aeronautics and astronautics researcher Richard Linares of the Massachusetts Institute of Technology “Analysis of Cislunar Space Environment Scenarios, Enabling Deterrence and Incentive-Based Policy,” submitted by mechanical and aerospace engineering researcher Ryne Beeson of Princeton University Share Details Last Updated Jul 23, 2024 EditorBill Keeter Related TermsOffice of Technology, Policy and Strategy (OTPS) View the full article
  3. NASA Astronaut Eileen Collins, STS-93 commander, looks through a checklist on the space shuttle Columbia’s middeck in this July 1999 image. Collins was the first female shuttle commander. Collins graduated in 1979 from Air Force Undergraduate Pilot Training at Vance AFB, Oklahoma, where she was a T-38 instructor pilot until 1982. She continued her career as an instructor pilot of different aircraft until 1989. She was selected for the astronaut program while attending the Air Force Test Pilot School at Edwards AFB, California, which she graduated from in 1990. Collins became an astronaut in 1991 and over the course of four spaceflights, logged over 872 hours in space. She retired from NASA in May 2006. Image credit: NASA View the full article
  4. 5 Min Read 25 Years On, Chandra Highlights Legacy of NASA Engineering Ingenuity By Rick Smith “The art of aerospace engineering is a matter of seeing around corners,” said NASA thermal analyst Jodi Turk. In the case of NASA’s Chandra X-ray Observatory, marking its 25th anniversary in space this year, some of those corners proved to be as far as 80,000 miles away and a quarter-century in the future. Turk is part of a dedicated team of engineers, designers, test technicians, and analysts at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Together with partners outside and across the agency, including the Chandra Operations Control Center in Burlington, Massachusetts, they keep the spacecraft flying, enabling Chandra’s ongoing studies of black holes, supernovae, dark matter, and more – and deepening our understanding of the origin and evolution of the cosmos. Engineers in the X-ray Calibration Facility – now the world-class X-ray & Cryogenic Facility – at NASA’s Marshall Space Flight Center in Huntsville, Alabama, integrate the Chandra X-ray Observatory’s High Resolution Camera with the mirror assembly inside a 24-foot-diameter vacuum chamber, in this photo taken March 16, 1997. Chandra was launched July 23, 1999, aboard space shuttle Columbia.NASA “Everything Chandra has shown us over the last 25 years – the formation of galaxies and super star clusters, the behavior and evolution of supermassive black holes, proof of dark matter and gravitational wave events, the viability of habitable exoplanets – has been fascinating,” said retired NASA astrophysicist Martin Weisskopf, who led Chandra scientific development at Marshall beginning in the late 1970s. “Chandra has opened new windows in astrophysics that we’d hardly begun to imagine in the years prior to launch.” Following extensive development and testing by a contract team managed and led by Marshall, Chandra was lifted to space aboard the space shuttle Columbia on July 23, 1999. Marshall has continued to manage the program for NASA ever since. “How much technology from 1999 is still in use today?” said Chandra researcher Douglas Swartz. “We don’t use the same camera equipment, computers, or phones from that era. But one technological success – Chandra – is still going strong, and still so powerful that it can read a stop sign from 12 miles away.” That lasting value is no accident. During early concept development, Chandra – known prior to launch as the Advanced X-ray Astrophysics Facility – was intended to be a 15-year, serviceable mission like that of NASA’s Hubble Space Telescope, enabling periodic upgrades by visiting astronauts. But in the early 1990s, as NASA laid plans to build the International Space Station in orbit, the new X-ray observatory’s budget was revised. A new, elliptical orbit would carry Chandra a third of the way to the Moon, or roughly 80,000 miles from Earth at apogee. That meant a shorter mission life – five years – and no periodic servicing. The Chandra X-Ray Observatory, the longest cargo ever carried to space aboard the space shuttle, seen in Columbia’s payload bay prior to being tilted upward for release and deployment on July 23, 1999.NASA The engineering design team at Marshall, its contractors, and the mission support team at the Smithsonian Astrophysical Observatory revised their plan, minimizing the impact to Chandra’s science. In doing so, they enabled a long-running science mission so successful that it would capture the imagination of the nation and lead NASA to extend its duration past that initial five-year period. “There was a lot of excitement and a lot of challenges – but we met them and conquered them,” said Marshall project engineer David Hood, who joined the Chandra development effort in 1988. “The field of high-powered X-ray astronomy was still so relatively young, it wasn’t just a matter of building a revolutionary observatory,” Weisskopf said. “First, we had to build the tools necessary to test, analyze, and refine the hardware.” Marshall renovated and expanded its X-ray Calibration Facility – now known as the X-ray & Cryogenic Facility – to calibrate Chandra’s instruments and conduct space-like environment testing of sensitive hardware. That work would, years later, pave the way for Marshall testing of advanced mirror optics for NASA’s James Webb Space Telescope. On July 23, 1999, the Chandra X-Ray Observatory is released from space shuttle Columbia’s payload bay. Twenty-five years later, Chandra continues to make valuable discoveries about high-energy sources and phenomena across the universe.NASA “Marshall has a proven history of designing for long-term excellence and extending our lifespan margins,” Turk said. “Our missions often tend to last well past their end date.” Chandra is a case in point. The team has automated some of Chandra’s operations for efficiency. They also closely monitor key elements of the spacecraft, such as its thermal protection system, which have degraded as anticipated over time, due to the punishing effects of the space environment. “Chandra’s still a workhorse, but one that needs gentler handling,” Turk said. The team met that challenge by meticulously modeling and tracking Chandra’s position and behavior in orbit and paying close attention to radiation, changes in momentum, and other obstacles. They have also employed creative approaches, making use of data from sensors on the spacecraft in new ways. Acting project manager Andrew Schnell, who leads the Chandra team at Marshall, said the mission’s length means the spacecraft is now overseen by numerous “third-generation engineers” such as Turk. He said they’re just as dedicated and driven as their senior counterparts, who helped deliver Chandra to launch 25 years ago. An artist’s illustration depicting NASA’s Chandra X-ray Observatory in flight, with a vivid star field behind it. Chandra’s solar panels are deployed and its camera “eye” open on the cosmos.NASA The work also provides a one-of-a-kind teaching opportunity, Turk said. “Troubleshooting Chandra has taught us how to find alternate solutions for everything from an interrupted sensor reading to aging thermocouples, helping us more accurately diagnose issues with other flight hardware and informing design and planning for future missions,” she said. Well-informed, practically trained engineers and scientists are foundational to productive teams, Hood said – a fact so crucial to Chandra’s success that its project leads and support engineers documented the experience in a paper titled, “Lessons We Learned Designing and Building the Chandra Telescope.” “Former program manager Fred Wojtalik said it best: ‘Teams win,’” Hood said. “The most important person on any team is the person doing their work to the best of their ability, with enthusiasm and pride. That’s why I’m confident Chandra’s still got some good years ahead of her. Because that foundation has never changed.” As Chandra turns the corner on its silver anniversary, the team on the ground is ready for whatever fresh challenge comes next. Learn more about the Chandra X-ray Observatory and its mission here: https://www.nasa.gov/chandra https://cxc.harvard.edu Media Contact: Jonathan Deal / Lane Figueroa Marshall Space Flight Center, Huntsville, Alabama 256-544-0034 jonathan.e.deal@nasa.gov / lane.e.figueroa@nasa.gov View the full article
  5. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The cockpit of an old MD-90 aircraft arrived at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2024. Parts will be used to build a simulator for NASA’s X-66, the demonstration aircraft for the Sustainable Flight Demonstrator project.NASA/Steve Freeman NASA’s X-66 aircraft, the centerpiece of its Sustainable Flight Demonstrator project, is taking the term “sustainable” to heart by reusing an old MD-90 cockpit as a base for its new X-66 simulator. When airplanes are retired, they often wind up in “boneyards” — storage fields where they spend years being picked over for parts by manufacturers, researchers, engineers, and designers. That’s where the X-66 team found their new X-66 simulator cockpit, before sending it to NASA’s Armstrong Flight Research Center in Edwards, California. The project will catalog, clean, and disassemble the MD-90 cockpit to use for the simulator. This is where the Simulation Engineering Branch at NASA Armstrong steps in. The team develops high-fidelity engineering simulators that allow pilots and engineers to run real-life scenarios in a safe environment. The cockpit of an old MD-90 aircraft arrived at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2024. Parts will be used to build a simulator for NASA’s X-66, the demonstration aircraft for the Sustainable Flight Demonstrator project.NASA/Steve Freeman As with any X-plane, a simulator allows researchers to test unknowns without risking the pilot’s safety or the aircraft’s structural integrity. A simulator also affords the team the ability to work out design challenges during the build of the aircraft, ensuring that the final product is as efficient as possible. To assemble the X-66, the project team will use the airframe from another MD-90, shortening it, installing new engines, and replacing the wing assemblies with a truss-braced wing design. The Sustainable Flight Demonstrator project is NASA’s effort to develop more efficient airframes as the nation moves toward sustainable aviation. In addition to the X-66’s revolutionary wing design, the project team will work with industry, academia, and other government organizations to identify, select, and mature sustainable airframe technologies. The project seeks to inform the next generation of single-aisle airliner, the workhorse of commercial aviation fleets around the world. Boeing and NASA are partnering to develop the experimental demonstrator aircraft. Share Details Last Updated Jul 18, 2024 Related TermsAeronauticsArmstrong Flight Research CenterFlight InnovationGreen Aviation TechNASA AircraftSustainable Flight Demonstrator Explore More 7 min read LIVE: NASA is with you from Oshkosh Article 2 hours ago 3 min read NASA to Host Panels, Forums, and More at Oshkosh 2024 Article 4 days ago 4 min read NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic Article 2 weeks ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Sustainable Flight Demonstrator Project Green Aviation Tech Armstrong Capabilities & Facilities View the full article
  6. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This June 2021 aerial photograph shows the coastal launch range at NASA’s Wallops Flight Facility on Virginia’s Eastern Shore. Wallops is the agency’s only owned-and-operated launch range. Courtesy Patrick J. Hendrickson; used with permission A rocket-propelled target is scheduled for launch July 27-28, 2024 from NASA’s launch range at the Wallops Flight Facility in Virginia in support of a U.S. Navy Fleet Training exercise. No real-time launch status updates will be available. The launch will not be livestreamed nor will launch status updates be provided during the countdown. The rocket launch may be visible from the Chesapeake Bay region. Share Details Last Updated Jul 19, 2024 EditorAmy BarraContactAmy Barraamy.l.barra@nasa.govLocationWallops Flight Facility Related TermsWallops Flight Facility Explore More 4 min read Wallops Missions, Programs and Projects Article 9 years ago 1 min read Field Carrier Landing Practice at Wallops Article 6 years ago 1 min read Wallops Range Supports First Rocket Lab HASTE Launch Rocket Lab launched its first-ever Hypersonic Accelerator Suborbital Test Electron, or HASTE, launch vehicle from… Article 1 year ago View the full article
  7. 5 Min Read Watch Carbon Dioxide Move Through Earth’s Atmosphere Global CO2 ppm for January-March of 2020. This camera move orbits Earth from a distance. Credits: NASA’s Scientific Visualization Studio Earth (ESD) Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers What we’re looking at: This global map shows concentrations of carbon dioxide as the gas moved through Earth’s atmosphere from January through March 2020, driven by wind patterns and atmospheric circulation. Because of the model’s high resolution, you can zoom in and see carbon dioxide emissions rising from power plants, fires, and cities, then spreading across continents and oceans. Global CO2 ppm for January-March of 2020. This camera move orbits Earth from a distance. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5196 Credits: NASA’s Scientific Visualization Studio “As policymakers and as scientists, we’re trying to account for where carbon comes from and how that impacts the planet,” said climate scientist Lesley Ott at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “You see here how everything is interconnected by these different weather patterns.” You see here how everything is interconnected by these different weather patterns. Lesley Ott NASA Climate scientist What are the sources of CO2? Over China, the United States, and South Asia, the majority of emissions came from power plants, industrial facilities, and cars and trucks, Ott said. Meanwhile, in Africa and South America, emissions largely stemmed from fires, especially those related to land management, controlled agricultural burns and deforestation, along with the burning of oil and coal. Fires release carbon dioxide as they burn. Why does the map look like it’s pulsing? Global CO2 ppm for January-March of 2020. This camera move zooms in on the eastern United States. Download this visualization from NASA’s Scientific Visualization Studio: https://svs.gsfc.nasa.gov/5196 Credits: NASA’s Scientific Visualization Studio There are two primary reasons for the pulsing: First, fires have a clear day-night cycle. They typically flare up during the day and die down at night. Second, you’re seeing the absorption and release of carbon dioxide as trees and plants photosynthesize. Earth’s land and oceans absorb about 50% of carbon dioxide; these are natural carbon sinks. Plants take up carbon dioxide during the day as they photosynthesize and then release it at night through respiration. Notice that much of the pulsing occurred in regions with lots of trees, like mid- or high-latitude forests. And because the data were taken during the Southern Hemisphere summer, you see more pulsing in the tropics and South America, where it was the active growing season. Some of the pulsing also comes from the planetary boundary layer — the lowest 3,000 feet (900 meters) of the atmosphere — which rises as the Earth’s surface is heated by sunlight during the day, then falls as it cools at night. The data that drives it: The map was created by NASA’s Scientific Visualization Studio using a model called GEOS, short for the Goddard Earth Observing System. GEOS is a high-resolution weather model, powered by supercomputers, that is used to simulate what was happening in the atmosphere — including storm systems, cloud formations, and other natural events. GEOS pulls in billions of data points from ground observations and satellite instruments, such as the Terra satellite’s MODIS and the Suomi-NPP satellite’s VIIRS instruments. Its resolution is more than 100 times greater than a typical weather model. Ott and other climate scientists wanted to know what GEOS would show if it was used to model the movement and density of carbon dioxide in the global atmosphere. “We had this opportunity to say: can we tag along and see what really high-resolution CO2 looks like?” Ott said. “We had a feeling we were going to see plume structures and things that we’ve never been able to see when we do these coarser resolution simulations.” Her instinct was right. “Just seeing how persistent the plumes were and the interaction of the plumes with weather systems, it was tremendous.” Why it matters: NASA’s Goddard Space Flight Center/Scientific Visualization Studio/ Katie Jepson We can’t tackle climate change without confronting the fact that we’re emitting massive amounts of CO2, and it’s warming the atmosphere, Ott said. Carbon dioxide is a heat-trapping greenhouse gas and the primary reason for Earth’s rising temperatures. As CO2 builds in the atmosphere, it warms our planet. This is clear in the numbers. 2023 was the hottest year on record, according to scientists from NASA’s Goddard Institute for Space Studies (GISS) in New York. Most of the 10 hottest years on record have occurred in the past decade. All this carbon dioxide isn’t harmful to air quality. In fact, we need some carbon dioxide to keep the planet warm enough for life to exist. But when too much CO2 is pumped into the atmosphere, the Earth warms too much and too fast. That’s what has been happening for at least the past half century. The concentration of carbon dioxide in the atmosphere increased from approximately 278 parts per million in 1750, the beginning of the industrial era, to 427 parts per million in May 2024. Read More: Emissions from Fossil Fuels Continue to Rise Human activities have “unequivocally caused warming,” according to the latest report by the Intergovernmental Panel on Climate Change. This warming is leading to all sorts of changes to our climate, including more intense storms, wildfires, heat waves, and rising sea levels. Inside the SVS studio: Carbon dioxide exists everywhere in the atmosphere, and the challenge for AJ Christensen, a senior visualization designer at NASA’s Goddard Space Flight Center, was to show the differences in density of this invisible gas. “We didn’t want people to get the impression that there was no carbon dioxide in these sparser regions,” Christensen said. “But we also wanted to really highlight the dense regions because that’s the interesting feature of the data. We were trying to show that there’s a lot of density over New York and Beijing.” Data visualizations help people understand how Earth’s systems work, and they can help scientists find patterns in massive datasets, Ott said. “What’s happening is you’re stitching together this very complex array of models to make use of the different satellite data, and that’s helping us fill in this broad puzzle of all the processes that control carbon dioxide,” Ott said. “The hope is that if we understand greenhouse gases really well today, we’ll be able to build models that better predict them over the next decades or even centuries.” For more information and data on greenhouse gases, visit the U.S. Greenhouse Gas Center. About the Author Jenny Marder Share Details Last Updated Jul 23, 2024 Location Goddard Space Flight Center Related Terms Climate Change Earth Earth’s Atmosphere Greenhouse Gases Explore More 3 min read Registration Opens for the 2024 NASA International Space Apps Challenge NASA invites innovators, technologists, storytellers, and problem solvers to register for the 2024 NASA Space… Article 5 days ago 4 min read NASA Celebrates 20 Years of Earth-Observing Aura Satellite A few of the many highlights from the last 20 years since Aura Launched. Article 7 days ago 5 min read Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere Article 4 weeks ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  8. Science Launching on Northrop Grumman's 21st Cargo Resupply Mission to the Space Station
  9. NASA and its international partners are sending scientific investigations to the International Space Station on Northrop Grumman’s 21st commercial resupply services mission. Flying aboard the company’s Cygnus spacecraft are tests of water recovery technology and a process to produce stem cells in microgravity, studies of the effects of spaceflight on microorganism DNA and liver tissue growth, and live science demonstrations for students. The mission is scheduled to launch from Cape Canaveral Space Force Station in Florida by early August. Read more about some of the research making the journey to the orbiting laboratory: Testing materials for packed systems Packed bed reactors are systems that use materials such as pellets or beads “packed” inside a structure to increase contact between different phases of fluids, such as liquid and gas. These reactors are used for various applications including water recovery, thermal management, and fuel cells. Scientists previously tested the performance in space of glass beads, Teflon beads, a platinum catalyst, and other packing materials. Packed Bed Reactor Experiment: Water Recovery Series evaluates gravity’s effects on eight additional test articles. Results could help optimize the design and operation of packed bed reactors for water filtration and other systems in microgravity and on the Moon and Mars. Insights from the investigation also could lead to improvements in this technology for applications on Earth such as water purification and heating and cooling systems. Hardware for the packed bed water recovery reactor experiment. The packing media is visible in the long clear tube.NASA Giving science a whirl STEMonstrations Screaming Balloon uses a balloon, a penny, and a hexagonal nut (the kind used to secure a bolt) for a NASA STEMonstration performed and recorded by astronauts on the space station. The penny and the nut are whirled separately inside an inflated balloon to compare the sounds they make. Each STEMonstration illustrates a different scientific concept, such as centripetal force, and includes resources to help teachers further explore the topics with their students. NASA astronauts Matthew Dominick and Jeanette Epps prepare for a STEMonstration on the International Space Station.NASA More, better stem cells In-Space Expansion of Hematopoietic Stem Cells for Clinical Application (InSPA-StemCellEX-H1) continues testing a technology to produce human hematopoietic stem cells (HSCs) in space. HSCs give rise to blood and immune cells and are used in therapies for patients with certain blood diseases, autoimmune disorders, and cancers. The investigation uses a system called BioServe In-space Cell Expansion Platform, or BICEP, which is designed to expand HSCs three hundredfold without the need to change or add new growth media, according to Louis Stodieck, principal investigator at the University of Colorado Boulder. “BICEP affords a streamlined operation to harvest and cryopreserve cells for return to Earth and delivery to a designated medical provider and patient,” said Stodieck. Someone in the United States is diagnosed with a blood cancer such as leukemia about every three minutes. Treating these patients with transplanted stem cells requires a donor-recipient match and long-term repopulation of transplanted stem cells. This investigation demonstrates whether expanding stem cells in microgravity could generate far more continuously renewing stem cells. “Our work eventually could lead to large-scale production facilities, with donor cells launched into orbit and cellular therapies returned to Earth,” said Stodieck. NASA astronaut Frank Rubio works on the first test of methods for expanding stem cells in space, StemCellEX-H Pathfinder. The InSPA-StemCellEX-H1 investigation continues this work.NASA DNA repair in space Rotifer-B2, an ESA (European Space Agency) investigation, explores how spaceflight affects DNA repair mechanisms in a microscopic bdelloid rotifer, Adineta vaga. These tiny but complex organisms are known for their ability to withstand harsh conditions, including radiation doses 100 times higher than human cells can survive. The organisms are dried, exposed to high radiation levels on Earth, and rehydrated and cultured in an incubator on the station. “Previous research indicates that rotifers repair their DNA in space with the same efficiency as on Earth, but that research provided only genetic data,” said Boris Hespeels, co-investigator, of Belgium’s Laboratory of Evolutionary Genetics and Ecology. “This experiment will provide the first visual proof of survival and reproduction during spaceflight,” said Hespeels Results could provide insights into how spaceflight affects the rotifer’s ability to repair sections of damaged DNA in a microgravity environment, and could improve the general understanding of DNA damage and repair mechanisms for applications on Earth. A culture chamber for the Rotifer-B2 investigation aboard the International Space Station.NASA Growing liver tissue Maturation of Vascularized Liver Tissue Construct studies the development in space of bioprinted liver tissue constructs that contain blood vessels. Constructs are tissue samples grown outside the body using bioengineering techniques. Scientists expect the microgravity environment to allow improved cellular distribution throughout tissue constructs. “We are especially keen on accelerating the development of vascular networks,” said James Yoo, principal investigator, at the Wake Forest Institute of Regenerative Medicine. “The experimental data from microgravity will provide valuable insights that could enhance the biomanufacturing of vascularized tissues to serve as building blocks to engineer functional organs for transplantation.” Image A shows a vascularized tissue construct with interconnected channels, and image B shows a bioprinted human liver tissue construct fabricated with a digital light projection printer. Image C shows the tissue construct connected to a perfusion system, a pump that moves fluid through it.Wake Forest Institute for Regenerative Medicine. This mission also delivers plants for the APEX-09 investigation, which examines plant responses to stressful environments and could inform the design of bio-regenerative support systems on future space missions. Melissa Gaskill International Space Station Research Communications Team NASA’s Johnson Space Center Download high-resolution photos and videos of the research mentioned in this article. Search this database of scientific experiments to learn more about those mentioned in this article. Keep Exploring Discover More Topics From NASA Latest News from Space Station Research Commercial Resupply Station Science 101: Biology and Biotechnology Space Station Technology Demonstration View the full article
  10. A NASA camera on the Deep Space Climate Observatory satellite captures a view of the entire sunlit side of Earth from one million miles away.Credit: NASA NASA, on behalf of the National Oceanic and Atmospheric Administration (NOAA), has selected SpaceX (Space Exploration Technologies Corporation) to provide launch services for NOAA’s JPSS-4 mission. The spacecraft is part of the multi-satellite cooperative Joint Polar Satellite System (JPSS) program, a partnership between NASA and NOAA. This mission is the next satellite in the program, which began with the Suomi National Polar-orbiting Partnership. This is a firm fixed price contract with a value of approximately $112.7 million, which includes launch services and other mission related costs. The JPSS-4 mission currently is targeted to launch in 2027, on a SpaceX Falcon 9 rocket from Space Launch Complex 4 East at Vandenberg Space Force Base in California. The JPSS constellation of satellites collects global multi-spectral radiometry and other specialized meteorologic, oceanographic, and solar-geophysical data via remote sensing of land, sea, and atmospheric properties. These data support NOAA’s mission for continuous observation of Earth’s environment to understand and predict changes in weather, climate, oceans, and coasts to support the nation’s economy and protect lives and property. NASA uses the instruments aboard the JPSS satellites to continue decades of Earth science research for the betterment of humanity. When launched, JPSS-4, will carry the NASA Earth Venture mission Libera, an instrument that will improve our understanding of trends in Earth’s energy imbalance and our changing climate. NASA’s Launch Services Program at the agency’s Kennedy Space Center in Florida is responsible for managing the launch services. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the JPSS Flight Projects Office, which oversees the acquisition of the JPSS series instruments and spacecraft. A collaborative NOAA and NASA team manages the JPSS Program. For more information about NASA programs and missions, visit: https://www.nasa.gov -end- Tiernan Doyle Headquarters, Washington 202-358-1600 Tiernan.doyle@nasa.gov Patti Bielling Kennedy Space Center, Florida 321-501-7575 patricia.a.bielling@nasa.gov Share Details Last Updated Jul 22, 2024 LocationNASA Headquarters Related TermsJoint Polar Satellite System (JPSS)Joint Agency Satellite DivisionNOAA (National Oceanic and Atmospheric Administration)Science Mission Directorate View the full article
  11. A timelapse of the Twin Rockets to Investigate Cusp Electrodynamics (TRICE-2) mission launching from Andøya Space Center in Andenes, Norway on Dec. 8, 2018. NASA/Jamie Adkins When it comes to discoveries about our upper atmosphere, it pays to know your surroundings. Using data from the Twin Rockets to Investigate Cusp Electrodynamics (TRICE-2) rocket launch, NASA scientist Francesca Di Mare and Gregory Howes from the University of Iowa studied waves traveling down Earth’s magnetic field lines into the polar atmosphere. These waves were known to accelerate electrons, which pick up speed as they “surf” along the electric field of the wave. But their effect on ions — a more heterogenous group of positively charged particles, which exist alongside electrons — was unknown. By estimating the ion mixture they were flying through — predominantly protons and singly-charged oxygen ions — the scientists discovered that these waves were accelerating protons as they circle about the Earth’s magnetic field lines as well as electrons as they surf the waves. The findings reveal a new way our upper atmosphere is energized. Read more about the new results in Physical Review Letters. View the full article
  12. The barred spiral galaxy NGC 6872 is interacting with a smaller galaxy to the upper left. The smaller galaxy has likely stripped gas from NGC 6872 to feed the supermassive black hole in its center.X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, L. Frattare, and J. Major To commemorate the 25th anniversary of NASA’s Chandra X-ray Observatory launch, the Chandra team released this never-seen-before image of NGC 6872, a spiral galaxy in the Pavo (Peacock) constellation, on July 22, 2024. This image and 24 others, which all include data from Chandra, demonstrate how X-ray astronomy explores all corners of the universe. NGC 6872 is 522,000 light-years across, making it more than five times the size of the Milky Way galaxy; in 2013, astronomers from the United States, Chile, and Brazil found it to be the largest-known spiral galaxy, based on archival data from NASA’s Galaxy Evolution Explorer. This record was surpassed by NGC 262, a galaxy that measures 1.3 million light-years in diameter. See more photos released for this celebration. Image credit: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Schmidt, L. Frattare, and J. Major View the full article
  13. Since it began in 2020, NASA’s Citizen Science Seed Funding Program (CSSFP) has helped twenty-four new NASA citizen science projects get off the ground. This one-year funding opportunity aims to expand the pool of professional scientists who use citizen science techniques in their science investigations. We’d like to remind you about two key changes to the CSSFP program this year! First, we heard that researchers could make better use of seed funding if it arrived in time to enable work during the summer — a crucial season for students, faculty, and interns. To address this need, NASA is shifting the submission and review process to earlier in the year. The planning start date for CSSFP investigations for this next round is now May 1, 2025! Of course, an earlier start date means an earlier due date, so this year’s CSSFP proposals will be due November 19, 2024. Proposers are also asked to submit a Notice of Intent (optional) by October 1, 2024 to aid in planning the review panels. Second, if you are a current CSSFP grant recipient, you have the opportunity to request a No Cost Extension, which will allow you to continue spending your remaining funding during a second year. However, please note: the NASA Shared Services Center will reject late requests! All no-cost extension requests must be received more than 10 calendar days prior to the end date of your grant’s period of performance. Please check that date and be sure to submit your No Cost Extension requests more than 10 days prior. We’re excited to receive your proposals and can’t wait to help you do NASA science with fantastic volunteers from around the world! Previous Awards 2023 CSSFP Awards 2022 CSSFP Awards 2021 CSSFP Awards NASA’s Citizen Science Seed Funding Program can help your project grow–like the seedlings in NASA’s Growing Beyond Earth Citizen Science project! Credit: Growing Beyond Earth Share Details Last Updated Jul 22, 2024 Related Terms Biological & Physical Sciences Citizen Science Space Biology Explore More 1 min read NASA Science Activation Teams Present at National Rural STEM Summit Article 2 weeks ago 3 min read NASA Selects 5 Proposals to Conduct Research Using Openly Available Data in the Physical Sciences Informatics System Article 3 weeks ago 2 min read Happy Birthday, Redshift Wrangler! Article 1 month ago View the full article
  14. NASA/SAO/CXC This montage contains 25 new images with data from NASA’s Chandra X-ray Observatory that is being released to commemorate the telescope’s 25th anniversary in space, as described in our latest press release. Since its launch into space on July 23, 1999, Chandra has been NASA’s flagship mission for X-ray astronomy in its fleet of “Great Observatories.” Chandra discovers exotic new phenomena and examines old mysteries, looking at objects within our own Solar System out to nearly the edge of the observable Universe. There is a broad range of astronomical objects in this collection. At the center is one of Chandra’s most iconic targets, the supernova remnant Cassiopeia A (Cas A). This was one of the very first objects observed by Chandra after its launch in 1999, and astronomers have often returned to observe Cas A with Chandra since then. Chandra quickly discovered a point source of X-rays in Cas A’s center for the first time, later confirmed to be a neutron star. Later Chandra was used to discover evidence for a “superfluid” inside Cas A’s neutron star, to reveal that the original massive star may have turned inside out as it exploded, and to take an important step in pinpointing how giant stars explode. The Cassiopeia A supernova remnant has been observed for more than 2 million seconds since the start of the Chandra mission in 1999. X-rays from Chandra (blue); infrared from Webb (orange, white, and blue)X-ray: NASA/CXC/SAO; Infrared: NASA/ESA/CSA/STScI/D. Milisavljevic (Purdue Univ.), I. De Looze (UGent), T. Temim (Princeton Univ.); Image Processing: NASA/CXC/SAO/J. Major, J. Schmidt and K. Arcand The unmatched sharpness of Chandra’s X-ray images are perfect for studying the hot debris and energetic particles remaining behind after supernova explosions. Other examples in this new collection include the Crab Nebula, G21.5-0.9, MSH 15-52, and SN 1987A. Chandra also probes the different branches of stellar evolution such as “planetary nebulas” when stars like the Sun run out of fuel and shed their outer layers as seen in the Chandra image of HB 5. Chandra also looks at what happens at the start of the stellar life cycle, providing information about some of the youngest and most massive stars. Images of these stellar nurseries in the “25 for 25” montage include the Orion Nebula, Cat’s Paw, M16 (a.k.a., the “Pillars of Creation”), the Bat Shadow and NGC 3324. A view of a more mature star cluster, NGC 3532, is also included. X-ray data are particularly useful for studying objects like this because young stars are often copious producers of X-rays, allowing stars that are members of clusters to be picked out of a foreground or background of older objects. Chandra’s sharp images and sensitivity also allow many more sources to be seen. This region of star formation contains the Pillars of Creation, which was made famous by the Hubble Space Telescope. Chandra detects X-rays from young stars in the region, including one embedded in a pillar. X-rays from Chandra (red and blue); infrared image from Webb (red, green, and blue)X-ray: NASA/CXO/SAO; Infrared: NASA/ESA/CSA/STScI; Image processing: NASA/CXC/SAO/L. Frattare Chandra observes galaxies — including our own Milky Way, where a supermassive black hole resides at its center. Chandra also studies other galaxies and this is represented in the new images of NGC 7469, Centaurus A, NGC 6872, NGC 1365, and Arp 220. Astronomers look at even larger structures like galaxy clusters with Chandra, where hundreds or thousands of galaxies are immersed in multimillion-degree gas that only an X-ray telescope can detect. In this release of images, M86 and the Virgo cluster, Abell 2125, and MACS J0035 are examples of galaxy clusters Chandra has observed. Closer to home, Chandra has contributed to the study of planets and comets in our own Solar System including Venus, Mars, Saturn, and even Earth itself. This ability to explore the Solar System is represented by the image of aurora on Jupiter, captured in X-rays, in this collection. A full list of the 25 images celebrating Chandra’s 25th, along with the data included and what the colors represent, is available at https://chandra.si.edu/photo/2024/25th/more.html. Images of some of these objects had previously been released, but now include new X-ray data or have been combined with different data from other telescopes. Some of these objects have never been released before with Chandra data. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. For more Chandra images, multimedia and related materials, visit: https://www.nasa.gov/mission/chandra-x-ray-observatory Visual Description: This image shows a collection of 25 new space images celebrating the Chandra X-ray Observatory’s 25th anniversary. The images are arranged in a grid, displayed as five images across in five separate rows. Starting from the upper left, and going across each row, the objects imaged are: Crab Nebula, Orion Nebula, The Eyes Galaxies, Cat’s Paw Nebula, Milky Way’s Galactic Center, M16, Bat Shadow, NGC 7469, Virgo Cluster, WR 124, G21.5-0.9, Centaurus A, Cassiopeia A, NGC 3532, NGC 6872, Hb 5, Abell 2125, NGC 3324, NGC 1365, MSH 15-52, Arp 220, Jupiter, NGC 1850, MACS J0035, SN 1987A. View the full article
  15. Main Takeaways: New 66-foot-wide antenna dishes will be built, online, and operational in time to provide near-continuous communications services to Artemis astronauts at the Moon later this decade. Called LEGS, short for Lunar Exploration Ground Sites, the antennas represent critical infrastructure for NASA’s vision of supporting a sustained human presence at the Moon. The first three of six proposed LEGS are planned for sites in New Mexico, South Africa, and Australia. LEGS will become part of NASA’s Near Space Network, managed by the agency’s Space Communications and Navigation (SCaN) program and led out of Goddard Space Flight Center in Greenbelt, Maryland. Background: NASA’s LEGS can do more than help Earthlings move about the planet. Three Lunar Exploration Ground Sites, or LEGS, will enhance the Near Space Network’s communications services and support of NASA’s Artemis campaign. NASA’s Space Communications and Navigation (SCaN) program maintains the agency’s two primary communications networks — the Deep Space Network and the Near Space Network, which enable satellites in space to send data back to Earth for investigation and discovery. Using antennas around the globe, these networks capture signals from satellites, collecting data and enabling navigation engineers to track the mission. For the first Artemis mission, these networks worked in tandem to support the mission as it completed its 25-day journey around the Moon. They will do the same for the upcoming Artemis II mission. To support NASA’s Moon to Mars initiative, NASA is adding three new LEGS antennas to the Near Space Network. As NASA works toward sustaining a human presence on the Moon, communications and navigation support will be crucial to each mission’s success. The LEGS antennas will directly support the later Artemis missions, and accompanying missions like the human landing system, lunar terrain vehicle, and Gateway. The Gateway space station will be humanity’s first space station in lunar orbit as a vital component of the Artemis missions to return humans to the Moon for scientific discovery and chart a path for humans to Mars.NASA “One of the main goals of LEGS is to offload the Deep Space Network,” said TJ Crooks, LEGS project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “The Near Space Network and its new LEGS antennas will focus on lunar missions while allowing the Deep Space Network to support missions farther out into the solar system — like the James Webb Space Telescope and the interstellar Voyager missions.” The Near Space Network provides communications and navigation services to missions anywhere from near Earth to 1.2 million miles away — this includes the Moon and Sun-Earth Lagrange points 1 and 2. The Moon and Lagrange points are a shared region with the Deep Space Network, which can provide services to missions there and farther out in the solar system. An artist’s rendering of a lunar terrain vehicle on the surface of the Moon.NASA The LEGS antennas, which are 66 feet in diameter, will be strategically placed across the globe. This global placement ensures that when the Moon is setting at one station, it is rising into another’s view. With the Moon constantly in sight, the Near Space Network will be able to provide continuous support for lunar operations. How it Works: As a satellite orbits the Moon, it encodes its data onto a radio frequency signal. When a LEGS antenna comes into view, that satellite (or rover, etc.) will downlink the signal to a LEGS antenna. This data is then routed to mission operators and scientists around the globe who can make decisions about spacecraft health and orbit or use the science data to make discoveries. The LEGS antennas are intended to be extremely flexible for users. For LEGS-1, LEGS-2, and LEGS-3, NASA is implementing a “dual-band approach” for the antennas that will allow missions to communicate using two different radio frequency bands — X-band and Ka-band. Typically, smaller data packets — like telemetry data — are sent over X-band, while high-resolution science data or imagery needs Ka-band. Due to its higher frequency, Ka-band allows significantly more information to be downlinked at once, such as real-time high-resolution video in support of crewed operations. LEGS will directly support the Artemis campaign, including the Lunar Gateway, human landing system (HLS), and lunar terrain vehicle (LTV).NASA Further LEGS capacity will be sought from commercial service providers and will include a “tri-band approach” for the antennas using S-band in addition to X- and Ka-band. The first LEGS ground station, or LEGS-1, is at NASA’s White Sands Complex in Las Cruces, New Mexico. NASA is improving land and facilities at the complex to receive the new LEGS-1 antenna. The LEGS-2 antenna will be in Matjiesfontein, South Africa, located near Cape Town. In partnership with SANSA, the South African National Space Agency, NASA chose this location to maximize coverage to the Moon. South Africa was home to a ground tracking station outside Johannesburg that played a role in NASA’s Apollo missions to the Moon in the 1960s. The agency plans to complete the LEGS-2 antenna in 2026. For LEGS-3, NASA is exploring locations in Western Australia. These stations will fully complement the existing capabilities of the Near and Deep Space Networks and allow for more robust communications services to the Artemis campaign. The LEGS antennas (similar in appearance to this 20.2-meter CPI Satcom antenna) will be placed in equidistant locations across the globe. This ensures that when the Moon is setting at one station, it will be rising into another’s view. With the Moon constantly in sight, NASA’s Near Space Network will be able to support approximately 24/7 operations with Moon-based missions.CPI Satcom CPI Satcom is building the Lunar Exploration Ground Site (LEGS) antennas for NASA. The antennas will look very similar to the 20-meter antenna pictured here. CPI Satcom The Near Space Network is funded by NASA’s Space Communications and Navigation (SCaN) program office at NASA Headquarters in Washington and operated out of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. About the AuthorKendall MurphyTechnical WriterKendall Murphy is a technical writer for the Space Communications and Navigation program office. She specializes in internal and external engagement, educating readers about space communications and navigation technology. 5 Min Read Ground Antenna Trio to Give NASA’s Artemis Campaign ‘LEGS’ to Stand On An artist’s rendering of astronauts working near NASA’s Artemis base camp, complete with a rover and RV. Credits: NASA Share Details Last Updated Jul 22, 2024 EditorKatherine SchauerContactKendall MurphyLocationGoddard Space Flight Center Related TermsGeneralArtemisCommunicating and Navigating with MissionsSpace Communications & Navigation ProgramSpace Communications Technology Explore More 2 min read Working in Tandem: NASA’s Networks Empower Artemis I Article 2 years ago 3 min read NASA Laser Communications Terminal Delivered for Artemis II Moon Mission The laser communications system for NASA’s Artemis II mission arrived at NASA’s Kennedy Space Center… Article 1 year ago 4 min read NASA Search and Rescue Team Prepares for Safe Return of Artemis II Crew When Artemis II NASA astronauts Reid Wiseman, Victor Glover, Christina Hammock Koch, and Canadian Space… Article 12 months ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  16. 5 Min Read Eileen Collins Broke Barriers as America’s First Female Space Shuttle Commander Astronauts Eileen M. Collins, mission commander and Jeffrey S. Ashby, pilot, peruse checklists on Columbia's middeck during the STS-93 mission. Credits: NASA At the end of February 1998, Johnson Space Center Deputy Director James D. Wetherbee called Astronaut Eileen Collins to his office in Building 1. He told her she had been assigned to command STS-93 and went with her to speak with Center Director George W.S. Abbey who informed her that she would be going to the White House the following week. Selecting a female commander to fly in space was a monumental decision, something the space agency recognized when they alerted the president of the United States. First Lady Hillary Clinton wanted to publicly announce the flight to the American people along with her husband President William J. Clinton and NASA Administrator Daniel S. Goldin. President William Jefferson Clinton and First Lady Hillary Rodham Clinton with Eileen Collins in the Oval Office.Sharon Farmer and White House Photograph Office At that event, on March 5, 1998, the First Lady noted what a change it would be to have a female in the commander’s seat. Referencing Neil A. Armstrong’s first words on the Moon, Clinton proclaimed, “Collins will take one big step forward for women and one giant leap for humanity.” Collins, a military test pilot and shuttle astronaut, was about to break one of the last remaining barriers for women at NASA by being assigned a position previously filled by men only. Clinton went on to reflect on her own experience with the space agency when she explained how in 1962, at the age of 14, she had written to NASA and asked about the qualifications to become an astronaut. NASA responded that women were not being considered to fly space missions. “Well, times have certainly changed,” she said wryly. Eileen Collins’ assignment as the first female shuttle commander was front page news in the March 13, 1998 issue of Johnson Space Center’s Space News Roundup.NASA The same year Hillary Clinton inquired about the astronaut corps, a special subcommittee of the U.S. House of Representatives Committee on Science and Astronautics held hearings on the issue of sexual discrimination in the selection of astronauts. Astronaut John H. Glenn, who had flown that February in 1962, justified women’s exclusion from the corps. “I think this gets back to the way our social order is organized really. It is just a fact. The men go off and fight the wars and fly the airplanes and come back and help design and build and test them. The fact that women are not in this field is a fact of our social order. It may be undesirable.” Attitudes about women’s place in society, not just at NASA, were stubbornly hard to break. It would be 16 years before the agency selected its first class of astronauts that included women. Astronaut Eileen M. Collins looks over a checklist at the commander’s station on the forward flight deck of the space shuttle Columbia on July 23, 1999, the first day of the mission. The most important event of this day was the deployment of the Chandra X-Ray Observatory.NASA By 1998, views about women’s roles had changed substantially, as demonstrated by the naming of the first female shuttle commander. The agency even commissioned a song for the occasion: “Beyond the Sky,” by singer-songwriter Judy Collins. NASA dedicated the historic mission’s launch to America’s female aviation pioneers from the Ninety-Nines—an international organization of women pilots—to the Women Airforce Service Pilots (WASPs), women who ferried aircraft for the military during World War II. Collins also extended an invitation to the women who had participated in Randy Lovelace’s Woman in Space Program, where women went through the same medical and psychological tests as the Mercury 7 astronauts; the press commonly refers to these women as the Mercury 13. (Commander Collins had thanked both the WASPs and the Mercury 13 for paving the way and inspiring her career in aviation and spaceflight in her White House speech.) In a way, it's like my dream come true. Betty Skelton Frankman Pioneering Woman Aviator In a group interview with several of the WASPs in Florida, just before launch, Mary Anna “Marty” Martin Wyall explained why they came. “Eileen Collins was one of those women that has always looked at us as being her mentors, and we just think she’s great. That’s why we want to come see her blast off.” Betty Skelton Frankman expressed just how proud she was of Collins, and how NASA’s first female commander would be fulfilling her dream to fly in space. “In a way,” she said, “it’s like my dream come true.” In the ‘60s it was not possible for a woman to fly in space because none met the requirements as laid out by NASA. But by the end of the twentieth century, women had been in the Astronaut Office for 20 years, and opportunities for women had grown as women were selected as pilot astronauts. NASA named its second and only other female space shuttle commander, Pamela A. Melroy, to STS-120, and Peggy A. Whitson went on to command the International Space Station. Melroy and Whitson shook hands in space, when their missions coincided, for another historic first—two women commanding space missions at the same time. Twenty-five years ago, Eileen Collins’ command broke down barriers in human spaceflight. As the First Lady predicted, her selection led to other opportunities for women astronauts. More women continue to command spaceflight missions, including Expedition 65 Commander Shannon Walker and Expedition 68 Commander Samantha Cristoforetti. More importantly, Collins became a role model for young people interested in aviation, engineering, math, science, and technology. Her career demonstrated that there were no limits if you worked hard and pursued your passion. Learn More About Eileen Collins Share Details Last Updated Jul 22, 2024 Related TermsEileen M. CollinsFormer AstronautsNASA HistorySTS-93Women at NASAWomen's History Month Explore More 5 min read Sally Ride Remembered as an Inspiration to Others Article 1 year ago 6 min read The Class of 1978 and the FLATs Article 11 years ago 6 min read Lovelace’s Woman in Space Program Article 20 years ago Keep Exploring Discover More Topics From NASA NASA History Women at NASA Space Shuttle Former Astronauts View the full article
  17. The latest crew chosen by NASA to venture on a simulated trip to Mars inside the agency’s Human Exploration Research Analog. From left are Sergii Iakymov, Erin Anderson, Brandon Kent, and Sarah Elizabeth McCandless.Credit: C7M3 Crew NASA selected a new team of four research volunteers to participate in a simulated mission to Mars within HERA (Human Exploration Research Analog) at the agency’s Johnson Space Center in Houston. Erin Anderson, Sergii Iakymov, Brandon Kent, and Sarah Elizabeth McCandless will begin their simulated trek to Mars on Friday, Aug. 9. The volunteer crew members will stay inside the 650-square-foot habitat for 45 days, exiting Monday, Sept. 23 after a simulated “return” to Earth. Jason Staggs and Anderson Wilder will serve as alternate crew members. The HERA missions offer scientific insights into how people react to the type of isolation, confinement, work and life demands, and remote conditions astronauts might experience during deep space missions. The facility supports more frequent, shorter-duration simulations in the same building as CHAPEA (Crew Health and Performance Analog). This crew is the third group of volunteers to participate in a simulated Mars mission in HERA this year. The most recent crew completed its HERA mission on June 24. In total, there will be four analog missions in this series. During this summer’s simulation, participants will perform a mix of science and operational tasks, including harvesting plants from a hydroponic garden, growing shrimp, deploying a small, cube-shaped satellite (CubeSat) to simulate gathering virtual data for analysis, “walking” on the surface of Mars using virtual reality goggles, and flying simulated drones on the simulated Mars surface. The team members also will encounter increasingly longer communication delays with Mission Control throughout their mission, culminating in five-minute lags as they “near” Mars. Astronauts traveling to Mars may experience communications delays of up to 20 minutes. NASA’s Human Research Program will conduct 18 human health experiments during each of the 2024 HERA missions. Collectively, the studies explore how a Mars-like journey may affect the crew members’ mental and physical health. The work also will allow scientists to test certain procedures and equipment designed to keep astronauts safe and healthy on deep space missions. Primary Crew Erin Anderson Erin Anderson is a structural engineer at NASA’s Langley Research Center in Virginia. Her work focuses on manufacturing and building composite structures — using materials engineered to optimize strength, stiffness, and density — that fly in air and space. Anderson earned a bachelor’s degree in Aerospace Engineering from the University of Illinois at Urbana-Champaign in 2013. After graduating, she worked as a structural engineer for Boeing on NASA’s SLS (Space Launch System) in Huntsville, Alabama. She moved to New Orleans to support the assembly of the first core stage of the SLS at NASA’s Michoud Assembly Facility. Anderson received a master’s degree in Aeronautical Engineering from Purdue University in West Lafayette, Indiana, in 2020. She started her current job in 2021, continuing her research on carbon fiber composites. In her free time, Anderson enjoys playing rugby, doting on her dog, Sesame, and learning how to ride paddleboard at local beaches. Sergii Iakymov Sergii Iakymov is an aerospace engineer with more than 15 years of experience in research and design, manufacturing, quality control, and project management. Iakymov currently serves as the director of the Mars Desert Research Station, a private, Utah-based research facility that serves as an operational and geological Mars analog. Iakymov received a bachelor’s degree in Aviation and Cosmonautics and a master’s in Aircraft Control Systems from Kyiv Polytechnic Institute in Ukraine. His graduate research focused on the motion of satellites equipped with pitch flywheels and magnetic coils. Iakymov was born in Germany, raised in Ukraine, and currently splits his time between southern Utah and Chino Hills, California. His hobbies include traveling, running, hiking, scuba diving, photography, and reading. Brandon Kent Brandon Kent is a medical director in the pharmaceutical industry, supporting ongoing global efforts to develop new therapies across cancer types. Kent received a bachelor’s degrees in Biochemistry and Biology from North Carolina State University in Raleigh. He earned his doctorate in Biomedicine from Mount Sinai School of Medicine in New York City, where his work primarily focused on how genetic factors regulate early embryonic development and cancer development. Following graduate school, Kent moved into scientific and medical communications consulting in oncology, primarily focusing on clinical trial data disclosures, scientific exchange, and medical education initiatives. Kent and his wife have two daughters. In his spare time, he enjoys spending time with his daughters, flying private aircraft, hiking, staying physically fit, and reading. He lives in Kinnelon, New Jersey. Sarah Elizabeth McCandless Sarah Elizabeth McCandless is a navigation engineer for NASA’s Jet Propulsion Laboratory in Southern California. McCandless’ job involves tracking the location and predicting the future trajectory of spacecraft, including the Mars Perseverance rover, Artemis I, Psyche, and Europa Clipper. McCandless received a bachelor’s in Aerospace Engineering from the University of Kansas in Lawrence, and a master’s in Aerospace Engineering from the University of Texas at Austin, focused on orbital mechanics. McCandless is originally from Fairway, Kansas, and remains an avid fan of sports teams from her alma mater and hometown. She is active in STEM (science, technology, engineering, and mathematics) outreach and education and enjoys camping, running, traveling with friends and family, and piloting Cessna 172s. She lives in Pasadena, California. Alternate Crew Jason Staggs Jason Staggs is a cybersecurity researcher and adjunct professor of computer science at the University of Tulsa. His research focuses on systems security engineering, infrastructure protection, and resilient autonomous systems. Staggs is an editor for the International Journal of Critical Infrastructure Protection and the Critical Infrastructure Protection book series. Staggs supported scientific research expeditions with the National Science Foundation at McMurdo Station in Antarctica. He also previously served as a space engineer and medical officer while working as an analog astronaut in the Hawaii Space Exploration Analog and Simulation (HI-SEAS) atop the Mauna Loa volcano. Staggs received his bachelor’s degree in Information Assurance and Forensics at Oklahoma State University and master’s and doctorate degrees in Computer Science from the University of Tulsa. During his postdoctoral studies at Idaho National Laboratory, Idaho Falls, he investigated electric vehicle charging station vulnerabilities. In his spare time, Staggs enjoys hiking, building radio systems, communicating with ham radio operators in remote locations, and volunteering as a solar system ambassador for NASA’s Jet Propulsion Laboratory — sharing his passion for astronomy, oceanography, and space exploration with his community. Anderson Wilder Anderson Wilder is a Florida Institute of Technology in Melbourne graduate student working on his doctorate in psychology. His research focuses on team resiliency and human-machine interactions. Wilder also works in the campus neuroscience lab, investigating how spaceflight contributes to astronaut neurobehavioral changes. Wilder previously served as an executive officer and engineer for an analog mission at the Mars Desert Research Station in Utah. There, he performed studies related to crew social dynamics, plant growth, and geology. Wilder received bachelor’s degrees in Linguistics and Psychology from Ohio State University in Columbus. He also received a master’s degree in Space Studies from International Space University in Strasbourg, France, and is completing a second master’s in Cognitive Experimental Psychology from Cleveland State University in Ohio. Outside of school, Wilder works as a parabolic flight coach, teaching people how to experience reduced-gravity environments. He also enjoys chess, reading, video games, skydiving, and scuba diving. On a recent dive, he explored a submerged section of the Great Wall of China. ____ NASA’s Human Research Program NASA’s Human Research Program (HRP) pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and the International Space Station, HRP scrutinizes how spaceflight affects human bodies and behaviors. Such research drives HRP’s quest to innovate ways to keep astronauts healthy and mission-ready as space travel expands to the Moon, Mars, and beyond. Explore More 2 min read Exploring the Moon: Episode Previews Article 3 days ago 6 min read Voyagers of Mars: The First CHAPEA Crew’s Yearlong Journey Article 2 weeks ago 5 min read From Polar Peaks to Celestial Heights: Christy Hansen’s Unique Path to Leading NASA’s Commercial Low Earth Orbit Development Program Article 2 weeks ago Keep Exploring Discover More Topics From NASA Living in Space Artemis Human Research Program Space Station Research and Technology View the full article
  18. 1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA / Maria Werries NASA Aeronautics Returns to Oshkosh Sunday, July 21 at 8:30 p.m. EDT NASA will appear at Oshkosh with a full slate of interactive exhibits, informative activities, and fascinating people to meet. But if you can’t make it we’ve got you covered. Enjoy the show virtually right here on this page. John Gould will be onsite this coming week sending in daily updates with news about NASA’s events and festivities. Our goal is to give you our best “you are there” experience. Just with no cheese curds. — Jim Banke Read the preview story Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 3 min read NASA to Host Panels, Forums, and More at Oshkosh 2024 Article 2 days ago 4 min read NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic Article 1 week ago 7 min read ARMD Solicitations Article 3 weeks ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Jul 21, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related TermsAeronautics View the full article
  19. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s pavilion as it will look at EAA AirVenture Oshkosh 2024 is seen in this illustration, Flying into the graphic, clockwise from upper left: the X-66 sustainable flight demonstrator, X-59 quiet supersonic demonstrator, Saab 340B, a small drone, an air taxi concept, and a DeHavillland “Dash 7.” Both the Saaab and Dash 7 are part of the Electrified Powertrain Flight Demonstration project.NASA / Maria Werries Each summer, aviation enthusiasts and experts from around the planet – including NASA’s aeronautical innovators – descend into a regional airport near Oshkosh, Wisconsin, to attend the Experimental Aviation Association’s AirVenture Oshkosh. The weeklong airshow and fly-in, where droves of pilots arrive in their own aircraft, draws hundreds of thousands of aviation enthusiasts to enjoy aerial demonstrations, static aircraft displays, aviation-related forums, and hands-on activities for people of all ages and all education levels. NASA will appear at Oshkosh with a full slate of interactive exhibits, informative activities, and fascinating people to meet. This year’s event, held July 22-28, is chock-full of things to do and see. If you’re attending Oshkosh this year, here’s a brief summary of what you can expect inside the NASA Pavilion and on the forum stages: Meet and greet opportunities with NASA’s researchers, leaders, pilots, and maybe even an astronaut Hands-on educational STEM activities and handouts for kids and adults of all ages Talks and panels on NASA activities from our leadership, engineers, pilots, and other subject matter experts Models of NASA aircraft and spacecraft And if you’re looking for certain activities, NASA guides will be available onsite to help you find the ones best suited to you and your group. NASA Panel Events In addition to the NASA Pavilion and forum talks, there are also several NASA-focused panels that are a can’t miss. For example, the “NASA Artemis Campaign: For All Humankind” panel will be held at 7 p.m. CDT on Friday, July 26 at AirVenture’s Theater in the Woods. The event will feature astronaut Randy Bresnik and subject matter experts discussing the upcoming Artemis II mission. “Women of NASA,” another great panel, will take place at 8:30 a.m. CDT on Wednesday, July 24, the WomenVenture Center. It will feature several inspiring NASA Women, from senior leaders to project managers and engineers. A list of all NASA activities is available on AirVenture’s website, and our aeronautical innovators will be inside the NASA Pavilion to assist you. STEM Engagement Activities The NASA Pavilion’s STEM Zone will have interactive activities and demonstrations. NASA will also have materials available for educators. The STEM Zone will be open Monday to Sunday, July 22-28, from 9 a.m. to 2:30 p.m. CDT. The KidVenture buildings, hosted by the EAA Museum, will include hands-on NASA STEM activities also, and NASA will participate at the AeroEducate Center in Aviation Gateway Park with activities intended for middle- and high-school aged youth – including lectures and a drone flight cage. More NASA’s activities are available on the event schedule or on EAA’s app. Online Oshkosh Coverage Online, NASA will post live updates from Oshkosh with news about NASA’s events and festivities through the week, as well as more information about our flight research goals. The live posts will be a great way to keep up with what’s going on for those who are unable to attend the event in person. Additionally, NASA will post on social media using the hashtag #OSH24. About the AuthorJohn GouldAeronautics Research Mission DirectorateJohn Gould is a member of NASA Aeronautics' Strategic Communications team at NASA Headquarters in Washington, DC. He is dedicated to public service and NASA’s leading role in scientific exploration. Prior to working for NASA Aeronautics, he was a spaceflight historian and writer, having a lifelong passion for space and aviation. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 4 min read NASA Cloud-Based Platform Could Help Streamline, Improve Air Traffic Article 7 days ago 7 min read ARMD Solicitations Article 3 weeks ago 2 min read NASA Prepares for Air Taxi Passenger Comfort Studies Article 3 weeks ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Jul 19, 2024 EditorJim BankeContactJim Bankejim.banke@nasa.gov Related TermsAeronautics View the full article
  20. 2 Min Read Exploring the Moon: Episode Previews Extravehicular Activity and Human Surface Mobility Program Discover. Learn. Explore. NASA’s video series, Exploring the Moon, takes a “behind-the-scenes” look at humanity’s next steps on the Moon. Here is your first look at some of the key moments from the upcoming series! Scroll down or navigate through CONTENTS, to the side, to explore! To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Who, What, When, Where, Why, and How… How many small steps equal a giant leap? Find out what it takes to plan our next great voyage to the Moon, what exactly we plan to do there, and what may come next. We went to the Moon fifty years ago, but we only explored a very small part of the Moon. Nujoud Merancy Exploration Systems Strategy & Architecture Lead Going to the Moon Won’t Be Easy… To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 01: Why Explore the Moon? Exploring the Moon Series Next-Generation Spacesuits Explore the special technologies and improvements NASA has made to its spacesuits since the International Space Station (ISS), and how they will be used to make Artemis mission possible​. Basically you should think of a spacesuit as a human-shaped spacecraft. Liana Rodriggs Spacesuit Expert Advancements in Mobility To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 02: Artemis SpacesuitsExploring the Moon Series Spacesuits. How do they work? To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 02: Artemis SpacesuitsExploring the Moon Series Spacewalks: Microgravity vs Planetary To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 02: Artemis SpacesuitsExploring the Moon Series Lunar Rovers Buckle up and roll out! Learn all about the different capabilities crewed and uncrewed rovers have. Plus, find out how these technologies will be used to explore the lunar surface. We are taking the ability to transport crew and tools. And these rovers that can operate independent of the crew. Nathan Howard Lunar Rovers Expert Reinventing the Wheel: Apollo to Artemis To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 03: Lunar RoversExploring the Moon Series Simulating the Mission To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 03: Lunar RoversExploring the Moon Series Lunar Geology Tools How does NASA collect surface samples from the Moon? The answer may surprise you! Explore the challenges of designing the geology sampling equipment for the Artemis missions and how geology sampling technology has changed since Apollo missions.​ In order to take these samples on the Moon you need something to pick these samples up with. You can't just walk around and pick them up by hand, that is why we make geology tools. Holly Newton Lunar Geology Tools Expert Lessons Learned from Apollo To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 04: Lunar Geology ToolsExploring the Moon Series Breakthrough! The Ingenuity of Artemis Tools To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 04: Lunar Geology ToolsExploring the Moon Series It’s All In The Finer Details… To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 04: Lunar Geology ToolsExploring the Moon Series Special Lunar Challenges Learn how NASA engineers are working to prepare for the unique challenges astronauts will face when exploring the Lunar South Pole for the first time ever. There are parts of the Moon and craters that have not seen the Sun in over a billion years. Ben Greene EVA Development Manager The Challenges Ahead To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 05: Special Lunar ChallengesExploring the Moon Series Dust. Gets. Everywhere. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 05: Special Lunar ChallengesExploring the Moon Series Exploring the South Pole of the Moon To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Episode 05: Special Lunar ChallengesExploring the Moon Series Back to the "Exploring the Moon" Main Page Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  21. John Campbell, a logistics engineer at NASA’s Marshall Space Flight Center, stands on NASA’s Pegasus barge July 15. NASA How do you move NASA’s SLS (Space Launch System) rocket’s massive 212-foot-long core stage across the country? You do it with a 300-foot-long barge. However, NASA’s Pegasus barge isn’t just any barge. It’s a vessel with a history, and John Campbell, a logistics engineer for the agency based at NASA’s Marshall Space Flight Center in Huntsville, Alabama, is one of the few people who get to be a part of its legacy. For Campbell, this journey is more than just a job – it’s a lifelong passion realized. “Ever since I was a boy, I’ve been fascinated by engineering,” he said. “But to be entrusted with managing NASA’s Pegasus barge, transporting history-making hardware for human spaceflight across state lines and waterways – is something I never imagined.” NASA has used barges to ferry the large,and heavy hardware elements of its rockets since the Apollo Program. Replacing the agency’s Poseidon and Orion barges, Pegasus was originally crafted for the Space Shuttle Program and updated in recent years to help usher in the Artemis Generation and accommodate the mammoth dimensions of the SLS core stage. The barge plays a big role in NASA’s logistical operations, navigating rivers and coastal waters across the Southeast, and has transported key structural test hardware for SLS in recent years. Campbell grew up in Muscle Shoals, Alabama. After graduating from the University of Alabama with a degree in mechanical engineering, he ventured south to Panama City, Florida, where he spent a few years with a heating, ventilation, and air conditioning consulting team. Looking for an opportunity to move home, he applied for and landed a contractor position with NASA and soon moved to his current civil service role. With 17 years under his belt, Campbell has many fond memories during his time with the agency. One standout moment was witnessing the space shuttle stacked in the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. But it’s not all about rockets and launch pads for Campbell. When he isn’t in his office making sure Pegasus has everything it needs for its next trip out, he is on the water accompanying important pieces of hardware to their next destinations. With eight trips on Pegasus under his belt, the journey never gets old. “There is something peaceful when you look out and it’s just you, the water, one or two other boats, and wildlife,” Campbell said. “On one trip we had a pod of at least 20 dolphins surrounding us. You get to see all kinds of cool wildlife and scenery.” From cherishing special moments like this to ensuring the success of each journey, Campbell recognizes the vital role he plays in the agency’s goals to travel back to the Moon and beyond and does not take his responsibility lightly. “To be a part of the Artemis campaign and the future of space is just cool. I was there when the barge underwent its transformation to accommodate the colossal core stage, and in that moment, I realized I was witnessing history unfold. Though I couldn’t be present at the launch of Artemis I, watching it on TV was an emotional experience. To see something you’ve been a part of, something you’ve watched evolve from mere components to a giant spacecraft hurtling into space – it’s a feeling beyond words.” NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, the Gateway in orbit around the Moon, and commercial human landing systems. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. Read other I am Artemis features. View the full article
  22. Image data: NASA/JPL-Caltech/SwRI/MSSS Image processing by Gary Eason © CC BY During its 61st close flyby of Jupiter on May 12, 2024, NASA’s Juno spacecraft captured this color-enhanced view of the giant planet’s northern hemisphere. It provides a detailed view of chaotic clouds and cyclonic storms in an area known to scientists as a folded filamentary region. In these regions, the zonal jets that create the familiar banded patterns in Jupiter’s clouds break down, leading to turbulent patterns and cloud structures that rapidly evolve over the course of only a few days. Citizen scientist Gary Eason made this image using raw data from the JunoCam instrument, applying digital processing techniques to enhance color and clarity. At the time the raw image was taken, the Juno spacecraft was about 18,000 miles (29,000 kilometers) above Jupiter’s cloud tops, at a latitude of about 68 degrees north of the equator. JunoCam’s raw images are available for the public to peruse and process into image products at https://missionjuno.swri.edu/junocam/processing. More information about NASA citizen science can be found at https://science.nasa.gov/citizenscience and https://www.nasa.gov/solve/opportunities/citizenscience. More information about Juno is at https://www.nasa.gov/juno and https://missionjuno.swri.edu. For more about this finding and other science results, see https://www.missionjuno.swri.edu/science-findings. View the full article
  23. NASA On July 20, 1969, astronauts Neil Armstrong and Buzz Aldrin landed on the Moon in the lunar module “Eagle.” Afterward, Aldrin posed for this photo, taken by Armstrong, beside the United States flag. The Apollo 11 mission’s main goal was to perform a crewed lunar landing and return to Earth. The crew also conducted scientific exploration of the Moon’s surface and deployed a television camera to transmit signals to Earth. Armstrong and Aldrin spent 21 hours and 36 minutes on the Moon. They explored the surface, took extensive photographs of the lunar terrain and each other, and collected lunar surface samples. The two moonwalkers left behind commemorative medallions bearing the names of the three Apollo 1 astronauts who lost their lives in a launch pad fire, and two cosmonauts who also died in accidents, on the lunar surface. Also left on the Moon were several tokens of world peace. See more photos from this historic mission. Image credit: NASA View the full article
  24. 6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The Arctic is captured in this 2010 visualization using data from NASA’s Aqua satellite. A new study quantifies how climate-related processes, including the melting of ice sheets and glaciers, are driving polar motion. Another study looks at how polar meltwater is speeding the lengthening of Earth’s day.NASA’s Scientific Visualization Studio Researchers used more than 120 years of data to decipher how melting ice, dwindling groundwater, and rising seas are nudging the planet’s spin axis and lengthening days. Days on Earth are growing slightly longer, and that change is accelerating. The reason is connected to the same mechanisms that also have caused the planet’s axis to meander by about 30 feet (10 meters) in the past 120 years. The findings come from two recent NASA-funded studies focused on how the climate-related redistribution of ice and water has affected Earth’s rotation. This redistribution occurs when ice sheets and glaciers melt more than they grow from snowfall and when aquifers lose more groundwater than precipitation replenishes. These resulting shifts in mass cause the planet to wobble as it spins and its axis to shift location — a phenomenon called polar motion. They also cause Earth’s rotation to slow, measured by the lengthening of the day. Both have been recorded since 1900. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video The animation, exaggerated for clarity, illustrates how Earth’s rotation wobbles as the location of its spin axis, shown in orange, moves away from its geographic axis, which is shown in blue and represents the imaginary line between the planet’s geographic North and South poles.NASA’s Scientific Visualization Studio Analyzing polar motion across 12 decades, scientists attributed nearly all of the periodic oscillations in the axis’ position to changes in groundwater, ice sheets, glaciers, and sea levels. According to a paper published recently in Nature Geoscience, the mass variations during the 20th century mostly resulted from natural climate cycles. The same researchers teamed on a subsequent study that focused on day length. They found that, since 2000, days have been getting longer by about 1.33 milliseconds per 100 years, a faster pace than at any point in the prior century. The cause: the accelerated melting of glaciers and the Antarctic and Greenland ice sheets due to human-caused greenhouse emissions. Their results were published July 15 in Proceedings of the National Academy of Sciences. “The common thread between the two papers is that climate-related changes on Earth’s surface, whether human-caused or not, are strong drivers of the changes we’re seeing in the planet’s rotation,” said Surendra Adhikari, a co-author of both papers and a geophysicist at NASA’s Jet Propulsion Laboratory in Southern California. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video The location of Earth’s spin axis moved about 30 feet (10 meters) between 1900 and 2023, as shown in this animation. A recent study found that about 90% of the periodic oscillations in polar motion could be explained by melting ice sheets and glaciers, diminishing groundwater, and sea level rise.NASA/JPL-Caltech Decades of Polar Motion In the earliest days, scientists tracked polar motion by measuring the apparent movement of stars. They later switched to very long baseline interferometry, which analyzes radio signals from quasars, or satellite laser ranging, which points lasers at satellites. Researchers have long surmised that polar motion results from a combination of processes in Earth’s interior and at the surface. Less clear was how much each process shifts the axis and what kind of effect each exerts — whether cyclical movements that repeat in periods from weeks to decades, or sustained drift over the course of centuries or millennia. For their paper, researchers used machine-learning algorithms to dissect the 120-year record. They found that 90% of recurring fluctuations between 1900 and 2018 could be explained by changes in groundwater, ice sheets, glaciers, and sea level. The remainder mostly resulted from Earth’s interior dynamics, like the wobble from the tilt of the inner core with respect to the bulk of the planet. The patterns of polar motion linked to surface mass shifts repeated a few times about every 25 years during the 20th century, suggesting to the researchers that they were largely due to natural climate variations. Past papers have drawn connections between more recent polar motion and human activities, including one authored by Adhikari that attributed a sudden eastward drift of the axis (starting around 2000) to faster melting of the Greenland and Antarctic ice sheets and groundwater depletion in Eurasia. That research focused on the past two decades, during which groundwater and ice mass loss as well as sea level rise — all measured via satellites — have had strong connections to human-caused climate change. “It’s true to a certain degree” that human activities factor into polar motion, said Mostafa Kiani Shahvandi, lead author of both papers and a doctoral student at the Swiss university ETH Zurich. “But there are natural modes in the climate system that have the main effect on polar motion oscillations.” Longer Days For the second paper, the authors used satellite observations of mass change from the GRACE mission (short for Gravity Recovery and Climate Experiment) and its follow-on GRACE-FO, as well as previous mass-balance studies that analyzed the contributions of changes in groundwater, ice sheets, and glaciers to sea level rise in the 20th century to reconstruct changes in the length of days due to those factors from 1900 to 2018. Scientists have known through historical eclipse records that length of day has been growing for millennia. While almost imperceptible to humans, the lag must be accounted for because many modern technologies, including GPS, rely on precise timekeeping. In recent decades, the faster melting of ice sheets has shifted mass from the poles toward the equatorial ocean. This flattening causes Earth to decelerate and the day to lengthen, similar to when an ice skater lowers and spreads their arms to slow a spin. The authors noticed an uptick just after 2000 in how fast the day was lengthening, a change closely correlated with independent observations of the flattening. For the period from 2000 to 2018, the rate of length-of-day increase due to movement of ice and groundwater was 1.33 milliseconds per century — faster than at any period in the prior 100 years, when it varied from 0.3 to 1.0 milliseconds per century. The lengthening due to ice and groundwater changes could decelerate by 2100 under a climate scenario of severely reduced emissions, the researchers note. (Even if emissions were to stop today, previously released gases — particularly carbon dioxide — would linger for decades longer.) If emissions continue to rise, lengthening of day from climate change could reach as high as 2.62 milliseconds per century, overtaking the effect of the Moon’s pull on tides, which has been increasing Earth’s length of day by 2.4 milliseconds per century, on average. Called lunar tidal friction, the effect has been the primary cause of Earth’s day-length increase for billions for years. “In barely 100 years, human beings have altered the climate system to such a degree that we’re seeing the impact on the very way the planet spins,” Adhikari said. News Media Contacts Andrew Wang / Jane J. Lee Jet Propulsion Laboratory, Pasadena, Calif. 626-379-6874 / 818-354-0307 andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov 2024-101 Share Details Last Updated Jul 19, 2024 Related TermsEarth ScienceEarthEarth Science DivisionEarth's MoonGRACE (Gravity Recovery And Climate Experiment)GRACE-FO (Gravity Recovery and Climate Experiment Follow-on)Jet Propulsion Laboratory Explore More 3 min read New Evidence Adds to Findings Hinting at Network of Caves on Moon An international team of scientists using data from NASA’s LRO (Lunar Reconnaissance Orbiter) has discovered… Article 22 hours ago 8 min read The Earth Observer Editor’s Corner: Summer 2024 NASA’s third EOS mission—AURA—marked 20 years in orbit on July 15, with two of its… Article 23 hours ago 3 min read The Earth Observer’s 35th Anniversary Welcome to a new era for The Earth Observer newsletter! Our 35th anniversary also marks the official… Article 23 hours ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
  25. 3 Min Read NASA Awards Launch Excitement for STEM Learning Nationwide Southwest Girl Scout Council Leaders test out their “cereal box” pin-hole viewers to study the sun during educator training program. NASA awards inspire the next generation of explorers by helping community institutions like museums, science centers, libraries, and other informal education institutions and their partners bring science, technology, engineering, and mathematics (STEM) content to their communities. NASA’s Next Generation STEM project has expanded the Teams Engaging Affiliated Museums and Informal Institutions (TEAM II) program to include a new tier of funding and provide even more opportunities to informal educational institutions across the country. The new STEM Innovator tier will fund awards of approximately $250,000, the Community Anchor tier will continue to offer awards up to $50,000, and the highest award level will be designated the National Connector and fund initiatives up to $900,000. Fiscal year 2024 solicitations will target the Community Anchor and the new STEM Innovator award levels. Community Anchor and National Connector awards will be the focus for the fiscal year 2025 solicitation. The TEAM II program was first expanded to include Community Anchors in 2022. Since then, the program has designated over 50 institutions across 29 states as NASA Community Anchors. These awards support proposals that strengthen the STEM impact of many community organizations, including: 5th-8th Graders from Whiting Village School join Flight Director Tyson as they embark on a Destination Mars Virtual Mission from their two-room schoolhouse in rural Maine.NASA The Challenger Learning Center of Maine reached more than 960 K-8 students statewide through 58 virtual programs touching 27 mainland schools and four island schools, hosted a STEM community night for residents of rural Whiting, Maine, and held two virtual programs featuring NASA women engineers for girls across the state. “NASA’s funding allowed Challenger Maine to provide this Mars mission experience for free to schools, no matter their size,” said Kirsten Hibbard, executive director of the Challenger Learning Center of Maine. “We’ve connected with new schools and become this resource, literally a community anchor of STEM, for these schools.” Youth at the Standing Arrow Powwow on the Flathead Reservation experience remote sensing content with virtual reality.NASA The University of Montana spectrUM Discovery Area engaged western Montana’s rural and tribal communities in understanding the role NASA and its partners play in sensing and responding to fire. SpectrUM developed the Montana Virtual Reality Fire Sensing Experience. Using ClassVR headsets, visitors learned about NOAA’s (National Oceanic and Atmospheric Administration) Joint Polar Satellite System satellites, JPSS-1 and JPSS-2, and how they are used to remotely sense the Earth. SpectrUM collaborated with its community advisory group, SciNation on the Flathead Reservation, to incorporate fire and Earth science curricula developed by the Confederated Salish and Kootenai Tribes into their field trip and educational programs, impacting hundreds of students. A student from Barksdale Air Force Base in Louisiana is excited to complete an activity in the “Aeronautics Museum in a Box” kit developed by NASA’s Aeronautics Research Mission Directorate; Community Anchor grantee Sci-Port Discovery Center in Shreveport, Louisiana; and Central Creativity, an education center in Laurel, Mississippi.NASA Sci-Port Discovery Center Shreveport, Louisiana introduced middle and high school students to NASA aeronautics content through their Aeronautics Museum in a Box kits. The kits were developed in collaboration with NASA’s Aeronautics Research Mission Directorate, Sci-Port, and Central Creativity. The kits include fun, hands-on activities focusing on the parts of an airplane, principles of flight, airplane structure and materials, propulsion, future of flight, careers, and more. Students and families from underserved communities across Northwest Louisiana tested the kits and shared feedback with developers. “Museum in a Box brought our participants to new heights beyond their imagination. They see themselves as teachers for their children, as a source of guidance for STEM careers instead of gangs,” said Dr. Heather Kleiner, director, Northwest LaSTEM Innovation Center, Sci-Port Discovery Center. U.S. informal education institutions interested in proposing for these awards are invited to attend an optional pre-proposal webinar Thursday, July 25, or Tuesday, August 13. Event times and connection details are available here. More information about funding opportunities can be found on NASA’s TEAM II Grant Forecasting webpage. To learn more about TEAM II Community Anchors, visit:TEAM II Community Anchors – NASA Keep Exploring Discover More Topics From NASA Outside the Classroom About STEM Engagement at NASA For Educators Learning Resources View the full article
×
×
  • Create New...