Members Can Post Anonymously On This Site
-
Posts
5,741 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
NASA’s Deep Space Food Challenge directly supports the agency’s Moon to Mars initiatives.Credit: NASA NASA invites the media and public to explore the nexus of space and food innovation at the agency’s Deep Space Food Challenge symposium and winners’ announcement at the Nationwide and Ohio Farm Bureau 4-H Center in Columbus, Ohio, on Friday, Aug. 16. In 2019, NASA and the CSA (Canadian Space Agency) started the Deep Space Food Challenge, a multi-year international effort to develop sustainable food systems for long-duration habitation in space including the Moon and Mars. Since Phase 1 of the challenge opened in 2021, more than 300 teams from 32 countries have developed innovative food system designs. On Aug. 16, NASA will announce the final Phase 3 winners and recognize the shared global effort. NASA will award up to $1.5 million during the awards ceremony, totaling the prize purse for this three-year competition at $3 million. International teams also will be recognized for their achievements. “Advanced food systems also benefit life on Earth,” said Kim Krome-Sieja, acting program manager of NASA Centennial Challenges at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “Solutions from this challenge could enable new avenues for food production around the world, especially in extreme environments, resource-scarce regions, and in locations where disasters disrupt critical infrastructure.” Media also may request attendance for activities on Thursday, Aug. 15, including private tours, networking, knowledge sharing, and culinary experiences. Interested media need to RSVP by 3 p.m. EDT Monday, Aug. 12, to Lane Figueroa at lane.e.figueroa@nasa.gov. The Methuselah Foundation, NASA’s partner in the Deep Space Food Challenge, is hosting the event in coordination with the Ohio State University College of Food, Agricultural, and Environmental Sciences and NASA Centennial Challenges. “Our Phase 2 winners’ event in Brooklyn, New York, was an incredible display of innovation, partnership, and collaboration across NASA, industry, and academia,” said Angela Herblet, challenge manager of the Deep Space Food Challenge and program analyst of NASA Centennial Challenges at NASA Marshall. “I’m looking forward to celebrating these brilliant Phase 3 finalists and underscoring the giant leaps they’ve made toward creating sustainable, regenerative food production systems.” The event will feature a meet and greet with the Phase 3 finalists, symposium panels, and live demonstrations of the finalists’ food production technologies. Attendees also will have the opportunity to meet the crew of Ohio State students called “Simunauts,” who managed operations of the technologies during the eight-week demonstration and testing period. “The Prizes, Challenges, and Crowdsourcing team is excited to welcome media, stakeholders, and the public to our event in Columbus,” said Amy Kaminski, program executive for NASA’s Prizes, Challenges, and Crowdsourcing at NASA Headquarters in Washington, D.C. “These finalists have worked diligently for three years to develop their diverse, innovative food systems, and I’m excited to see how their technologies may impact NASA’s future deep space missions.” The awards ceremony also will livestream on Marshall Space Flight Center’s YouTube channel and NASA Prize’s Facebook page. As a NASA Centennial Challenge, the Deep Space Food Challenge is a coordinated effort between NASA and CSA for the benefit of all. Subject matter experts at NASA’s Johnson Space Center in Houston and NASA’s Kennedy Space Center in Florida support the competition. NASA’s Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program within NASA’s Space Technology Mission Directorate and managed at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The Methuselah Foundation, in partnership with NASA, oversees the competitors. For more information about the symposium, see the symposium website. To learn more about the Deep Space Food Challenge, visit: nasa.gov/spacefoodchallenge -end- Jasmine Hopkins Headquarters, Washington 321-432-4624 jasmine.s.hopkins@nasa.gov Lane Figueroa Marshall Space Flight Center, Huntsville, Ala. 256-932-1940 lane.e.figueroa@nasa.gov Share Details Last Updated Aug 02, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsPrizes, Challenges, and Crowdsourcing ProgramEarth's MoonMarsMarshall Space Flight CenterPrizes, Challenges & Crowdsourcing NewsSpace Technology Mission Directorate View the full article
-
5 min read NASA Scientists on Why We Might Not Spot Solar Panel Technosignatures One of NASA’s key priorities is understanding the potential for life elsewhere in the universe. NASA has not found any credible evidence of extraterrestrial life — but NASA is exploring the solar system and beyond to help us answer fundamental questions, including whether we are alone in the universe. For those who study the potential for life beyond Earth, one of the questions has long been trying to determine the likelihood of microbial life versus complex life versus a civilization so advanced that we can spot signs of it, called technosignatures, from here at home. Studying the answers to questions like that can help guide suggestions on new telescopes or missions to emphasize the most likely places and ways to look for life. Now a recent paper published May 24 in the Astrophysical Journal postulates that if advanced extraterrestrial civilizations exist, one reason they might be hard to detect with telescopes from our vantage point is because their energy requirements may be relatively modest. If their culture, technology, and population size do not need vast amounts of power, they would not be required to build enormous stellar-energy harvesting structures that could be detected by current or proposed telescopes. Such structures, based on our own Earthly experience, might be solar panel arrays that cover a significant portion of their planet’s surface or orbiting megastructures to harness most of their parent star’s energy—both of which we might be able to spot from our own solar system. Conceptual image of an exoplanet with an advanced extraterrestrial civilization. Structures on the right are orbiting solar panel arrays that harvest light from the parent star and convert it into electricity that is then beamed to the surface via microwaves. The exoplanet on the left illustrates other potential technosignatures: city lights (glowing circular structures) on the night side and multi-colored clouds on the day side that represent various forms of pollution, such as nitrogen dioxide gas from burning fossil fuels or chlorofluorocarbons used in refrigeration. NASA/Jay Freidlander “We found that even if our current population of about 8 billion stabilizes at 30 billion with a high standard of living, and we only use solar energy for power, we still use way less energy than that provided by all the sunlight illuminating our planet,” said Ravi Kopparapu of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, lead author of the paper. The study has implications for the Fermi paradox, postulated by physicist Enrico Fermi, which asks the question that since our galaxy is ancient and vast, and interstellar travel is difficult but possible, why hasn’t an alien civilization spread across the galaxy by now? “The implication is that civilizations may not feel compelled to expand all over the galaxy because they may achieve sustainable population and energy-usage levels even if they choose a very high standard of living,” said Kopparapu. “They may expand within their own stellar system, or even within nearby star systems, but a galaxy-spanning civilizations may not exist.” Additionally, our own technological expertise may not yet be able to predict what more advanced civilizations could do. “Large-scale stellar-energy harvesting structures may especially be obsolete when considering technological advances,” adds Vincent Kofman, a co-author of the paper at NASA Goddard and American University, Washington, D.C. “Surely a society that can place enormous structures in space would be able to access nuclear fusion or other space-efficient methods of generating power.” The researchers used computer models and NASA satellite data to simulate an Earth-like planet with varying levels of silicon solar panel coverage. The team then modeled an advanced telescope like the proposed NASA Habitable Worlds Observatory to see if it could detect solar panels on the planet about 30 light-years away, which is relatively nearby in a galaxy that spans over 100,000 light-years. They found that it would require several hundreds of hours of observing time with that type of telescope to detect signatures from solar panels covering about 23% of the land area on an Earth-like exoplanet. However, the requirement for 30 billion humans at a high-living standard was only about 8.9% solar-panel coverage. Extraterrestrial civilizations with advanced technology could be discovered by their technosignatures – observational manifestations of extraterrestrial technology that could be detected or inferred through astronomical searches. For decades, scientists have been using radio telescopes to look for potential extraterrestrial radio transmissions. More recently, astronomers have proposed using a telescope like the Habitable Worlds Observatory to look for other kinds of technosignatures, such as chemical “fingerprints” in exoplanet atmospheres or specific characteristics in the light reflected by an exoplanet that might announce the presence of vast silicon solar arrays. The new study assumes that extraterrestrials would build solar panels out of silicon because it’s relatively abundant compared to other elements used in solar power, such as germanium, gallium, or arsenic. Also, silicon is good at converting the light emitted by Sun-like stars into electricity and it’s cost-effective to mine and manufacture into solar cells. The researchers also assume that a hypothetical extraterrestrial civilization would rely exclusively on solar energy. However, if other sources of energy are used, such as nuclear fusion, it would reduce the silicon technosignature, making the civilization even harder to detect. The study further assumes that the civilization’s population stabilizes at some point. If this doesn’t happen for whatever reason, perhaps they will be driven to expand ever-father into deep space. Finally, it’s impossible to know if an advanced civilization may be using something we haven’t imagined yet that requires immense amounts of power. Share Details Last Updated Aug 02, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms Astrobiology Goddard Space Flight Center The Search for Life The Universe Explore More 8 min read Searching for Signs of Intelligent Life: Technosignatures Signs of life beyond Earth could take forms that are clearly artificial – radio or… Article 1 year ago View the full article
-
“When I was around 16 or 17, I came across this book by Arthur C. Clarke called Space Odyssey 2001. That was actually the first science fiction book that I’ve ever read. I was just so captured by what he had written because the things that he wrote about weren’t [happening] in the far-off future, but in the year 2001. In the book, he talks about a lot about space stations, and space shuttles that go up to the space station, and vehicles that go to the Moon or the Moon base, and all that. I mean, these are terms that you hear now all the time, right? And Arthur C. Clarke actually envisioned it at that time. So that was interesting to me. I hoped that someday I could work on something like that. “In terms of my education, I was actually going to go into the space engineering, but then someone advised me that mechanical engineering would give me a broader background. So I followed the advice, and it was the right thing to do. I ended up learning a lot of things, not just mechanical engineering but also a lot about electrical engineering and systems engineering at the same time. “…Then an opportunity came with NASA. It was at that time that they started talking about the space station. Ronald Reagan at that time was the President, and he proposed this initiative to develop the space station. At that time, he called the space station ‘Freedom.’ “I thought, ‘Wow, what an exciting concept; it would be great if I could work on that.’ “And of course, one thing led to another, and [I ended up working on the International Space Station.] So you never know what you’re going to end up doing. “I believe in synchronicity sometimes. The things that you do, one way or another, lead to your final destination. Some invisible forces push you in that direction. When you look back, you realize that everything fits together.” — Douglas Wong, Systems Engineer, ISS CRS Visiting Vehicle Safety & Mission Assurance Integration Focal, NASA’s Johnson Space Center Image Credit: NASA/Bill Stafford Interviewer: NASA/Thalia Patrinos Check out some of our other Faces of NASA. View the full article
-
2 min read Hubble Spies a Diminutive Galaxy This NASA/ESA Hubble Space Telescope image reveals the dwarf elliptical galaxy named IC 3430. This NASA/ESA Hubble Space Telescope image reveals the subtle glow of the galaxy named IC 3430, located 45 million light-years from Earth in the constellation Virgo. This dwarf elliptical galaxy is part of the Virgo cluster, a rich collection of galaxies both large and small, many of which are very similar in type to this diminutive galaxy. Like its larger elliptical cousins, IC 3430 has a smooth, oval shape lacking any recognizable features like arms or bars, and is missing much of the gas needed to form many new stars. Interestingly, IC 3430 does feature a core of hot, massive blue stars —an uncommon sight in elliptical galaxies — that indicates recent star-forming activity. Astronomers think that pressure from the galaxy ploughing through gas within the Virgo cluster ignited what gas IC 3430 had in its core to form the newer stars. Dwarf galaxies are really just galaxies with fewer stars, usually less than a billion, but that is often enough for them to reproduce, in miniature, the same forms as larger galaxies. There are dwarf elliptical galaxies like IC 3430, dwarf irregular galaxies, dwarf spheroidal galaxies, and even dwarf spiral galaxies! Download this image Explore More Hubble’s Galaxies Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Aug 02, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Elliptical Galaxies Galaxies Goddard Space Flight Center Hubble Space Telescope Missions Science Mission Directorate The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxy Details and Mergers Tracing the Growth of Galaxies Hubble’s Galaxies View the full article
-
NASA’s SpaceX Crew-10 members (pictured from left to right) NASA astronaut Nichole Ayers, Roscosmos cosmonaut Kirill Peskov, NASA astronaut Anne McClain, and JAXA (Japan Aerospace Exploration Agency) astronaut Takuya OnishiCredit: NASA As part of NASA’s SpaceX Crew-10 mission, four crew members are preparing to launch for a long-duration stay aboard the International Space Station. NASA astronauts Commander Anne McClain and Pilot Nichole Ayers, JAXA (Japan Aerospace Exploration Agency) astronaut Mission Specialist Takuya Onishi, and Roscosmos cosmonaut Mission Specialist Kirill Peskov will join astronauts at the orbiting laboratory no earlier than February 2025. The flight is the 10th crew rotation with SpaceX to the station as part of NASA’s Commercial Crew Program. While aboard, the international crew will conduct scientific investigations and technology demonstrations to help prepare humans for future missions and benefit people on Earth. Selected by NASA as an astronaut in 2013, this will be McClain’s second spaceflight. A colonel in the U.S. Army, she earned her bachelor’s degree in Mechanical Engineering from the U.S. Military Academy at West Point, New York, and holds master’s degrees in Aerospace Engineering, International Security, and Strategic Studies. The Spokane, Washington, native was an instructor pilot in the OH-58D Kiowa Warrior helicopter and is a graduate of the U.S. Naval Test Pilot School in Patuxent River, Maryland. McClain has more than 2,300 flight hours in 24 rotary and fixed-wing aircraft, including more than 800 in combat, and was a member of the U.S. Women’s National Rugby Team. On her first spaceflight, McClain spent 204 days as a flight engineer during Expeditions 58 and 59 and was the lead on two spacewalks, totaling 13 hours and 8 minutes. Since then, she has served in various roles, including branch chief and space station assistant to the chief of NASA’s Astronaut Office. Ayers is a major in the U.S. Air Force and the first member of NASA’s 2021 astronaut class named to a crew. The Colorado native graduated from the Air Force Academy in Colorado Springs with a bachelor’s degree in Mathematics and a minor in Russian, where she was a member of the academy’s varsity volleyball team. She later earned a master’s in Computational and Applied Mathematics from Rice University in Houston. Ayers served as an instructor pilot and mission commander in the T-38 ADAIR and F-22 Raptor, leading multinational and multiservice missions worldwide. She has more than 1,400 total flight hours, including more than 200 in combat. With 113 days in space, this mission also will mark Onishi’s second trip to the space station. After being selected by JAXA in 2009, he flew as a flight engineer for Expeditions 48 and 49 became the first Japanese astronaut to robotically capture the Cygnus spacecraft. He also constructed a new experimental environment aboard Kibo, the station’s Japanese experiment module. Since his spaceflight, Onishi became certified as a JAXA flight director, leading the team responsible for operating Kibo from JAXA Mission Control in Tsukuba, Japan. He holds a bachelor’s degree in Aeronautics and Astronautics from the University of Tokyo and was a pilot for All Nippon Airways, flying more than 3,700 flight hours in the Boeing 767. NASA’s SpaceX Crew-10 mission also will be Peskov’s first spaceflight. Before his selection as a cosmonaut in 2018, he earned a degree in Engineering from the Ulyanovsk Civil Aviation School and was a co-pilot on the Boeing 757 and 767 aircraft for airlines Nordwind and Ikar. Assigned as a test-cosmonaut in 2020, he has additional experience in skydiving, zero-gravity training, scuba diving, and wilderness survival. For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon, where the agency is preparing for future human exploration of Mars. Find more information on NASA’s Commercial Crew Program at: https://www.nasa.gov/commercialcrew -end- Joshua Finch / Claire O’Shea Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov Raegan Scharfetter Johnson Space Center, Houston 281-910-4989 raegan.r.scharfetter@nasa.gov Share Details Last Updated Aug 01, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsCommercial CrewAnne C. McClainAstronautsHumans in SpaceInternational Space Station (ISS)ISS ResearchNichole Ayers View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA has officially announced the 2025 Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition.Credit: National Institute of Aerospace NASA has officially announced the 2025 Revolutionary Aerospace Systems Concepts – Academic Linkage (RASC-AL) competition, an initiative to fuel innovation for aerospace systems concepts, analogs, and technology prototyping through university engagement. RASC-AL, one of NASA’s longest-running student competitions, solicits concepts from the next generation of engineers and scientists to explore the future of deep space exploration. RASC-AL is seeking proposals from the university community to develop new concepts that leverage innovation to improve our ability to operate on the Moon, Mars and beyond. This year’s themes range from developing large-scale lunar surface architectures enabling long-term, off-world habitation, to designing new systems that address objective characteristics and needs and leverage human-scale exploration infrastructure for new science paradigms. Through RASC-AL, teams and their faculty advisors will design innovative solutions with supporting original engineering and analysis in response to one of the following four themes: Sustained Lunar Evolution – An Inspirational Moment Advanced Science Missions and Technology Demonstrators for Human-Mars Precursor Campaign Small Lunar Servicing and Maintenance Robot “The RASC-AL competition is a wellspring for groundbreaking ideas,” said Dan Mazanek, Assistant Branch Head for the Exploration Space Mission Analysis Branch (SMAB) at NASA’s Langley Research Center in Hampton, Virginia. “It fosters creativity and pushes the boundaries of what is possible in space exploration. We are looking for innovative solutions that can advance our capabilities beyond Earth’s orbit and pave the way for sustainable lunar exploration and beyond.” Interested undergraduate and graduate university student teams and their faculty advisors should submit a Notice of Intent by October 16, 2024, and submit proposals and videos by February 24, 2025. Based on review of the team proposal and video submissions in March, up to 14 teams will be selected to advance to the final phase of the competition – presenting their concepts to a panel of NASA and industry judges in a competitive design review at the 2025 RASC-AL Forum in Cocoa Beach, Florida next June. In addition to their research, teams are also highly encouraged to develop a prototype of part or all of their concept to demonstrate its key functions. Each finalist team will receive a $6,500 stipend to facilitate their full participation in the 2025 RASC-AL Competition, and the top two overall teams will be awarded with additional travel stipends to present their concept at an aerospace conference later in 2025. Dr. Christopher Jones, Chief Technologist for the Systems Analysis and Concepts Directorate (SACD) at NASA Langley, emphasized RASC-AL’s distinctive fusion of educational value with real-world experience. “RASC-AL provides students with a unique opportunity to engage directly with NASA’s vision for space exploration. Participants not only gain hands-on experience in developing aerospace concepts but also contribute fresh perspectives that the Agency can take as inspiration for future missions and technologies.” The call for proposals is now open, with proposal submissions due by February 24, 2025. Interested student teams are encouraged to visit the official RASC-AL competition website for detailed guidelines and eligibility requirements. RASC-AL is sponsored by the Strategy and Architecture Office within the Exploration Systems Development Mission Directorate at NASA Headquarters, and by SMAB within SACD at NASA Langley. It is administered by the National Institute of Aerospace. For more information about the RASC-AL competition, including eligibility, complete themes, and submission guidelines, visit: http://rascal.nianet.org Explore More 5 min read NASA Additive Manufacturing Project Shapes Future for Agency, Industry Rocket Makers Article 3 hours ago 2 min read Earth to Gateway: Electric Field Tests Enhance Lunar Communication Learn how engineers at NASA's Johnson Space Center are using electric field testing to optimize… Article 3 days ago 5 min read NASA Returns to Arctic Studying Summer Sea Ice Melt Article 6 days ago Share Details Last Updated Aug 01, 2024 Related TermsLangley Research CenterExploration Systems Development Mission Directorate View the full article
-
NASA/Michala Garrison, USGS Landsat 9’s Operational Land Imager-2 captured this image of the open pits and ponds of Telfer Mine and the surrounding rust-colored soil on Dec. 15, 2023. The soils have a reddish tint from the iron oxides that have accumulated from millions of years of weathering. This part of Western Australia is known for being rich in natural resources, including petroleum, iron ore, copper, and certain precious metals. Beneath the soils, veins of gold and silver run through sedimentary rocks, such as quartz sandstone and siltstone, that formed about 600 million years ago, when much of Australia was under water. Text credit: Emily Cassidy Image credit: NASA/Michala Garrison, USGS View the full article
-
5 Min Read NASA Additive Manufacturing Project Shapes Future for Agency, Industry Rocket Makers Additively manufactured rocket engine hardware coupled with advanced composites allows for precision features, such as multi-material coolant channels developed by the Rapid Analysis and Manufacturing Propulsion Technology team at NASA’s Marshall Space Flight Center in Huntsville, Alabama Credits: NASA The widespread commercial adoption of additive manufacturing technologies, commonly known as 3D printing, is no surprise to design engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama whose research created stronger, lighter weight materials and new manufacturing processes to make rocket parts. NASA’s RAMPT (Rapid Analysis and Manufacturing Propulsion Technology) project is on the cutting-edge of additive manufacturing – helping the agency and industry produce new alloys and additively manufactured parts, commonly referred to as 3D printing, according to Paul Gradl, the project’s co-principal investigator at NASA Marshall. “Across NASA’s storied legacy of vehicle and hardware design, testing, and integration, our underlying strength is in our application of extremely durable and severe environment materials and innovative manufacturing for component design,” said Gradl. “We strive to fully understand the microstructure and properties of every material and how they will ultimately be used in components before we make them available to industry for flight applications.” The same principle applies to additive manufacturing, the meticulous process of building components and hardware one layer of material at a time. The graphic captures additive manufacturing technology milestones led by the RAMPT project. Using 3D-printed, liquid oxygen/hydrogen thrust chamber hardware at chamber pressures of up to 1,400 pounds per square inch, Marshall engineers have completed 12 hot-fire tests totaling a combined 330 seconds. The project also has delivered composite materials demonstrating a 40% weight savings over conventional bimetallic combustion chambers. NASA and its industry partners are working to make this cutting-edge technology accessible for a host of future NASA and commercial space missions. NASA/Pablo Garcia “The RAMPT project’s goal is to support commercial, technical readiness, enabling our industry partners to meet the challenges inherent in building new generations of safer, more cost-effective deep space exploration propulsion systems,” said John Fikes, RAMPT project manager. Since its inception, RAMPT has conducted 500 test-firings of 3D-printed injectors, nozzles, and chamber hardware totaling more than 16,000 seconds, using newly developed extreme-environment alloys, large-scale additive manufacturing processes, and advanced composite technology. The project has also started developing a full-scale version for the workhorse RS-25 engine – which experts say could reduce its costs by up to 70% and cut manufacturing time in half. As printed structures are getting bigger and more complex, a major area of interest is the additive manufacturing print scale. A decade ago, most 3D-printed parts were no bigger than a shoebox. Today, additive manufacturing researchers are helping the industry produce lighter, more robust, intricately designed rocket engine components 10-feet tall and eight-feet in diameter. Tyler Gibson, left, and Allison Clark, RAMPT engineers at NASA’s Marshall Space Flight Center in Huntsville, Alabama, inspect an additively manufactured composite overwrap thrust chamber assembly. Conventional rocket hardware may require more than 1,000 or more individually joined parts. Additive manufacturing permits engineers to print these channels in novel alloys as a single piece with multiple alloys, dramatically reducing manufacturing time. NASA/Danielle Burleson “NASA, through public-private partnerships, is making these breakthroughs accessible to the commercial space industry to help them rapidly advance new flight technologies of their own,” Gradl said. “We’re solving technical challenges, creating new supply chains for parts and materials, and increasing the industry’s capacity to rapidly deliver reliable hardware that draws a busy commercial space infrastructure ever closer.” The RAMPT project does not just develop the end technology but the means to fully understand that technology, whatever the application. That means advancing cutting-edge simulation tools that can identify the viability of new alloys and composites at the microstructural level – assessing how they handle the fiery rigors of liftoff, the punishing cold of space, and the dynamic stresses associated with liftoffs, landings, and the long transits between. NASA’s strategy to encourage commercial and academic buy-in is to offer public-private partnership opportunities, wherein industry and academia contribute as much as 25% of project development costs, allowing them to reap the benefits. For example, NASA successfully delivered a refined version of an alloy, known as GRCop42, created at NASA Glenn nearly 40 years ago which helped commercial launch provider, Relativity Space, launch the first fully 3D-printed rocket in March 2023. “Our primary goal with these higher-performance alloys is to prove them in a rocket engine test-fire environment and then hand them off to enable commercial providers to build hardware, fly launch vehicles, and foster a thriving space infrastructure with real scientific, social, and economic rewards,” Gradl said. A key benefit of additive manufacturing hardware development is radically reducing the “design-fail-fix” cycle – when engineers develop new hardware, ground-test it to failure to determine the hardware’s design limits under all possible conditions and then tweak accordingly. That capability is increasingly important with the creation of new alloys and designs, new processing techniques, and the introduction of composite overwraps and other innovations. Shown above, during a hot-fire test at NASA’s Marshall Space Flight Center in Huntsville, Alabama, this 2,000-pound-force coupled thrust chamber assembly features a NASA HR-1 alloy nozzle. Manufacturing the hardware requires the directed energy deposition process with composite-overwrap for structural support, reducing weight by 40%. Industry, academic, and government partners are working with RAMPT engineers at Marshall and other NASA field centers to advance this revolutionary technology.NASA This 2,000-pound-force coupled thrust chamber assembly features a NASA HR-1 alloy nozzle directly deposited onto the additive manufacturing combustion chamber using the directed energy deposition process and composite-overwrapped for structural support, reducing weight by 40%. It was hot-fire tested at NASA’s Marshall Space Flight Center in Huntsville, Alabama. Industry, academic, and government partners are working with RAMPT engineers at Marshall and other NASA field centers to advance this revolutionary technology. NASA/Danielle Burleson The RAMPT project did just that, successfully advancing new additive manufacturing alloys and processes, integrating them with carbon-fiber composites to reduce weight by up to 40%, developing and validating new simulation tools – and making all this data available to industry through public-private partnerships. “We’re able to deliver prototypes in weeks instead of years, conduct dozens of scaled ground tests in a period that would feasibly permit just one or two such tests of conventionally manufactured hardware, and most importantly, deliver technology solutions that are safer, lighter, and less costly than traditional components,” Gradl said. Fikes added, “Ten years from now, we may be building rocket engines – or rockets themselves – out of entirely new materials, employing all-new processing and fabrication techniques. NASA is central to all of that.” The RAMPT project continues to progress and receive recognition from NASA and industry partners. On July 31, the RAMPT team was awarded NASA’s 2024 Invention of The Year award for its excellence and contributions to NASA and the commercial industry’s deep space exploration goals. NASA’s Marshall Spaceflight Center in Huntsville, Alabama, leads RAMPT, with key support among engineers and technologists at NASA’s Glenn Research Center in Cleveland; Ames Research Center in Mountain View, California; Langley Research Center in Hampton, Virginia; and Auburn University in Auburn, Alabama, plus contributions from other academic partners and industry contractors. RAMPT is funded by NASA’s Game Changing Development Program within the agency’s Space Technology Mission Directorate. Learn more at: https://www.nasa.gov/rapid-analysis-and-manufacturing-propulsion-technology Ramon J. Osorio Marshall Space Flight Center, Huntsville, Alabama 256-544-0034 ramon.j.osorio@nasa.gov Share Details Last Updated Aug 01, 2024 LocationMarshall Space Flight Center Related TermsMarshall Space Flight CenterGame Changing Development ProgramGlenn Research CenterLangley Research CenterOffice of Technology, Policy and Strategy (OTPS)Space Technology Mission Directorate Explore More 21 min read The Marshall Star for July 31, 2024 Article 19 hours ago 3 min read 2024 Software of the Year Co-Winner – Orbital Debris Engineering Model (ORDEM) Article 20 hours ago 4 min read 2024 Software of the Year Award Co-Winner -Prognostics Python Packages (ProgPy) Article 20 hours ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
2 min read August’s Night Sky Notes: Seeing Double by Kat Troche of the Astronomical Society of the Pacific During the summer months, we tend to miss the views of Saturn, Jupiter and other heavenly bodies. But it can be a great time to look for other items, like globular star clusters such as Messier 13, open star clusters such as the Coma Star Cluster (Melotte 111), but also double stars! Mid-August night sky constellations with the following multiple star systems highlighted: the Double Double in Lyra, Albireo in Cygnus, Polaris in Ursa Minor, Mizar and Alcor in Ursa Major. Credit: Stellarium Web What Are Double Stars? If you have seen any movies or read any books that refer to having two suns in the sky, that would be a double star system. These star systems typically come in two types – binary and optical doubles. Binary stars are two stars that are gravitationally bound and orbit each other, and optical double stars only appear to be close together when viewed from Earth, but in reality, are extremely far apart from another, and are not affected by each other’s gravity. With a small telescope, in moderately light polluted skies, summer offers great views of these stellar groupings from the Northern Hemisphere: Double Double: also known by its technical name, Epsilon Lyrae, this multiple star system appears as one star with naked eye observing. But with a small telescope, it can be split into ‘two’ stars. A large telescope reveals Epsilon Lyrae’s secret – what looks like a single star is actually a quadruple star system! Albireo: a gorgeous double star set – one blue, one yellow – in the constellation Cygnus. Polaris: while technically a multiple star system, our North Star can easily be separated from one star to two with a modest telescope. Mizar and Alcor: located in the handle of the Big Dipper, this pair can be seen with the naked eye. This schematic shows the configuration of the sextuple star system TYC 7037-89-1. The inner quadruple is composed of two binaries, A and C, which orbit each other every four years or so. An outer binary, B, orbits the quadruple roughly every 2,000 years. All three pairs are eclipsing binaries. The orbits shown are not to scale.NASA’s Goddard Space Flight Center Aside from looking incredible in a telescope or binoculars, double stars help astronomers learn about measuring the mass of stars, and about stellar evolution. Some stars orbit each other a little too closely, and things can become disastrous, but overall, these celestial bodies make for excellent targets and are simple crowd pleasers. Up next, learn about the Summer Triangle’s hidden treasures on our mid-month article on the Night Sky Network page. View the full article
-
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 2 min read Sols 4261-4262: Drill Sol 1…Take 2 This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4258 — Martian day 4,258 of the Mars Science Laboratory mission — on July 29, 2024, at 03:26:02 UTC. Earth planning date: Wednesday, July 31, 2024 As Cat mentioned on Monday, today’s plan is a second attempt at our Drill Sol 1 activities. We’ve shifted the target on Kings Canyon a little bit, but the activities remain the same — a preload test to ensure that we’re able to safely drill here, and contact science to get a preview of what composition we might be dealing with in this target. Around these pre-drilling activities, we still had some time left over for more typical science activities. Power wasn’t as much of a concern as it will become as the drill campaign progresses, but we did have to do some rearranging due to timing constraints. There are some activities that need to go at particular times, whether that be for lighting, heating, or to coincide with other observations. If you put enough of these together, there can be a lot of swapping back and forth and moving things around to get the perfect position for everything. It’s a bit like choreographing a big dance — activities have to come in at just the right time so they don’t step on anyone’s toes, and all the pieces come together to make a cohesive whole. In this metaphorical dance, our first movement is a short solo from ChemCam — just before the preload test we were able to squeeze in LIBS (laser spectroscopy) on a darker area of bedrock called “Blacksmith Peak.” The rest of the company joins ChemCam on the second sol. Mastcam comes in first to check out “Sam Mack Meadow,” an area of crushed material, followed by a quartet of environmental activities — a suprahorizon cloud movie, a tau and line-of-sight to see how dusty the atmosphere is, and a dust devil movie. It’s then back over to ChemCam, with LIBS on Kings Canyon and a long-distance observation of the yardang unit. Mastcam brings the dance to a close with their own documentation of Kings Canyon. For an encore, Mastcam makes one last appearance later that evening to do a sky survey. Written by Alex Innanen, atmospheric scientist at York University Share Details Last Updated Aug 01, 2024 Related Terms Blogs Explore More 3 min read Sols 4259-4260: Kings Canyon Go Again! Article 2 days ago 3 min read Sols 4257-4258: A Little Nudge on Kings Canyon Article 3 days ago 2 min read Sols 4255-4256: Just Passing Through Article 3 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A new era of aviation is here, and NASA’s System-Wide Safety (SWS) project is developing innovative data solutions to assure safe, rapid, and repeatable access to a transformed National Airspace System (NAS). SWS was created in 2018 and is part of NASA Aeronautics’ Airspace Operations and Safety Program. SWS evaluates how the aerospace industry and aircraft modernization impacts safety by using technology to address future operational and design risks. SWS Goals To explore, discover, and understand the impact on safety of growing complexity introduced by modernization aimed at improving the efficiency of flight, the access to airspace, and the expansion of services provided by air vehicles To develop and demonstrate innovative solutions that enable this modernization and the aviation transformation envisioned for global airspace system through proactive mitigation of risks in accordance with target levels of safety To transform the NAS, SWS employs high-risk research and development to understand how the modernization of industry and aircraft can affect overall safety. SWS is developing and demonstrating innovative solutions within several key research areas, referred to as technical challenges. Current Technical Challenges (TCs) TC-2: In-Flight Safety Predictions for Emerging Operations TC-4: Complex Autonomous Systems Assurance TC-5: Safety Demonstrator Series for Operational In-Time Aviation Safety Management System TC-6: In-Time Aviation Safety Management System SWS is developing the concept and requirements for an assured In-Time Aviation Safety Management System to achieve the goals described above. It is an integrated set of services, functions, and capabilities to address operational risks and hazards of a transformed NAS. SWS catalyzes the discovery of the unknown and paves the path forward for aviation safety in the future airspace. Back to main System-Wide Safety project page. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 3 min read System-Wide Safety Collaborations Article 2 months ago 1 min read NASA Langley Participates in Drone Responders Conference Article 4 months ago 4 min read Advice from NASA Mentors to Students Starting Their Careers Article 7 months ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Jul 31, 2024 EditorJim BankeContactKaitlyn Foxkaitlyn.d.fox@nasa.gov Related TermsSystem-Wide Safety View the full article
-
1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) System-Wide Safety (SWS) project leaders are listed here. Project Manager Dr. Kyle Ellis Deputy Project Manager Summer Brandt Associate Project Manager Dr. Wendy Okolo Associate Project Manager Michael Vincent Project Scientist Dr. Paul Miner Senior Technical Advisor for Aviation Safety Dr. Lance Prinzel Senior Technical Advisor for Autonomy Dr. Joseph Coughlan Senior Technical Advisor for Assurance Dr. Natasha Neogi Safety Liaison Dr. Misty Davies Back to main System-Wide Safety project page. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 2 min read System-Wide Safety Project Description Article 34 mins ago 3 min read System-Wide Safety Collaborations Article 2 months ago 1 min read NASA Langley Participates in Drone Responders Conference Article 4 months ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Jul 31, 2024 EditorJim BankeContactKaitlyn Foxkaitlyn.d.fox@nasa.gov Related TermsSystem-Wide Safety View the full article
-
Note: Please note that this is an “archived project” and is no longer updated. This article is meant for historical purposes only. The Composite Cryogenic Propellant Tank project will develop and ground demonstrate large-scale composite cryogenic propellant tanks applicable to heavy-lift launch vehicles, propellant depots, and future lander systems. The primary objective of the Composite Cryotank Technologies and Demonstration (CCTD) project is to mature the technology readiness of composite cryogenic propellant tanks at diameters that are suitable for future heavy lift vehicles and other in-space applications. The concept being developed and demonstrated by this project involves advanced materials (composites), structural concepts (joints, splices, fasteners, etc.), and manufacturing techniques. For this project, an out-of-autoclave manufacturing approach is being developed. The Boeing Company will: design and manufacture a 2.4-meter diameter and a 5.5-meter tanks based on expected loads from the larger SLS tank using an out-of-autoclave procedure; validate the performance of the tanks composite material systems in a relevant environment (e.g., structural integrity, permeability, microcracking); validate the durability of the tanks composite materials under cyclic thermal-mechanical loads; validate the predicted performance of critical joints and design details under representative mechanical and thermal loads; and validate the manufacturing techniques used to create a structural cryotanks. If successful, the manufacturing of large, high-performance composite structures can be accomplished throughout industry without the need of an autoclave, thus improving competition and potentially further reducing the cost to manufacture very large composite components. Success in this project could lead to rocket propellant tanks that are more than 30 percent lighter and 25 percent cheaper to fabricate compared with current state-of-the-art metallic tanks. Such advancements offer less cost for payload delivery to orbit and the potential of enabling advanced human and robotic space exploration missions. Share Details Last Updated Jul 31, 2024 LocationMarshall Space Flight Center Related TermsGame Changing Development ProgramSpace Technology Mission Directorate Explore More 2 min read Tech Today: Space Age Swimsuit Reduces Drag, Breaks Records SpeedoUSA worked with Langley Research Center to design a swimsuit with reduced surface drag. Article 6 days ago 3 min read NASA Streams First 4K Video from Aircraft to Space Station, Back Article 1 week ago 3 min read NASA Releases First Integrated Ranking of Civil Space Challenges Article 1 week ago Keep Exploring Discover More Topics From NASA Game Changing Development Space Technology Mission Directorate NASA’s Lunar Surface Innovation Initiative NASA Marshall Kicks Off Game Changing Composite Cryotank Testing View the full article
-
21 Min Read The Marshall Star for July 31, 2024 SLS Core Stage Rolls Inside Vehicle Assembly Building at Kennedy NASA’s SLS (Space Launch System) rocket core stage for the Artemis II mission is inside the Vehicle Assembly Building at the agency’s Kennedy Space Center. Tugboats and towing vessels moved the barge and core stage 900-miles to the Florida spaceport from NASA’s Michoud Assembly Facility, where it was manufactured and assembled. After completing its journey from NASA’s Michoud Assembly Facility aboard the Pegasus barge, teams with Exploration Ground Systems transport the agency’s powerful SLS (Space Launch System) core stage to NASA’s Kennedy Space Center’s Vehicle Assembly Building on July 23.NASA/Isaac Watson Team members with NASA’s Exploration Ground Systems Program safely transferred the 212-foot-tall core stage from the agency’s Pegasus barge, which arrived at NASA Kennedy’s Complex 39 turn basin wharf on July 23, onto the self-propelled module transporter, which is used to move large elements of hardware. It was then rolled to the Vehicle Assembly Building transfer aisle where teams will process it until it is ready for rocket stacking operations. In the coming months, teams will integrate the rocket core stage atop the mobile launcher with the additional Artemis II flight hardware, including the twin solid rocket boosters, launch vehicle stage adapter, and the Orion spacecraft. The Artemis II test flight will be NASA’s first mission with crew under the Artemis campaign, sending NASA astronauts Victor Glover, Christina Koch, and Reid Wiseman, as well as CSA (Canadian Space Agency) astronaut Jeremy Hansen, on a 10-day journey around the Moon and back. › Back to Top Take 5 with Chris Calfee By Wayne Smith Ask Chris Calfee about his favorite memory from his 38-year career at NASA’s Marshall Space Flight Center and you’ll discover it’s a difficult question to answer. That’s because there have been many memories. Chris Calfee is the SLS Spacecraft Payload Integration and Evolution element manager. NASA/Charles Beason Calfee was the integrator for the upper stage spacecraft for the Marshall-led Chandra X-Ray Observatory, which marked its 25th launch anniversary July 23. He’s worked with Demonstration of Autonomous Rendezvous Technology (DART), a technology mission aimed at demonstrating that a spacecraft could independently rendezvous with an orbiting satellite without human intervention. Calfee was the booster manager for the Ares I-X test flight, which he points to as another career highlight. And then there’s his favorite memory – working with NASA’s SLS (Space Launch System) rocket and watching the 2022 Artemis I launch from NASA’s Kennedy Space Center. “I’ve been fortunate in my career to have the opportunities I’ve had with NASA,” said Calfee, the SLS Spacecraft Payload Integration and Evolution (SPIE) element manager. “Seeing the Chandra mission fly and the success it has had is awesome. Being able to work DART from cradle to grave, including its flight, was unforgettable. But I’d have to say being able to represent the SLS SPIE Element Office at Kennedy’s Launch Control Center and seeing Artemis I light up the night sky is the proudest moment.” As the SLS Spacecraft/Payload Integration and Evolution element manager, Calfee’s responsibilities include overseeing the development and delivering key adapter hardware for SLS rockets that will power the first crewed Artemis missions and first flight of SLS in its evolved Block 1B configuration. The hardware includes the launch vehicle stage adapter, interim cryogenic propulsion stage, and the Orion stage adapter – and the universal stage adapter for SLS Block 1B. The SPIE Element Office serves a key role in the successful execution of the SLS mission, both for the initial launch capability as well as the evolution of subsequent rocket configurations. NASA moved a step closer to the Artemis II launch with the July shipment of the SLS core stage to Kennedy from the agency’s Michoud Assembly Facility. Calfee and his team have the adapters complete for Artemis II and will soon ship them to Kennedy for launch preparations. As work advances toward Artemis II, Calfee looks back on the Artemis I launch as a “surreal experience.” But he put his celebration on hold as he watched the initial moments of the flight. “The pressure was on the SPIE hardware to finish the job for SLS as we tracked the successful booster burn and separation, and then the core stage’s excellent performance,” said Calfee, who is from Newport, Tennessee, and a graduate of the University of Tennessee. “The interim cryogenic propulsion (ICPS) stage 20-minute burn was approximately one and a half hours after launch, followed by Orion spacecraft separation from the ICPS and Orion stage adapter, the most critical event of the mission from my perspective. It was another huge relief to see the ICPS burn and the Orion separation event go flawlessly.” Calfee pauses for a photo in front of the SLS rocket ahead of the Artemis I launch in 2022. NASA/Courtesy of Chris Calfee Memorable indeed. Question: Looking ahead to Artemis II and the Artemis campaign, what excites you most about the future of human space exploration and your team’s role it? Calfee: For me personally, it is exciting just to be a part of the future of human space flight and having the opportunity to influence that future. With respect to the SPIE team, it’s a similar feeling. Having the opportunity to lead a team that has such a significant role and responsibility in our future is an awesome experience. Question: Who or what drives/motivates you? Calfee: The opportunity to make a difference, be a part of history, and lead and mentor our future leaders. Question: Who or what inspired you to pursue an education/career that led you to NASA and Marshall? Calfee: My parents were my inspiration and provided me the opportunity to pursue my education. Although I followed the space program as a kid, specifically the Apollo program and Moon landings, I never dreamed that I would actually have the opportunity to work for NASA. I found my way to NASA via an on-campus interview job fair, was invited to Marshall for a follow-up interview, and it became an easy decision when an offer was made. Question: What advice do you have for employees early in their NASA career or those in new leadership roles? Calfee: For those early in their career, keep an open mind and be willing to take on new challenges. Diversify the resume. For those in new leadership roles, never get complacent. The moment you think you have it all figured out, something will surprise and humble you. I love the quote, “Get comfortable being uncomfortable,” because I guarantee as a leader, you will experience many uncomfortable moments. Question: What do you enjoy doing with your time while away from work? Calfee: Spending time with my grandkids. I also enjoy homebrewing and wine making, and I probably spend too much time following and watching college sports. Smith, a Media Fusion employee and the Marshall Star editor, supports the Marshall Office of Communications. › Back to Top Stars, Stripes, and STEM: Q&A with Former NASA Intern, Miss America Team members at NASA’s Marshall Space Flight Center recently sat down with reigning Miss America, Madison Marsh. In addition to her crown, Marsh is a second lieutenant in the United States Air Force and a former intern who contributed to astrophysics research at Marshall. Watch to learn more about her experience studying gamma-ray bursts and hear what advice she has for anyone interested in a STEM career. (NASA) › Back to Top Thomas Brown Named Marshall’s Chief Engineer, Manager of Engineering Office Thomas Brown has been named center chief engineer and manager of the Chief Engineering Office within the Engineering Directorate at NASA’s Marshall Space Flight Center, effective July 28. Thomas Brown has been named center chief engineer and manager of the Chief Engineering Office within the Engineering Directorate at NASA’s Marshall Space Flight Center.NASA In his role, Brown will be responsible for assuring the technical excellence and success of all Marshall-assigned spacecraft, propulsion, science payload, life support, and mission systems. He will provide expert technical leadership in planning, directing, and executing research, technology, ground and flight systems design and development, production, integration, and sustaining engineering for the Space Launch System Program, Human Landing System Program, the Human Exploration Development and Operations Office, and the Science and Technology Office. Brown previously served as director of the Propulsion Systems Department of the Engineering Directorate, since 2020. In this role, he managed a $68 million annual budget and oversaw a workforce responsible for new and ongoing design and development activities for the propulsion components and systems at Marshall and other NASA centers. As the capability lead for In-Space Transportation Systems from 2018-2020, Brown led the Systems Capability Leadership Team of system-specific subject matter experts from across the agency for the in-space transportation system’s disciplines, which support NASA’s robotic and human exploration missions. From 2014 to 2018, he was the NASA Technical Fellow for Propulsion and the NASA Propulsion Capability Lead, the agency’s most senior propulsion subject matter expert. Between 2005 and 2014, Brown served as chief of two divisions within the Propulsion Systems Department, as well as technical advisor to the director of the Propulsion Systems Department at Marshall, where he assisted in internal technology investment planning and served in agency and cross-government level assignments. In 2007, he completed a one-year developmental assignment at Glenn Research Center as acting deputy manager of the Advanced Capabilities Project Office. Brown began his NASA career at Marshall in 1999 as an aerospace engineer in the Space Transportation Directorate, performing propulsion systems analysis and integration. Initially working design, analysis, and integration of the X-34 Main Propulsion System and the Fastrac/MC-1 rocket engine, Brown’s activities quickly expanded into a broad range of propulsion technology development efforts. He served as chief engineer for several of these efforts during both the Second Generation Reusable Launch Vehicle Program and the Next Generation Launch Technology Program. Specific projects included the Main Propulsion and Auxiliary Propulsion Systems Technology Project and the ISTAR, Rocket Based Combined Cycle technology project. Brown received a bachelor’s degree in physics from Allegheny College in Meadville, Pennsylvania, before earning his master’s and doctoral degrees in mechanical engineering from Vanderbilt University. He holds a U.S. patent and has published more than 30 refereed journal publications, book sections, and conference proceedings related to fundamental combustion, advanced measurement techniques, propulsion technology, and propulsion systems analysis and integration. › Back to Top Marshall Deputy Director Rae Ann Meyer Honored During Huntsville City Football Club Space Night NASA Marshall Deputy Director Rae Ann Meyer waves to a crowd of more than 4,000 fans at the Wicks Family Field at Joe Davis Stadium in Huntsville on July 27 during halftime of the soccer match between Huntsville City Football Club and Atlanta United 2. Meyer was honored as the “Hero of the Match,” recognizing her leadership and accomplishments in 35 years of service to the agency. (NASA/Taylor Goodwin) Representatives from 10 Marshall programs and projects staffed booths and exhibits at the stadium throughout the match, sharing details of their respective work to thousands of guests. (NASA/Taylor Goodwin) Marshall’s exhibit footprint began outside of the stadium, welcoming soccer and space fans to the stadium with inflatables and educational materials. (NASA/Taylor Goodwin) › Back to Top NASA Supports Burst Test for Orbital Reef Commercial Space Station An element of a NASA-funded commercial space station, Orbital Reef, under development by Blue Origin and Sierra Space, recently completed a full-scale ultimate burst pressure test as part of the agency’s efforts for new destinations in low Earth orbit. This milestone is part of a NASA Space Act Agreement awarded to Blue Origin in 2021. Orbital Reef includes elements provided by Sierra Space, including the LIFE (Large Integrated Flexible Environment) habitat structure. Sierra Space’s LIFE habitat following a full-scale ultimate burst pressure test at NASA’s Marshall Space Flight Center.Sierra Space Teams conducted the burst test on Sierra Space’s LIFE habitat structure using testing capabilities at NASA’s Marshall Space Flight Center. The inflatable habitat is fabricated from high-strength webbings and fabric that form a solid structure once pressurized. The multiple layers of soft goods materials that make up the shell are compactly stowed in a payload fairing and inflated when ready for use, enabling the habitat to launch on a single rocket. “This is an exciting test by Sierra Space for Orbital Reef, showing industry’s commitment and capability to develop innovative technologies and solutions for future commercial destinations,” said Angela Hart, manager of NASA’s Commercial Low Earth Orbit Development Program at the agency’s Johnson Space Center. “Every successful development milestone by our partners is one more step to achieving our goal of enabling commercial low Earth orbit destinations and expanding the low Earth orbit marketplace.” The pressurization to failure during the test demonstrated the habitat’s capabilities and provided the companies with critical data supporting NASA’s inflatable softgoods certification guidelines, which recommend a progression of tests to evaluate these materials in relevant operational environments and understand the failure modes. Demonstrating the habitat’s ability to meet the recommended factor of safety through full-scale ultimate burst pressure testing is one of the primary structural requirements on a soft goods article, such as Sierra Space’s LIFE habitat, seeking flight certification. Prior to this recent test, Sierra Space conducted its first full-scale ultimate burst pressure test on the LIFE habitat at Marshall in December 2023. Additionally, Sierra Space previously completed subscale tests, first at NASA’s Johnson Space Center and then at Marshall as part of ongoing development and testing of inflatable habitation architecture. NASA supports the design and development of multiple commercial space stations, including Orbital Reef, through funded and unfunded agreements. The current design and development phase will be followed by the procurement of services from one or more companies. NASA’s goal is to achieve a strong economy in low Earth orbit where the agency can purchase services as one of many customers to meet its science and research objectives in microgravity. NASA’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost, enabling the agency to focus on Artemis missions to the Moon in preparation for Mars while also continuing to use low Earth orbit as a training and proving ground for those deep space missions. Learn more about NASA’s commercial space strategy. › Back to Top DART Mission Sheds New Light on Target Binary Asteroid System In studying data collected from NASA’s DART (Double Asteroid Redirection Test) mission, which in 2022 sent a spacecraft to intentionally collide with the asteroid moonlet Dimorphos, the mission’s science team has discovered new information on the origins of the target binary asteroid system and why the DART spacecraft was so effective in shifting Dimorphos’ orbit. In five recently published papers in Nature Communications, the team explored the geology of the binary asteroid system, comprising moonlet Dimorphos and parent asteroid Didymos, to characterize its origin and evolution and constrain its physical characteristics. The various geological features observed on Didymos helped researchers tell the story of Didymos’ origins. The asteroid’s triangular ridge (first panel from left), and the so-called smooth region, and its likely older, rougher “highland” region (second panel from left) can be explained through a combination of slope processes controlled by elevation (third panel from left). The fourth panel shows the effects of spin-up disruption that Didymos likely underwent to form Dimorphos. Johns Hopkins APL/Olivier Barnouin “These findings give us new insights into the ways that asteroids can change over time,” said Thomas Statler, lead scientist for Solar System Small Bodies at NASA Headquarters. “This is important not just for understanding the near-Earth objects that are the focus of planetary defense, but also for our ability to read the history of our Solar System from these remnants of planet formation. This is just part of the wealth of new knowledge we’ve gained from DART.” Olivier Barnouin and Ronald-Louis Ballouz of Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, led a paper that analyzed the geology of both asteroids and drew conclusions about their surface materials and interior properties. From images captured by DART and its accompanying LICIACube cubesat – contributed by the Italian Space Agency (ASI), the team observed the smaller asteroid Dimorphos’ topography, which featured boulders of varying sizes. In comparison, the larger asteroid Didymos was smoother at lower elevations, though rocky at higher elevations, with more craters than Dimorphos. The authors inferred that Dimorphos likely spun off from Didymos in a large mass shedding event. There are natural processes that can accelerate the spins of small asteroids, and there is growing evidence that these processes may be responsible for re-shaping these bodies or even forcing material to be spun off their surfaces. Analysis suggested that both Didymos and Dimorphos have weak surface characteristics, which led the team to posit that Didymos has a surface age 40–130 times older than Dimorphos, with the former estimated to be 12.5 million years and the latter less than 300,000 years old. The low surface strength of Dimorphos likely contributed to DART’s significant impact on its orbit. “The images and data that DART collected at the Didymos system provided a unique opportunity for a close-up geological look of a near-Earth asteroid binary system,” said Barnouin. “From these images alone, we were able to infer a great deal of information on geophysical properties of both Didymos and Dimorphos and expand our understanding on the formation of these two asteroids. We also better understand why DART was so effective in moving Dimorphos.” To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Based on the internal and surface properties described in Barnouin et al. (2024), this video demonstrates how the spin-up of asteroid Didymos could have led to the growth of its equatorial ridge and the formation of the smaller asteroid Dimorphos, seen orbiting the former near the end of the clip. Particles are colored according to their speeds, with the scale shown at the top, along with the continually changing spin period of Didymos.University of Michigan/Yun Zhang and Johns Hopkins APL/Olivier Barnouin Maurizio Pajola, of the National Institute for Astrophysics (INAF) in Rome, and co-authors led a paper comparing the shapes and sizes of the various boulders and their distribution patterns on the two asteroids’ surfaces. They determined the physical characteristics of Dimorphos indicate it formed in stages, likely of material inherited from its parent asteroid Didymos. That conclusion reinforces the prevailing theory that some binary asteroid systems arise from shed remnants of a larger primary asteroid accumulating into a new asteroid moonlet. Alice Lucchetti, also of INAF, and colleagues found that thermal fatigue – the gradual weakening and cracking of a material caused by heat – could rapidly break up boulders on the surface of Dimorphos, generating surface lines and altering the physical characteristics of this type of asteroid more quickly than previously thought. The DART mission was likely the first observation of such a phenomenon on this type of asteroid. Supervised by researcher Naomi Murdoch of ISAE-SUPAERO in Toulouse, France, and colleagues, a paper led by students Jeanne Bigot and Pauline Lombardo determined Didymos’ bearing capacity – the surface’s ability to support applied loads – to be at least 1,000 times lower than that of dry sand on Earth or lunar soil. This is considered an important parameter for understanding and predicting the response of a surface, including for the purposes of displacing an asteroid. Colas Robin, also of ISAE-SUPAERO, and co-authors analyzed the surface boulders on Dimorphos, comparing them with those on other rubble pile asteroids, including Itokawa, Ryugu, and Bennu. The researchers found the boulders shared similar characteristics, suggesting all these types of asteroids formed and evolved in a similar fashion. The team also noted that the elongated nature of the boulders around the DART impact site implies that they were likely formed through impact processing. These latest findings form a more robust overview of the origins of the Didymos system and add to the understanding of how such planetary bodies were formed. As ESA’s (European Space Agency) Hera mission prepares to revisit DART’s collision site in 2026 to further analyze the aftermath of the first-ever planetary defense test, this research provides a series of tests for what Hera will find and contributes to current and future exploration missions while bolstering planetary defense capabilities. Johns Hopkins APL managed the DART mission for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office, which is at NASA’s Marshall Space Flight Center. NASA provided support for the mission from several centers, including the Jet Propulsion Laboratory, Goddard Space Flight Center, Johnson Space Center, Glenn Research Center, and Langley Research Center. › Back to Top Fermi Finds New Feature in Brightest Gamma-Ray Burst Yet Seen In October 2022, astronomers were stunned by what was quickly dubbed the BOAT — the brightest-of-all-time gamma-ray burst (GRB). Now an international science team reports that data from NASA’s Fermi Gamma-ray Space Telescope reveals a feature never seen before. “A few minutes after the BOAT erupted, Fermi’s Gamma-ray Burst Monitor recorded an unusual energy peak that caught our attention,” said lead researcher Maria Edvige Ravasio at Radboud University in Nijmegen, Netherlands, and affiliated with Brera Observatory, part of INAF (the Italian National Institute of Astrophysics) in Merate, Italy. “When I first saw that signal, it gave me goosebumps. Our analysis since then shows it to be the first high-confidence emission line ever seen in 50 years of studying GRBs.” A jet of particles moving at nearly light speed emerges from a massive star in this artist’s concept. The star’s core ran out of fuel and collapsed into a black hole. Some of the matter swirling toward the black hole was redirected into dual jets firing in opposite directions. We see a gamma-ray burst when one of these jets happens to point directly at Earth. NASA A paper about the discovery appears in the July 26 edition of the journal Science. When matter interacts with light, the energy can be absorbed and reemitted in characteristic ways. These interactions can brighten or dim particular colors (or energies), producing key features visible when the light is spread out, rainbow-like, in a spectrum. These features can reveal a wealth of information, such as the chemical elements involved in the interaction. At higher energies, spectral features can uncover specific particle processes, such as matter and antimatter annihilating to produce gamma rays. “While some previous studies have reported possible evidence for absorption and emission features in other GRBs, subsequent scrutiny revealed that all of these could just be statistical fluctuations. What we see in the BOAT is different,” said coauthor Om Sharan Salafia at INAF-Brera Observatory in Milan, Italy. “We’ve determined that the odds this feature is just a noise fluctuation are less than one chance in half a billion.” GRBs are the most powerful explosions in the cosmos and emit copious amounts of gamma rays, the highest-energy form of light. The most common type occurs when the core of a massive star exhausts its fuel, collapses, and forms a rapidly spinning black hole. Matter falling into the black hole powers oppositely directed particle jets that blast through the star’s outer layers at nearly the speed of light. We detect GRBs when one of these jets points almost directly toward Earth. The BOAT, formally known as GRB 221009A, erupted Oct. 9, 2022, and promptly saturated most of the gamma-ray detectors in orbit, including those on Fermi. This prevented them from measuring the most intense part of the blast. Reconstructed observations, coupled with statistical arguments, suggest the BOAT, if part of the same population as previously detected GRBs, was likely the brightest burst to appear in Earth’s skies in 10,000 years. The brightest gamma-ray burst yet recorded gave scientists a new high-energy feature to study. Learn what NASA’s Fermi mission saw, and what this feature may be telling us about the burst’s light-speed jets. (NASA’s Goddard Space Flight Center) The putative emission line appears almost 5 minutes after the burst was detected and well after it had dimmed enough to end saturation effects for Fermi. The line persisted for at least 40 seconds, and the emission reached a peak energy of about 12 MeV (million electron volts). For comparison, the energy of visible light ranges from 2 to 3 electron volts. So what produced this spectral feature? The team thinks the most likely source is the annihilation of electrons and their antimatter counterparts, positrons. “When an electron and a positron collide, they annihilate, producing a pair of gamma rays with an energy of 0.511 MeV,” said coauthor Gor Oganesyan at Gran Sasso Science Institute and Gran Sasso National Laboratory in L’Aquila, Italy. “Because we’re looking into the jet, where matter is moving at near light speed, this emission becomes greatly blueshifted and pushed toward much higher energies.” If this interpretation is correct, to produce an emission line peaking at 12 MeV, the annihilating particles had to have been moving toward us at about 99.9% the speed of light. “After decades of studying these incredible cosmic explosions, we still don’t understand the details of how these jets work,” noted Elizabeth Hays, the Fermi project scientist at NASA’s Goddard Space Flight Center. “Finding clues like this remarkable emission line will help scientists investigate this extreme environment more deeply.” The Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership managed by Goddard. Fermi was developed in collaboration with the U.S. Department of Energy, with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States. NASA’s Marshall Space Flight Center is responsible for one of the instruments on the Fermi Gamma-ray Space Telescope – the Gamma-ray Burst Monitor, or GBM. The GBM studies gamma-ray bursts, the most powerful explosions in the universe, as well as other flashes of gamma rays. The GBM sees these bursts across the entire sky, and scientists are using its observations to learn more about the universe. › Back to Top View the full article
-
On July 19, 2024, NASA officially named Johnson Space Center’s building 12 the “Dorothy Vaughan Center in Honor of the Women of Apollo.” A portrait of Dorothy Vaughan is now the central feature at the entrance of the newly named building. This portrait was hand-painted by Eliza Hoffman, an accomplished artist who is also a recent graduate from Clear Creek Independent School District. Recent Clear Creek Independent School District graduate and artist Eliza Hoffman hand-painted a portrait of Dorothy Vaughan in honor of the Women of Apollo. The handcrafted portrait of Vaughan took about a month to complete. The photo the Vaughan family wanted to use for the ceremony was black and white, so Hoffman had to brainstorm how to bring the photo to life in living color. This led her to search for colorized versions of the reference photo on the internet to guide her in the painting process. She revealed that she first learned of Vaughan from the movie “Hidden Figures,” which she was inspired to watch after reading the book “Women in Space” throughout her childhood. When privately revealing the artwork to the Vaughan family, Hoffman felt their emotion and joy. She reflected, “I am honored to have the family of such a great woman be so moved by my painting. It is a memory that I will always remember.” NASA’s Johnson Space Center Director Vanessa Wyche greets artist Eliza Hoffman at the surprise unveiling of Dorothy Vaughan’s painted portrait in the main hallway of the Dorothy Vaughan Center in Honor of the Women of Apollo.NASA/David DeHoyos Hoffman shared that “One of the great things about making art is that it communicates information about the subject and its emotion to the audience. In this case, I was given the chance to create a portrait which will help inform people for years to come about Dorothy Vaughan’s life and legacy.” At the ribbon-cutting ceremony, it was noted to Hoffman that her portrait will now become a part of Johnson’s history. Through Hoffman’s research on Vaughan, she noticed that Vaughan was not only a person beloved by many but also a woman that walked with humility and gentleness, which she hopes viewers see in her painting. View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA Johnson Space Center: ORDEM represents the state of the art in orbital debris models intended for engineering analysis. It is a data-driven model, relying on large quantities of radar, optical, in situ, and laboratory measurement data. When released, it was the first software code to include a model for different orbital debris material densities, population models from low Earth orbit (LEO) all the way to Geosynchronous orbit (GEO), and uncertainties in each debris population. ORDEM allows users to compute the orbital debris flux on any satellite in Earth orbit. This allows satellite designers to mitigate possible orbital debris damage to a spacecraft and its instruments using shielding and design choices, thereby extending the useful life of the mission and its experiments. The model also has a mode that simulates debris telescope/radar observations from the ground. Both it and the spacecraft flux mode can be used to design experiments to measure the meteoroid and orbital debris environments. ORDEM is used heavily in the hypervelocity protection community, those that design, build, and test shielding for spacecraft and rocket upper stages. The fidelity of the ORDEM model allows for the optimization of shielding to balance mission success criteria, risk posture, and cost considerations. As both government and civilian actors continue to exploit the space environment for security, science, and the economy, it is important that we track the debris risks in increasingly crowded orbits, in order to minimize damage to these space assets to make sure these missions continue to operate safely. ORDEM is NASA’s primary tool for computing and mitigating these risks. ORDEM is used by NASA, the Department of Defense, and other U.S. government agencies, directly or indirectly (via the Debris Assessment Software, MSC-26690-1) to evaluate collision risk for large trackable objects, as well as other mission-ending risks associated with small debris (such as tank ruptures or wiring cuts). In addition to the use as an engineering tool, ORDEM has been used by NASA and other missions in the conceptual design phase to analyze the frequency of orbital debris impacts on potential in situ sensors that could detect debris too small to be detected from ground-based assets. Commercial and academic users of ORDEM include Boeing, SpaceX, Northrop Grumman, the University of Colorado, California Polytechnic State University, among many others. These end users, similar to the government users discussed above, use the software to (1) directly determine potential hazards to spaceflight resulting from flying through the debris environment, and (2) research how the debris environment varies over time to better understand what behaviors may be able to mitigate the growth of the environment. The quality and quantity of data available to the NASA Orbital Debris Program Office (ODPO) for the building, verification, and validation of the ORDEM model is greater than for any other entity that performs similar research. Many of the models used by other research and engineering organizations are derived from the models that ODPO has published after developing them for use in ORDEM. ORDEM Team Alyssa Manis Andrew B, Vavrin Brent A. Buckalew Christopher L. Ostrom Heather Cowardin Jer-chyi Liou John H, Seago John Nicolaus Opiela Mark J. Matney, Ph.D. Matthew Horstman Phillip D. Anz-Meador, Ph.D. Quanette Juarez Paula H. Krisko, Ph.D. Yu-Lin Xu, Ph.D. Share Details Last Updated Jul 31, 2024 EditorBill Keeter Related TermsOffice of Technology, Policy and Strategy (OTPS) View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA Ames Research Center: ProgPy is an open-source Python package supporting research and development of prognostics, health management, and predictive maintenance tools. Prognostics is the science of prediction, and the field of Prognostics and Health Management (PHM) aims at estimating the current physical health of a system (e.g., motor, battery, etc.) and predicting how the system will degrade with use. The results of prognostics are used across industries to prevent failure, preserve safety, and reduce maintenance costs. Prognostics, and prediction in general, is a very difficult and complex undertaking. Accurate prediction requires a model of the performance and degradation of complex systems as a function of time and use, estimation and management of uncertainty, representation of system use profiles, and ability to represent impact of neighboring systems and the environment. Any small discrepancy between the model and the actual system is compounded repeatedly, resulting in a large variation in the resulting prediction. For this reason, prognostics requires complex and capable algorithms, models, and software systems. The ProgPy architecture can be thought of as three innovations: the Prognostic Models, the Prognostic Engine, Prognostic Support Tools. The first part of the ProgPy innovation is the Prognostic Models. The model describes the prognostic behavior of the specific system of interest. ProgPy’s architecture includes a spectrum of modeling methodologies, ranging from physics-based models to entirely data-driven or hybrid techniques. Most users develop their own physics-based model, train one of the ProgPy data-driven models (e.g., Neural-Network models), or some hybrid of the two. A set of mature models for systems like batteries, electric motors, pumps, and valves are distributed in ProgPy. For these parameterized models, users tune the model to their specific system using the model tuning tools. The Prognostics Engine and Support Tools are built on top of these models, meaning a user that creates a new model will immediately be able to take advantage of the other features of ProgPy. The Prognostic Engine is the most important part of ProgPy and forms the backbone of the software. The Prognostics Engine uses a Prognostics Model to perform the key functions of prognostics and health state estimation. The value in this design is that the Prognostics Engine can use any ProgPy model, whether it be a model distributed with ProgPy or a custom model created by users, to perform health state estimation and prognostics in a configurable way. The components of the Prognostics Engine are extendable, allowing users to implement their own state estimation or prediction algorithm for use with ProgPy models or use one distributed with ProgPy. Given the Prognostics Engine and a model, users can start performing prognostics for their application. This flexible and extendable framework for performing prognostics is truly novel and enables the widespread impact of ProgPy in the prognostic community. The Prognostic Support Tools are a set of features that aid with the development, tuning, benchmarking, evaluation, and visualization of prognostic models and Prognostics Engine results (i.e., predictions). Like the Prognostic Engine, the support tools work equally with models distributed with ProgPy or custom models created by users. A user creating a model immediately has access to a wide array of tools to help them with their task. Detailed documentation, examples, and tutorials of all these features are available to help users learn and use the software tools. These three innovations of ProgPy implement architectures and widely used prognostics and health management functionality, supporting both researchers and practitioners. ProgPy combines technologies from across NASA projects and mission directorates, and external partners into a single package to support NASA missions and U.S. industries. Its innovative framework makes it applicable to a wide range of applications, providing enhanced capabilities not available in other, more limited, state-of-the-art software packages. ProgPy offers unique features and a breadth and depth of unmatched capabilities when compared to other software in the field. It is novel in that it equips users with the tools necessary to do prognostics in their applications as-is, eliminating the need to adapt their use case to comply with the software available. This feature of ProgPy is an improvement upon the current state-of-the-art, as other prognostics software are often developed for specific use cases or based on a singular modeling method (Dadfarina and Drozdov, 2013; Davidson-Pilon, 2022; Schreiber, 2017). ProgPy’s unique approach opens a world of possibilities for researchers, practitioners, and developers in the field of prognostics and health management, as well as NASA missions and U.S. industries. ProgPy Team: Adam J Sweet, Aditya Tummala, Chetan Shrikant Kulkarni Christopher Allen Teubert Jason Watkins Kateyn Jarvis Griffith Matteo Corbetta Matthew John Daigle Miryam Stautkalns Portia Banerjee Share Details Last Updated Jul 31, 2024 EditorBill Keeter Related TermsOffice of Technology, Policy and Strategy (OTPS) View the full article
-
On the eve of the 55th anniversary of the Apollo 11 Moon landing, NASA’s Johnson Space Center in Houston commemorated the unsung heroes who helped make humanity’s first steps on the Moon possible. To celebrate their enduring legacy, Johnson named one of its central buildings the “Dorothy Vaughan Center in Honor of the Women of Apollo” on July 19, 2024, during a ceremony recognizing the early pioneers who laid the groundwork for the Artemis Generation. NASA’s Johnson Space Center in Houston named one of its central building the “Dorothy Vaughan Center in Honor of the Women of Apollo.” NASA/David DeHoyos Dorothy Vaughan, a mathematician and NASA’s first Black manager, played a crucial role in this historic achievement. As the head of the West Area Computing Unit at Langley Research Center in Hampton, Virginia, from 1949 to 1958, she led her team in mastering new computer programming languages, helping to pave the way for the agency’s current diverse workforce and leadership. The program included remarks from Johnson Director Vanessa Wyche, NASA astronaut Christina Koch, and Deputy Associate Administrator Casey Swails. Johnson Director Vanessa Wyche gives opening remarks at the building naming ceremony on July 19, 2024. NASA/Robert Markowitz “Dorothy Vaughan, alongside all of our Women of Apollo, represents the best of NASA’s past, and their legacies serve as the inspiration and foundation for our future,” said Wyche. “As we prepare to take our next giant leap, the Women of Apollo will take each step with us.” NASA leadership joined for the special occasion, including Associate Administrator Jim Free, Acting Associate Administrator for Space Technology Mission Directorate and Langley Director Clayton Turner, Director of NASA’s Stennis Space Center in Mississippi John Bailey, and former Johnson Director Mike Coats. Also in attendance were Reps. Lizzie Fletcher and Sylvia Garcia, and representatives from the offices of Sen. Ted Cruz, Sen. John Cornyn, and Rep. Brian Babin. NASA astronauts Suni Williams, Jeanette J. Epps, and Tracy C. Dyson celebrated the historic moment with a special message from the International Space Station. “We have accomplished our dreams of space exploration thanks to the many NASA women that paved the way for diversity, inclusion, and excellence,” said Epps. “Building on the efforts of our space exploration pioneers, we continue to work for the benefit of humanity,” said Dyson. “NASA’s success is only possible because of the tenacity and expertise of individuals like Dorothy Vaughan whose legacy of brilliance continues to inspire us today.” Texas Southern University’s Dr. Thomas F. Freeman Debate Team delivers a speech during the building naming event. NASA/Robert Markowitz The program also featured the reading of a poem by Dr. Vivian Ayers Allen, a Pulitzer Prize-nominated poet, cultural activist, and former NASA editor and typist. The poem, titled “Hawk,” was published just 11 weeks before humankind’s first venture into space with Sputnik I as an allegory where space flight symbolizes freedom. Allen’s daughter, Phylicia Rashad, recited the poem ahead of the presentation by Texas Southern University’s Dr. Thomas F. Freeman Debate Team. The Women of Apollo stand behind the “Women in Human Spaceflight” panelists. From left: Sandy Johnson, CEO of Barrios Technology; Andrea Mosie, manager and senior sample processor for NASA’s Lunar Materials Repository Laboratory; NASA astronaut Christina Hammock Koch; Dr. Shirley Price, former NASA equal opportunity specialist; Lara Kearney, manager of NASA’s Extravehicular Activity and Human Surface Mobility Program; and panel moderator Debbie Korth, deputy manager of the Orion Program. NASA/Robert Markowitz The ceremony also included a “Women in Human Spaceflight” panel discussion with some of the impactful Women of Apollo and current trailblazers in human spaceflight. The panelists inspired the crowd with their collective experiences of breaking barriers and making monumental contributions to space exploration. Debbie Korth, deputy manager of the Orion Program, moderated the event with panelists Lara Kearney, manager of NASA’s Extravehicular Activity and Human Surface Mobility Program; Sandy Johnson, CEO of Barrios Technology; NASA astronaut Christina Hammock Koch; Andrea Mosie, manager and senior sample processor for NASA’s Lunar Materials Repository Laboratory; and Dr. Shirley Price, former NASA equal opportunity specialist. “I learned that as long as I am being myself, I can make a difference,” said Price. “Dorothy Vaughan helped me make that difference because she paved the way for me, and I am here to pave the way forward for more to follow.” Koch reflected on the future, saying, “I am looking forward to us being driven by our values of inclusivity, making sure that we are going for all and by all in a non-hidden way and that we are calling out the amazing contributions of every single person that has a dream.” Dorothy Vaughan’s granddaughter Heather Vaughan-Batten cuts the ribbon to officially name building 12 the Dorothy Vaughan Center in Honor of the Women of Apollo. NASA/David DeHoyos Heather Vaughan-Batten, Vaughan’s granddaughter, marked the official naming of the building with a ribbon-cutting ceremony. Vaughan’s family reacts to the surprise unveiling of Dorothy Vaughan’s painted portrait, created by artist Eliza Hoffman. NASA/David DeHoyos The event concluded with a surprise unveiling of a painting of Vaughan to her family. The portrait, created by Eliza Hoffman, an artist and student from Clear Creek Independent High School, now illuminates the main hallway of the Dorothy Vaughan Center in honor of the Women of Apollo. More than 30 portraits of women who made notable contributions to NASA during the Apollo era now line the building’s main hallway. Watch the building dedication ceremony, ribbon-cutting, and portrait unveiling below. View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA Marshall Space Flight Center: A thrust chamber assembly (TCA) is the critical and central component in a rocket engine that provides thrust to propel a launch vehicle into space. Since the 1960s, while small improvements in TCA performance have been made, little has been done to reduce weight, improve development timelines, and reduce manufacturing cost. This invention makes dramatic improvements in all three areas. This Thrust Chamber Liner and Fabrication Method technology eliminates complex, bolted joints by using 3D printing and large-scale additive manufacturing (AM) to fabricate a one-piece TCA. This creates a combined combustion chamber and nozzle. A novel composite overwrap provides support with an overall mass reduction of >40%. The TCA is the heaviest component on the rocket engine, so every pound eliminated allows for additional payload. The benefits include significantly better performance of launch vehicles, consolidation of parts, and a simplified fabrication that reduces cost and lead time. A liquid rocket engine provides thrust through the injection of a fuel and oxidizer into a combustion chamber then expanding the hot gases through a nozzle. The engine’s core component is the TCA, which comprises an injector, a combustion chamber, and a nozzle. To prevent the TCA’s wall material from reaching melting temperatures, a regenerative cooling system is employed. Small internal channels circulate either fuel or oxidizer as a coolant before it’s injected into the combustion chamber for the combustion process. The TCA must withstand a wide range of challenges, including extreme temperatures (from cryogenic temperatures below -290 °F and up to +6,000°F), high pressures (up to 6,000 psi), demanding duty cycles that impact fatigue life, engine dynamics, and the reactive thrust loads. This necessitates the use of a variety of materials and involves intricate manufacturing and joining processes while maintaining exceptionally tight tolerances. The walls can be as thin as a few sheets of paper, measuring approximately 0.02 inch, increasing the complexity of the technological challenge. The design and construction of the combined combustion chamber and nozzle has several novel features: (1) A NASA-developed alloy, Copper-Chrome-Niobium (GRCop-42) was matured for the combustion chamber resulting in a 45% increase in wall temperatures. (2) The integral channel design supports effective cooling, manifolds, and a range of features that facilitate an integrated coupled nozzle and composite overwrap. (3) The chamber and its internal structures are produced using a NASA-developed (and later commercialized) process known as laser powder bed fusion (L-PBF). This uses minimal exterior material, allowing the composite overwrap to effectively contain the high pressure and various engine loads. (4) Stock material and integral features build the chamber nozzle onto the aft end using a different alloy, optimizing the overall strength-to-weight ratio. (5) Traditionally, AM requires a build plate onto which parts are fabricated, but this innovation can use the chamber itself as the build plate. (6) A large-scale AM process called laser powder directed energy deposition (LP-DED) was developed with a new NASA alloy for hydrogen environments, called NASA HR-1 (HR = hydrogen resistant). The AM employed to integrate the chamber and nozzle involves the use of two distinct AM processes and alloys, using GRCop-42 for the chamber and NASA HR-1 for the nozzle. A composite overwrap significantly reduces weight and provides adequate strength to sustain required pressures and loads. Various filament winding techniques and fiber orientations, guided by modeling simulations effectively counteract the (barrel) static pressure, startup, and shutdown loads, thrust, and gimbal loads. The unique locking features designed into the chamber include turn-around regions (referred to as “humps”) to eliminate complex tooling. Traditional TCA design incorporates multiple manifolds, adding unnecessary weight and bolted or welded joints. These joints necessitate exceedingly tight tolerances, polished surface finishes, and intricate sealing mechanisms to prevent leakage. Maintaining precise concentricity among the components and ancillary features, such as shear-lips to avoid hot gas circulation and joint separation, is imperative. The risk of potential leakage can lead to the catastrophic failure of the engine or the entire vehicle. The tragic explosion of the Space Shuttle Challenger serves as a stark reminder of how joint failure, albeit in a solid rocket motor in that case, can have dire consequences. By contrast, this design eliminates these vulnerabilities by employing integrated AM processes to create a one-piece TCA, dramatically improving safety and efficiency. Thrust Chamber Liner Team Paul R. Gradl Christopher Stephen Protz Cory Ryan Medina Justin R. Jackson Omar Roberto Mireles Sandra Elam Greene William C. C. Brandsmeier Share Details Last Updated Jul 31, 2024 EditorBill Keeter Related TermsOffice of Technology, Policy and Strategy (OTPS) View the full article
-
NASA/JPL On July 31, 1964, the Ranger 7 spacecraft took this photo, the first image of the Moon taken by a United States spacecraft. 17 minutes later, it crashed into the Moon on the northern rim of the Sea of Clouds as intended. The 4,316 images sent back helped identify safe Moon landing sites for Apollo astronauts. Until 1964, no closeup photographs of the lunar surface existed. Ranger 7 returned the first high resolution close-up photographs of the lunar surface. The mission marked a turning point in America’s lunar exploration program, taking the country one step closer to a human Moon landing. Learn more about Ranger 7. Image credit: NASA/JPL View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA used its remotely piloted Ikhana aircraft to test technology it helped develop or recommended to the U.S. Forest Service, including a system to send sensor data to decision makers on the ground in near real time.Credit: NASA It’s not easy to predict the path of forest fires—a lot depends on constantly changing factors like wind. But it is crucial to be as accurate as possible because the lives, homes, and businesses of the tens of thousands of people living and working in fire-prone areas depend on the reliability of these predictions. Sensors mounted on airplanes or drones that provide a picture of the fire from above are an important tool, and that’s where NASA comes in. In partnership with the U.S. Forest Service, local and state firefighting agencies, and the Bureau of Land Management, NASA plays a pivotal role in battling infernos. The agency’s extensive experience and technical expertise in remote sensing technology have significantly improved the speed and accuracy of information relayed to firefighting decision-makers. According to Don Sullivan, who specialized in information technology design at the time, the Airborne Science Program at NASA’s Ames Research Center in Silicon Valley, California, was integral to that effort. In the 1990s, NASA began a project to adapt uncrewed aircraft for environmental research. The researchers at Ames wanted to ensure the technology would be useful to the broadest possible spectrum of potential end users. One concept tested during the project was sending data in real-time to the ground via communications links installed on the aircraft. That link sent data faster and to multiple recipients at once—not just the team on the fire front line, but also the commanders organizing the teams and decision makers looking at the big picture across the entire region throughout the fire season, explained Sullivan. For the Forest Service, this was a much-needed upgrade to the original system on their crewed jets: rolling up a printout and later thumb drives with thermal sensor data placed into a plastic tube attached to a parachute and dropped out of the airplane. NASA’s remotely piloted aircraft called Ikhana tested the technology, and it’s still used by the agency to collect data on wildfires. Since the introduction of this technology, wildfires have gotten bigger, burn hotter, and set new records every year. But in California in 2008, this technology helped fight what was then the worst fire season on record. A NASA test flight using a data downlink system provided updated information to the incident managers that was crucial in determining where to send firefighting resources and whether a full evacuation of the town of Paradise was needed. Without that timely information, said Sullivan, “there likely would have been injuries and certainly property damage that was worse than it turned out to be.” Read More Share Details Last Updated Jul 31, 2024 Related TermsGeneral Explore More 5 min read NASA Public Engagement Specialist Loves to Inspire Kids with STEM Article 2 hours ago 3 min read NASA’s First-Ever Quantum Memory Made at Glenn Research Center Article 5 hours ago 8 min read Overview for NASA’s Northrop Grumman 21st Commercial Resupply Mission NASA, Northrop Grumman, and SpaceX are targeting no earlier than 11:29 a.m. EDT on Saturday,… Article 22 hours ago Keep Exploring Discover Related Topics Earth Observations Fire and Air Quality Climate Change Drones & You View the full article
-
NASA’s Northrop Grumman 21st Cargo Resupply Services Launch
-
SSE-Skywatching Skywatching Home Eclipses What’s Up Daily Guide Night Sky Network Tips and Guides More FAQ 6 min read What’s Up: August 2024 Skywatching Tips from NASA What to look for: A planetary rendezvous, meteors, and a “star forge”! Two planets meet for a super close conjunction, the Perseid meteor shower peaks, and look for the Lagoon Nebula – a stellar nursery in Sagittarius. Highlights August 4 – New moon August 11 – The Perseid meteor shower peaks overnight tonight! Provided you have clear skies, viewing conditions will be favorable this year, as the Moon sets by around 11:30 pm local time. Meteor activity picks up from then until dawn. August 14 – Jupiter and Mars have an extremely close pair-up called a conjunction this morning. They’ll appear just a third of a degree apart, which is less than the width of the full Moon. Find them in the eastern sky in the couple of hours before sunrise. August 19 – Full moon August 20 – The Moon chases Saturn across the sky tonight. The pair rise in the east shortly after dark, and trek toward the west together until dawn. August 27 – This morning the crescent moon joins Mars and Jupiter to form a captivating trio. Look for them in the east in the hour or so before sunrise. All month – You can use binoculars or a telescope to observe the Lagoon Nebula all month in the first few hours after dark. It’s located in the constellation Sagittarius near the star pattern known as “The Teapot.” Similar in size and brightness to the Orion Nebula, it’s a cauldron of star formation located about 4,000 light years away. Sky chart showing the conjunction of Mars and Jupiter in the morning of August 14. NASA/JPL-Caltech Transcript What’s Up for August? A super close meetup of Jupiter and Mars, the outlook for the Perseid meteors, and see a stellar nursery in the Lagoon Nebula. During the month of August, the Red Planet, Mars, speeds past our solar system’s largest planet, Jupiter, in the a.m. sky. They have an extremely close pair-up, called a conjunction, on August 14th, when they’ll appear just a third of a degree apart, which is less than the width of the full Moon. The view from NASA’s Eyes on the Solar System reveals the two planets arranged along the same line of sight, which is why they appear so close together in the sky at this time. Mars quickly pulls away from Jupiter over the following mornings, but on the 27th, the crescent moon joins the two planets to form a captivating trio in the morning sky. Sky chart showing a planetary trio of the crescent moon, Jupiter, and Mars on the morning of August 27. NASA/JPL-Caltech Saturn flies solo most of the month on the opposite side of the sky, though the Moon chases close behind the Ringed Planet on August 20th. The pair rise shortly after dark, and trek toward the west together until dawn. The warm summer nights of August in the Northern Hemisphere make the Perseid meteor shower an annual favorite. This year’s peak night for Perseids comes on August 11th, and into morning twilight on the 12th. Provided you have clear skies, viewing conditions will be favorable this year, as the Moon sets by around 11:30 pm local time. Meteor activity picks up from then until dawn. From darker viewing locations, meteor counts of 50 to 75 per hour are pretty normal at the peak. The Perseids appear to originate from a place in the sky that rises in the northeast, so lie back and face roughly in that direction, but try to take in as much of the sky as you can in your view, as meteors can appear all over. All the stars in the sky share a common origin in giant clouds of gas and dust called nebulas. And one such stellar nursery, the Lagoon Nebula, is well placed to observe in the August sky. Image Before/After The Lagoon Nebula will feel familiar to you if you’ve ever observed the Orion Nebula – with the latter being just a bit brighter. Being about three times wider than the full moon, it’s still relatively easy to find, even under suburban skies, with binoculars or a small telescope. The Lagoon Nebula is located in the constellation Sagittarius, which regular skywatchers will know is synonymous with the faintly glowing band of the Milky Way core. You’ll find it here, just above the top of the star pattern known as the Teapot. The nebula is located about 4,000 light years away. Its oblong structure is about 100 light years long by about 50 light years wide. It’s a cauldron of intense star forming activity, with many young stars blazing brightly, causing the surrounding gas to glow. That glow is faint and colorless when peering at the Lagoon Nebula through binoculars, but long-exposure photos reveal its colorful nature. The bright stars are also sculpting the nebula, creating voids and turbulent knots and streamers of gas. The nebula gets its name from one of these dense, dark clouds that stretches across its middle, looking something like a watery lagoon. The Lagoon Nebula appears high overhead in August for those in the Southern Hemisphere, and quite low for those at higher northern latitudes, but it’s visible throughout the lower 49 United States. If you can locate the stars in the Teapot, you should be able to observe the nebula too. To find it, follow a line toward the west, twice the distance from the top of the Teapot’s handle to the top of its lid. Nebulas can be challenging to observe, even with a telescope. But with its large size and relative brightness, the Lagoon Nebula offers a great opportunity to see one of these star forges for yourself in August. Here are the phases of the Moon for August. The phases of the Moon for August 2024. Stay up to date on NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month. Skywatching Resources NASA’s Night Sky Network NASA’s Watch the Skies Blog Daily Moon Observing Guide About the ‘What’s Up’ Production Team “What’s Up” is NASA’s longest running web video series. It had its first episode in April 2007 with original host Jane Houston Jones. Today, Preston Dyches, Christopher Harris, and Lisa Poje are the space enthusiasts who produce this monthly video series at NASA’s Jet Propulsion Laboratory. Additional astronomy subject matter guidance is provided by JPL’s Bill Dunford, Lyle Tavernier, and the Night Sky Network’s Kat Troche. The What’s Up team celebrates the memory of Gary Spiers, who provided astronomy observing guidance for the series for many years. View the full article
-
Jonas Dino speaks to students at the Cezar Chavez Middle School in Union City, California, as part of a NASA-sponsored traveling space museum tour of Bay Area schools. Careers at NASA were not on his radar growing up. But Jonas Dino, public engagement specialist at NASA’s Ames Research Center in California’s Silicon Valley, ended up with his perfect job that involves connecting people with NASA. One of the best parts of his job is to learn first-hand about NASA’s cutting-edge research and translate these concepts to the next generation. “I’m excited about what NASA does and where we are going,” said Dino, “As an extrovert, I love interacting with the public, especially little kids.” When speaking to younger children, Dino often kneels, to get to their level. With the future of aeronautics and space exploration in mind, he has a message for them: ‘NASA needs you.’ “They love space and think it is very cool, but many don’t think they could ever work at NASA,” said Dino. “I want to help them see: anything is possible.” NASA’s Ames Research Center in California’s Silicon Valley takes NASA’s message on the road to area schools and public events with its public engagement trailer. Jonas Dino is shown unloading the trailer for an event.NASA/Dominic Hart A path to NASA he didn’t know existed A first-generation immigrant from the Philippines, Dino’s academic start focused on studying life sciences. “As a Filipino, you’re encouraged to go into the medical field as a career,” said Dino. After joining the Marine Corps, Reserve, he returned home to study biology at San Jose State University (SJSU). After doing poorly at organic chemistry, he took his next “logical” step and switched his major to nursing. After working in the field, he realized that was not for him either. Luckily, he had been taking psychology classes, following his interests, and could graduate with a psychology degree by only taking two more classes. After three changes in major and just getting ready to graduate, Dino was hit by a car. His injury and subsequent recovery gave him time to evaluate what he wanted to do with his life. “I was pretty good at talking to people and teaching,” said Dino. “Maybe I could to that as a job?” Dino started his teaching career at James Logan – the same high school he graduated from in 1985. He eventually ran for and was elected as a trustee for the New Haven Unified School District in the San Francisco Bay Area. Unfortunately, to take that seat, he could not be a teacher in the district – a conflict of interest. Suddenly needing a job, he found the internship book at SJSU where he was getting his master’s degree. Soon, he was evaluating opportunities: a high-tech company or NASA? “It was during the dotcom boom and my family strongly encouraged me to take the high-tech internship,” said Dino. “I took the internship at NASA Ames and have never regretted my decision.” Working as a communicator, Dino has covered the gamut of NASA projects from aeronautics to space missions, including a lunar mission, LCROSS, that helped confirm the presence of water on the Moon. His favorite part of his job is STEM engagement. “There is nothing like seeing a kid’s eyes get larger, or that proverbial light-bulb-turn-on-above-their-heads when you teach them something new,” said Dino. “When you see kids are hungry for science, you need to feed it.” He did serve his community on the school board for four terms – 16 years. Now, he serves as an advocate for the NASA Ames workforce as president of the Ames Federal Employees Union. “NASA is a great place to work, it has been a blast, for nearly 24 years.” Science data from NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS) mission’s 2009 lunar impact helped confirm the presence of water on the Moon. Here, LCROSS project manager, Daniel Andrews (left), points to a model of the LCROSS spacecraft integrated with the Atlas V Centaur upper stage rocket. Jonas Dino (right) led public communications for the mission at NASA Ames.NASA/Eric James Nudging an asteroid A little push in the right direction, even incidental, can have a huge effect on your trajectory – and thus where you end up – if it happens early on. This is true both for rogue rocks, on the loose in the solar system, and for people too. “When I was a kid, I took apart everything because I wanted to know what’s inside and how everything worked,” said Dino. “Looking back, I should have been an engineer.” “I have two children, a son and a daughter,” said Dino. “I’m encouraging my daughter to go into STEM; we need more young women in STEM careers but too many girls are pushed away from this choice by the time they are in middle school. I also want to encourage Filipino kids to make their own career choices and maybe even to come work for NASA.” To help pursue these goals, Dino started a memorial scholarship in honor of his father for Filipino students going into STEM fields. He handed out the inaugural scholarship for this last May. There is nothing like seeing a kid’s eyes get larger, or that proverbial light-bulb-turn-on-above-their-heads when you teach them something new. Jonas Dino Public engagement specialist, president of the Ames Federal Employees Union NASA never stops for Dino. Whether at work or on his free time, he’s always talking about NASA. While dishing out samples of his Filipino adobo recipe during a recent adobo-cooking contest – according to Dino, every Filipino family has their own recipe for this dish – he also handed out NASA knowledge. He won second place. View the full article
-
Live Video from the International Space Station (Official NASA Stream)