Jump to content

NASA

Publishers
  • Posts

    5,737
  • Joined

  • Last visited

  • Days Won

    1

Everything posted by NASA

  1. Both versions of the Solar Array Sun Shield for NASA’s Nancy Grace Roman Space Telescope appear in this photo, taken in the largest clean room at NASA’s Goddard Space Flight Center. The flight version lies flat in the foreground, while the qualification assembly stands upright in the background. The flight panels will shade the mission’s instruments and power the observatory. NASA/Chris Gunn NASA’s Nancy Grace Roman Space Telescope’s Solar Array Sun Shield has successfully completed recent tests, signaling that the assembly is on track to be completed on schedule. The panels are designed to power and shade the observatory, enabling all the mission’s observations and helping keep the instruments cool. The Roman team has two sets of these panels –– one that will fly aboard the observatory and another as a test structure, used specifically for preliminary assessments. Engineers at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, evaluated the test version in a thermal vacuum chamber, which simulates the hot and cold temperatures and low-pressure environment the flight panels will experience in space. Since the panels will be stowed for launch, the team practiced deploying them in space-like conditions. The solar panels for NASA’s Nancy Grace Roman Space Telescope are undergoing assessment in a test chamber at the agency’s Goddard Space Flight Center in this photo.NASA/Chris Gunn Meanwhile, a vendor built up the flight version by fitting the panels with solar cells. After delivery to Goddard, technicians tested the solar cells by flashing the panels with a bright light that simulates the Sun. “We save a significant amount of time and money by using two versions of the panels, because we can do a lot of preliminary tests on a spare while moving further in the process with the flight version,” said Jack Marshall, the Solar Array Sun Shield lead at NASA Goddard. “It streamlines the process and also avoids risking damage to the panels that will go on the observatory, should testing reveal a flaw.” Next spring, the flight version of the Solar Array Sun Shield will be installed on the Roman spacecraft. Then, the whole spacecraft will go through thorough testing to ensure it will hold up during launch and perform as expected in space. To virtually tour an interactive version of the telescope, visit: https://roman.gsfc.nasa.gov/interactive By Ashley Balzer NASA’s Goddard Space Flight Center, Greenbelt, Md. Media contact: Claire Andreoli claire.andreoli@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. 301-286-1940 Explore More 5 min read NASA Tests Deployment of Roman Space Telescope’s ‘Visor’ Article 2 weeks ago 6 min read How NASA’s Roman Space Telescope Will Illuminate Cosmic Dawn Article 1 month ago 3 min read NASA’s Roman Space Telescope’s ‘Eyes’ Pass First Vision Test Article 4 months ago Share Details Last Updated Aug 26, 2024 EditorAshley BalzerContactAshley Balzerashley.m.balzer@nasa.govLocationGoddard Space Flight Center Related TermsNancy Grace Roman Space TelescopeGoddard Space Flight CenterScience-enabling TechnologySpace Communications Technology View the full article
  2. 5 Min Read Webb Finds Early Galaxies Weren’t Too Big for Their Britches After All This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. The full image appears below. Credits: NASA, ESA, CSA, S. Finkelstein (University of Texas) It got called the crisis in cosmology. But now astronomers can explain some surprising recent discoveries. When astronomers got their first glimpses of galaxies in the early universe from NASA’s James Webb Space Telescope, they were expecting to find galactic pipsqueaks, but instead they found what appeared to be a bevy of Olympic bodybuilders. Some galaxies appeared to have grown so massive, so quickly, that simulations couldn’t account for them. Some researchers suggested this meant that something might be wrong with the theory that explains what the universe is made of and how it has evolved since the big bang, known as the standard model of cosmology. According to a new study in the Astrophysical Journal led by University of Texas at Austin graduate student Katherine Chworowsky, some of those early galaxies are in fact much less massive than they first appeared. Black holes in some of these galaxies make them appear much brighter and bigger than they really are. “We are still seeing more galaxies than predicted, although none of them are so massive that they ‘break’ the universe,” Chworowsky said. The evidence was provided by Webb’s Cosmic Evolution Early Release Science (CEERS) Survey, led by Steven Finkelstein, a professor of astronomy at UT Austin and study co-author. Image A : CEERS Deep Field (NIRCam) This image shows a small portion of the field observed by NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) for the Cosmic Evolution Early Release Science (CEERS) survey. It is filled with galaxies. Some galaxies appear to have grown so massive, so quickly, that simulations couldn’t account for them. However, a new study finds that some of those early galaxies are in fact much less massive than they first appeared. Black holes in some of those galaxies make them appear much brighter and bigger than they really are. NASA, ESA, CSA, S. Finkelstein (University of Texas) View 8k pixel full resolution version of the image Black Holes Add to Brightness According to this latest study, the galaxies that appeared overly massive likely host black holes rapidly consuming gas. Friction in the fast-moving gas emits heat and light, making these galaxies much brighter than they would be if that light emanated just from stars. This extra light can make it appear that the galaxies contain many more stars, and hence are more massive, than we would otherwise estimate. When scientists remove these galaxies, dubbed “little red dots” (based on their red color and small size), from the analysis, the remaining early galaxies are not too massive to fit within predictions of the standard model. “So, the bottom line is there is no crisis in terms of the standard model of cosmology,” Finkelstein said. “Any time you have a theory that has stood the test of time for so long, you have to have overwhelming evidence to really throw it out. And that’s simply not the case.” Efficient Star Factories Although they’ve settled the main dilemma, a less thorny problem remains: There are still roughly twice as many massive galaxies in Webb’s data of the early universe than expected from the standard model. One possible reason might be that stars formed more quickly in the early universe than they do today. “Maybe in the early universe, galaxies were better at turning gas into stars,” Chworowsky said. Star formation happens when hot gas cools enough to succumb to gravity and condense into one or more stars. But as the gas contracts, it heats up, generating outward pressure. In our region of the universe, the balance of these opposing forces tends to make the star formation process very slow. But perhaps, according to some theories, because the early universe was denser than today, it was harder to blow gas out during star formation, allowing the process to go faster. More Evidence of Black Holes Concurrently, astronomers have been analyzing the spectra of “little red dots” discovered with Webb, with researchers in both the CEERS team and others finding evidence of fast-moving hydrogen gas, a signature of black hole accretion disks. This supports the idea that at least some of the light coming from these compact, red objects comes from gas swirling around black holes, rather than stars – reinforcing Chworowsky and their team’s conclusion that they are probably not as massive as astronomers initially thought. However, further observations of these intriguing objects are incoming, and should help solve the puzzle about how much light comes from stars versus gas around black holes. Often in science, when you answer one question, that leads to new questions. While Chworowsky and their colleagues have shown that the standard model of cosmology likely isn’t broken, their work points to the need for new ideas in star formation. “And so there is still that sense of intrigue,” Chworowsky said. “Not everything is fully understood. That’s what makes doing this kind of science fun, because it’d be a terribly boring field if one paper figured everything out, or there were no more questions to answer.”The James Webb Space Telescope is the world’s premier space science observatory. Webb is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency). Downloads Right click any image to save it or open a larger version in a new tab/window via the browser’s popup menu. View/Download all image products at all resolutions for this article from the Space Telescope Science Institute. View/Download the research results from the Astrophysical Journal . Media Contacts Laura Betz – laura.e.betz@nasa.gov, Rob Gutro – rob.gutro@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. Marc Airhart – mairhart@austin.utexas.edu University of Texas at Austin Christine Pulliam – cpulliam@stsci.edu Space Telescope Science Institute, Baltimore, Md. Related Information VIDEO: CEERS Fly-through data visualization ARTICLE: Webb Science – Galaxies Through Time INFOGRAPHIC: Learn More about black holes VIDEO: Webb Science Snippets Video: “The Early Universe” INFOGRAPHIC: What is Cosmological Redshift? More Webb News More Webb Images Webb Science Themes Webb Mission Page Related For Kids What is a galaxy? What is the Webb Telescope? SpacePlace for Kids En Español Para Niños : Qué es una galaxia? Ciencia de la NASA NASA en español Space Place para niños Keep Exploring Related Topics James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Exoplanets Exoplanet Stories Universe Share Details Last Updated Aug 26, 2024 Editor Stephen Sabia Contact Laura Betz laura.e.betz@nasa.gov Related Terms Astrophysics Galaxies Galaxies, Stars, & Black Holes Galaxies, Stars, & Black Holes Research Goddard Space Flight Center James Webb Space Telescope (JWST) Science & Research The Universe View the full article
  3. 2 min read Hubble Captures Unique Ultraviolet View of a Spectacular Star Cluster NASA, ESA, and C. Murray (Space Telescope Science Institute); Image Processing: Gladys Kober (NASA/Catholic University of America) Roughly 210,000 light-years away, the Small Magellanic Cloud (SMC) is one of our Milky Way galaxy’s closest neighbors. In fact, this small galaxy is one of the Milky Way’s “satellite” galaxies, which orbit our home spiral galaxy. Nested within the SMC is this spectacular star cluster, known as NGC 346. Its hot stars unleash a torrent of radiation and energetic outflows, which erode the denser portions of gas and dust in the surrounding nebula, N66. Dozens of hot, blue, and high-mass stars shine within NGC 346, and astronomers believe this cluster contains more than half of the known high-mass stars in the whole SMC. This inset image shows the location of NGC 346 within the Small Magellanic Cloud. NASA, ESA, C. Murray (Space Telescope Science Institute), and ESO/VISTA VMC; Image Processing: Gladys Kober (NASA/Catholic University of America) The NASA/ESA Hubble Space Telescope has observed this cluster before, but its new view shows NGC 346 in ultraviolet light, along with some visible-light data. Ultraviolet light helps scientists understand more about star formation and evolution, and Hubble – with its combined sharp resolution and position above our UV-blocking atmosphere – is the only telescope with the ability to make sensitive, ultraviolet observations. These two Hubble images of NGC 346 show the star cluster in visible and ultraviolet wavelengths of light. NASA, ESA, A. James (STScI), and C. Murray (Space Telescope Science Institute); Image Processing: Gladys Kober (NASA/Catholic University of America) These specific observations were gathered to learn more about how star formation shapes the interstellar medium, which is the gas distributed throughout seemingly empty space, in a low-metallicity galaxy like the SMC. Astronomers call elements heavier than hydrogen and helium “metals,” and the SMC contains fewer metals when compared to most parts of our Milky Way. This condition helps make it an excellent example of a galaxy similar to those that existed in our early universe, when very few heavy elements were around to incorporate. Download Image Explore More Hubble’s Galaxies Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Aug 26, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble Science Hubble’s Galaxies Stars View the full article
  4. 14 Min Read The Making of Our Alien Earth: The Undersea Volcanoes of Santorini, Greece The expedition team and crew prepare to deploy Nereid Under Ice (NUI) into the sea. The following expedition marks the third installment of NASA Astrobiology’s fieldwork series, the newly rebranded Our Alien Earth, streaming on NASA+. Check out all three episodes following teams of astrobiologists from the lava fields of Holuhraun, Iceland, to the Isua Greenstone Belt of Greenland, and finally, the undersea volcanoes of Santorini, Greece. And stay tuned for the lava tubes of Mauna Loa, Hawaii in 2025. THE VOYAGE BEGINS My career at NASA has always felt like a mad scientist’s concoction of equal parts hard work, perseverance, absurd luck, and happenstance. It was due to this mad blend that I suddenly found myself on the deck of a massive tanker ship in the middle of the Mediterranean sea, watching a team of windburnt scientists, engineers, and sailors through my camera lens as they wrestled with a 5,000lb submersible hanging in the air. The expedition team and crew prepare to deploy Nereid Under Ice (NUI) into the sea. “Let it out, Molly, slack off a little bit…” shouts deck boss Mario Fernandez, as he coordinates the dozen people maneuvering the vehicle. It’s a delicate dance as the hybrid remotely operated vehicle (ROV), Nereid Under Ice (NUI), is hoisted off the ship and deployed into the sea. “Tagline slips, line breaks… you’ve got a 5,000lb wrecking ball,” recounts Mario in an interview later that day. How did I get here? A few years ago I found myself roaming the poster halls of the Astrobiology Science Conference in Bellevue, Washington, struggling to decipher the jargon of a dozen disciplines doing their best to share their discoveries; phrases like lipid biomarkers, anaerobic biospheres, and macromolecular emergence floated past me as I walked. I felt like a Peanuts character listening to an adult speak. Until I stumbled upon a poster by Dr. Richard Camilli entitled, Risk-Aware Adaptive Sampling for the Search for Life in Ocean Worlds. I was quickly enthralled in a whirlwind of icy moons, fleets of deep sea submersible vehicles, and life at sea. Dr. Richard Camilli, principal investigator of a research expedition to explore undersea volcanoes off the coast of Santorini. “Are you free in November?” “Absolutely,” I replied without checking a single calendar. Five months and three flights later, I arrived at the port of Lavrio, Greece, as Dr. Camilli and his team were unloading their suite of vehicles from gigantic shipping crates onto the even more massive research vessel. I stocked up on motion sickness tablets, said a silent farewell to land, and boarded the ship destined for the undersea Kolumbo volcano. Greece is a great place to study geology, because it’s a kind of supermarket of natural disasters. Dr. Paraskevi NomikoU University of Athens The expedition sets out to sea as the sun sets in the distance. LIFE AT SEA Documenting astrobiology fieldwork has taken me to some pretty remote and rough places. Sleeping in wooden shacks in Iceland without running water and electricity, or bundled up in a zero-degree sleeping bag in a tent while being buffeted by gale force winds in the wilderness of Greenland. But life at sea? Life at sea is GOOD. Filmmaker Mike Toillion takes a selfie, holding up a peace sign with members of the science team. From left to right: NASA Astrobiology/Mike Toillion Mike Toillion, creator of Our Alien Earth, taking a selfie with members of the glider team. From left to right: Matt Walter and Gideon Billings of the autonomous sampling team inside the ship’s control room. I was fortunate to have a personal cabin all to myself: a set of bunk beds, a small bathroom with a shower, and a small desk with plenty of outlets for charging my gear. I would also be remiss if I didn’t mention the mess hall. Aside from a freshly rotated menu of three hot meals a day, it was open 24/7 with a constant lineup of snacks to keep bellies full and morale high. This was luxury fieldwork. The ability to live, work, and socialize all in the same place would make this trip special in its own right, and allowed me to really get to know the team and capture every angle of this incredibly complex and multi-faceted expedition. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video The ship in the port of Lavrio, Greece. The team will spend two full days docked here while preparing for the voyage ahead. NASA Astrobiology/Mike Toillion SEARCHING FOR LIFE ON OCEAN WORLDS “The goal of this program is cooperative exploration with under-actuated vehicles in hazardous environments,” explains Dr. Camilli as we stand on the bow of the ship, the sun beginning to set in the distance. “These vehicles work cooperatively in order to explore areas that are potentially too dangerous or too far away for humans to go.” This is the problem at hand with exploring icy ocean worlds like Jupiter’s moon, Europa. The tremendous distance between Earth and Europa means we will barely be able to communicate and control vehicles that we send to the surface, and will face even more difficulty once those vehicles dive below the ice. This makes Earth’s ocean a perfect testbed for developing autonomous, intelligent robotic explorers. “I’ve always been struck at how parallel ocean exploration and space exploration is,” says Brian Williams, professor from the Computer Science and Artificial Intelligence Laboratory at MIT. “Once you go through the surface, you can’t communicate. So, somehow you have to embody the key insights of a scientist, to be able to look and see: is that evidence of life?” One of the gliders, an autonomous scouting vehicle equipped with multple sensors to map the seafloor and report back to the ship. NASA Astrobiology/Mike Toillion MEET THE FLEET Exploring anywhere in space begins with a few simple steps: first, you need to get a general map of the area, which is typically done by deploying orbiters around a celestial body. The next step is to get a closer look, by launching lander and rover missions to the surface. Finally, in order to understand the location best, you need to bring samples back to Earth to study in greater detail. “So you can think of what we’re doing here as being very parallel, that the ship is like the orbiter and is giving us a broad view of the Kolumbo volcano, right? Once we do that map, then we need to be able to explore interesting places to collect samples. So, the gliders are navigating around places that look promising from what the ship told us. And then, it looks to identify places where we might want to send NUI. NUI is very capable in terms of doing the samples, but it can’t move around nearly as much. And so, we finally put NUI at the places where the gliders thought that they were interesting.” To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video The expedition team works into the night preparing NUI for its upcoming mission to the Kolumbo volcano. NASA Astrobiology/Mike Toillion THE SCIENTIST’S ROBOTIC APPRENTICE As the espresso machine in the mess hall whirred away pouring out a much needed shot of caffeine, I sat with Eric Timmons, one of the expedition’s computer science engineers. Eric wears a few hats on the ship, but today we are discussing automated mission planning, the first step to true autonomy in robotic exploration. “In any sort of scientific mission, you’re going to have a list of goals, each with their own set of steps, and a limited amount of time to achieve them. And so, Kirk works on automating that.” Kirk is the nickname of one of the many algorithms involved in the team’s automated mission planning. It’s joined by other algorithms, all named after Star Trek characters, collectively known as Enterprise, each responsible for different aspects of planning a mission and actively adapting to new mission parameters. Dr. Richard Camilli explains further: “Basically, we have scientists onboard the ship that are feeding policies to these automated planners. [The planners] then take those policies plus historical information, the oceanographic context, and new information being transmitted by the vehicles here and now; they take all that information, and combine it to construct a mission that gets to the scientific deliverables, while also being safe.” These are areas that humans aren’t designed to go to. I guess the best analogy would be like hang gliding in Midtown Manhattan at night. Dr. richard camilli Woods Hole Oceanographic Institution OK, let’s recap the story so far: the ship’s sonar and other instruments create a general map of the Kolumbo volcano. That information, along with data from previous missions, is fed to Enterprise’s team of algorithms, which generates a mission for the gliders. The gliders are deployed, and using their sensors, provide higher-fidelity data about the area and transmit that knowledge back to the ship. The automated mission planners take in this new data, and revise their mission plan, ranking potential sites of scientific interest, which are then passed onto NUI, which will conduct its own mission to explore these sites, and potentially sample anything of interest. DIVE, DIVE, DIVE After a few days on the ship, the routine of donning my steel-toed boots and hard hat when walking around the deck has started to become second nature. My drone skills have greatly improved, as the magnetic field produced by the ship and its instruments forced me to take-off and land manually, carefully guiding the drone in and around the many hazards of the vessel. This morning, however, I’ve been invited to step off the ship for the first time to get a first-hand look at deploying the gliders. Angelos Mallios from the glider team leads me down into the bowels of the ship to the lower decks, as we arrive at a door that opens to the outside of the ship, waves lapping about six feet below. A zodiac pulls up to the door and we descend down a ladder into the small boat. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Riding in the zodiac with the glider team, led by Angelos Mallios. NASA Astrobiology/Mike Toillion Meanwhile, the rest of the glider team is on the main deck of the ship, lifting the gliders with a large, motorized crane, and lowering them onto the surface of the water. The zodiac team approached to detach the glider and safely set it out into the sea, while I dipped a monopod-mounted action camera in and out of the water to capture the process. Unbeknownst to me at the time, this would become some of my favorite footage of the trip, sunlight dancing off the surface of the waves, while the gliders floated and dove beneath. Angelos’ radio began to chatter. Eric Timmons was onboard the ship ready to command the gliders to begin their mission plan assigned by Enterprise. A moment passed and the yellow fin of the glider dipped below the water’s surface and disappeared. Angelos Mallios from the Woods Hole Oceanographic Institution, leans out of a zodiac to deploy a glider, an autonomous vehicle and the forward scout for the expedition. NUI VERSUS THE VOLCANO The following day, it was time to see the star of the show in action; the expedition team was ready to deploy the aforementioned 5,000lb wrecking ball, NUI. The gliders had been exploring the surrounding area day and night, using their suite of sensors to detect areas of scientific interest. Since this mission is about searching for life, the gliders know that warmer areas could indicate hydrothermal vent activity; a literal hotspot for life in the deep ocean. Kirk, along with the science planner algorithm, Spock, determined a list of possible candidates that fit that exact description. “There’s always a bit of tension in the operations, where, do you go strike out in an area that is unstudied and potentially come back with nothing? Or do you go to a site that you know and try to understand it a little bit more, that kind of incremental advance?” Dr. Camilli pauses to take a quick swig of sparkling water after a long day of diving operations, as he recounts a moment in the control room earlier that day. All the scientists onboard this expedition are extremely skilled and knowledgable, and this mission is asking them to put aside their instincts, and follow the suggestions of computer algorithms; a hard pill to swallow for some. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Underwater footage from Nereid Under Ice, showing a thriving community on the sea floor, including a never before seen species. NASA Astrobiology/Mike Toillion and WHOI “We stuck with the Spock program, and it paid great dividends. And all of the scientists were amazed at what they saw. The first site that we went to was spectacular. The second site we went to was spectacular. Each of the five sites that it identified as interesting were interesting, and they were each interesting in a different way; totally different environments.” Interesting, in this case, was quite the understatement. As the expedition team and I crowded into the ship’s control room to look at the camera feeds transmitted by NUI, now fully deployed to the seafloor, audible gasps erupted from multiple people. Bubbles filled the monitor as live fumaroles, active vents from the volcano, were pouring out heat and chemical-rich fluid into the water. Thick, microbial mats covered the surrounding rock, and multicellular lifeforms dotted the landscape. The expedition team had found a live hydrothermal vent, and life thriving around it. SOUVENIRS FROM THE OCEAN FLOOR “I’ve never seen anything like that before,” recalls Casey Machado, expedition lead and the main pilot for Nereid Under Ice (NUI). Casey is sitting in an office chair surrounded by glowing monitors, a joystick in their left hand, and a gaming controller in their right. Since NUI is a hybrid ROV, it can be controlled manually from the ship by remote, or receive autonomous instructions from the Enterprise mission planners. Today, the team plans on manually controlling NUI to retrieve samples from the first site of interest. NUI is a strange looking vehicle. Only a small section of its body is watertight, where many of its critical components are housed. The remainder is fairly open, and upon arriving at the first site recommended by Spock, the front of the ROV opens up its front double doors to reveal a multi-jointed manipulator arm, stereo camera set, and other instruments. I’m instantly reminded of the space shuttle mission to repair the Hubble Space Telescope, which had a similar mechanism. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Casey Machado, pilot of the hybrid ROV Nereid Under Ice (NUI), pilots the manipulator arm to take a rock sample. NASA Astrobiology/Mike Toillion Casey deftly maneuvers each joint of the arm to approach a rock covered in microbial mats. The end of NUI’s arm is equipped with two sampling instruments: a claw-like grabbing mechanism and a vacuum-like hose called the “slurp gun”. The end of the arm twists and turns as Machado aligns it with the rock, eventually opening and closing it around the target. With a gentle pull, the rock comes loose, and with a few more careful manipulations places it delicately into NUI’s sample cache. I offer a high-five, which Casey nonchalantly returns like the whole task was nothing. TEACHING A ROBOT TO FISH At this point, the expedition team has collected dozens of samples and achieved multiple engineering milestones, enough to fill years’ worth of scientific papers, but they are far from finished. A true mission to an ocean world will have to be pilotless, as Dr. Gideon Billings from MIT explains: “They need to operate without any human intervention. They need to be able to understand the scene through perception and then make a decision about how they want to manipulate to take a sample or achieve a task.” Gideon sits in the control room to the left of the piloting station, working alongside Casey as they prepare to demonstrate NUI’s automated sampling capabilities. His laptop screen shows a live 3D-model of the craft, its doors open, arm extended. Projected around the craft is a 3D reconstruction, or point cloud, of the seafloor created from the stereo camera pair mounted inside the vehicle. Similarly to how our brains take the two visual feeds from both of our eyes to see three-dimensionally, a stereo camera pair uses two cameras to achieve the same effect. By clicking on the model and moving its position in the software, NUI performs the same action thousands of meters under the ocean. Shared autonomy between the automated sampling team and the ROV Nereid Under Ice. “That is shared autonomy, where you could imagine a pilot indicating a desired pose for the arm to move to, but then a planner taking over and coming up with the path that the arm should move to reach that goal. And then, the pilot just essentially hitting a button and the arm following that path.” Over the course of multiple dives, Gideon tested various sampling techniques, directing the manipulator arm to use its claw-like device to grab different tools and perform a variety of tasks. “We were able to project the point cloud into that scene, and then command the arm to grab a push core and move it into a location within that 3D reconstruction. We verified that that location matched up. That showed the viability of an autonomous system.” This seemingly small victory is a huge step towards exploring planets beyond Earth. Since this expedition, the engineering team has not only improved this shared autonomy system, but has also implemented a natural language interface, allowing a user to use their normal speaking voice to give commands to the ROV, further blurring the lines between reality and science fiction. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video The sun rises over the Mediterranean Sea on the final day of the research cruise. NASA Astrobiology/Mike Toillion SOMEWHERE BEYOND THE SEA I cannot help but envy the life of those who chose to make the ocean their place of work. The time I’ve spent with oceanographers has me questioning all my life choices; clearly they knew something I didn’t. Watching the sunrise every morning, peering through the murky depths of the deep sea, unlocking the secrets of Earth’s final frontier. All in a day’s work for Dr. Richard Camilli and his team of intrepid explorers. Watch Our Alien Earth and The Undersea Volcanoes of Santorini, Greece on NASA+ and follow the full story of this incredible expedition. Watch Our Alien Earth on NASA+ Panorama of a sunrise at sea. View the full article
  5. NASA Administrator Bill Nelson and leadership host a live news conference on Saturday, Aug. 24 at the agency’s Johnson Space Center in Houston to give a status update about NASA’s Boeing Crew Flight Test.Credit: NASA NASA will return Boeing’s Starliner to Earth without astronauts Butch Wilmore and Suni Williams aboard the spacecraft, the agency announced Saturday. The uncrewed return allows NASA and Boeing to continue gathering testing data on Starliner during its upcoming flight home, while also not accepting more risk than necessary for its crew. Wilmore and Williams, who flew to the International Space Station in June aboard NASA’s Boeing Crew Flight Test, have been busy supporting station research, maintenance, and Starliner system testing and data analysis, among other activities. “Spaceflight is risky, even at its safest and most routine. A test flight, by nature, is neither safe, nor routine. The decision to keep Butch and Suni aboard the International Space Station and bring Boeing’s Starliner home uncrewed is the result of our commitment to safety: our core value and our North Star,” said NASA Administrator Bill Nelson. “I’m grateful to both the NASA and Boeing teams for all their incredible and detailed work.” Wilmore and Williams will continue their work formally as part of the Expedition 71/72 crew through February 2025. They will fly home aboard a Dragon spacecraft with two other crew members assigned to the agency’s SpaceX Crew-9 mission. Starliner is expected to depart from the space station and make a safe, controlled autonomous re-entry and landing in early September. NASA and Boeing identified helium leaks and experienced issues with the spacecraft reaction control thrusters on June 6 as Starliner approached the space station. Since then, engineering teams have completed a significant amount of work, including reviewing a collection of data, conducting flight and ground testing, hosting independent reviews with agency propulsion experts, and developing various return contingency plans. The uncertainty and lack of expert concurrence does not meet the agency’s safety and performance requirements for human spaceflight, thus prompting NASA leadership to move the astronauts to the Crew-9 mission. “Decisions like this are never easy, but I want to commend our NASA and Boeing teams for their thorough analysis, transparent discussions, and focus on safety during the Crew Flight Test,” said Ken Bowersox, associate administrator for NASA’s Space Operations Mission Directorate. “We’ve learned a lot about the spacecraft during its journey to the station and its docked operations. We also will continue to gather more data about Starliner during the uncrewed return and improve the system for future flights to the space station.” NASA’s Boeing Crew Flight Test astronauts (from top) Butch Wilmore and Suni Williams pose on June 13, 2024 for a portrait inside the vestibule between the forward port on the International Space Station’s Harmony module and Boeing’s Starliner spacecraft.Credit: NASA Starliner is designed to operate autonomously and previously completed two uncrewed flights. NASA and Boeing will work together to adjust end-of-mission planning and Starliner’s systems to set up for the uncrewed return in the coming weeks. Starliner must return to Earth before the Crew-9 mission launches to ensure a docking port is available on station. “Starliner is a very capable spacecraft and, ultimately, this comes down to needing a higher level of certainty to perform a crewed return,” said Steve Stich, manager of NASA’s Commercial Crew Program. “The NASA and Boeing teams have completed a tremendous amount of testing and analysis, and this flight test is providing critical information on Starliner’s performance in space. Our efforts will help prepare for the uncrewed return and will greatly benefit future corrective actions for the spacecraft.” NASA’s Commercial Crew Program requires spacecraft fly a crewed test flight to prove the system is ready for regular flights to and from the space station. Following Starliner’s return, the agency will review all mission-related data to inform what additional actions are required to meet NASA’s certification requirements. The agency’s SpaceX Crew-9 mission, originally slated with four crew members, will launch no earlier than Tuesday, Sept. 24. The agency will share more information about the Crew-9 complement when details are finalized. NASA and SpaceX currently are working several items before launch, including reconfiguring seats on the Crew-9 Dragon, and adjusting the manifest to carry additional cargo, personal effects, and Dragon-specific spacesuits for Wilmore and Williams. In addition, NASA and SpaceX now will use new facilities at Space Launch Complex-40 at Cape Canaveral Space Force Station in Florida to launch Crew-9, which provides increased operational flexibility around NASA’s planned Europa Clipper launch. The Crew-9 mission will be the ninth rotational mission to the space station under NASA’s Commercial Crew Program, which works with the American aerospace industry to meet the goal of safe, reliable, and cost-effective transportation to and from the orbital outpost on American-made rockets and spacecraft launching from American soil. For more than two decades, people have lived and worked continuously aboard the International Space Station, advancing scientific knowledge and demonstrating new technologies, making research breakthroughs not possible on Earth. The station is a critical testbed for NASA to understand and overcome the challenges of long-duration spaceflight and to expand commercial opportunities in low Earth orbit. As commercial companies focus on providing human space transportation services and destinations as part of a robust low Earth orbit economy, NASA’s Artemis campaign is underway at the Moon where the agency is preparing for future human exploration of Mars. Find more information on NASA’s Commercial Crew Program at: https://www.nasa.gov/commercialcrew -end- Meira Bernstein / Josh Finch Headquarters, Washington 202-358-1100 meira.b.bernstein@nasa.gov / joshua.a.finch@nasa.gov Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov Leah Cheshier / Sandra Jones Johnson Space Center, Houston 281-483-5111 leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov Share Details Last Updated Aug 24, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsCommercial CrewInternational Space Station (ISS) View the full article
  6. As a Human Resource Business Partner at NASA Headquarters, Selina Salgado describes her job as helping with “all things people” for the enterprise. By facilitating technological solutions to human resources (HR) challenges and needs, she excels at an often-underestimated aspect of Digital Transformation (DT): the interpersonal side. As a champion of community building, knowledge sharing, and digital upskilling, Selina was an easy selection for this month’s Digital Transformer award. Selina started at NASA in 2019 as a Pathways intern and previously worked as a mentoring coordinator for Marshall Space Flight Center (MSFC), which is where her Digital Transformation journey began. At MSFC, she created an all-in-one, automated system for open job postings, which decreased the agency’s time to hire and increased visibility for available positions. She has aspirations for further leveraging these types of systems to improve inclusive teaming across NASA by making HR tools available and interoperable across centers. Her current team under the Office of the Chief Human Capital Officer (OCHCO) operates with an 80-20 mentality, working to create common tools and solutions that are 80% interoperable and 20% customizable to the specific organization or scenario. In addition to her technical work on digital HR tools like the automated job board, Selina takes initiative to help people understand what transformation means to them and how to practice transformation in their daily lives. In collaboration with Jess Deibert, DT Digital Academy Lead, Selina created the new Transformation Tips (TxTips) series, which features NASA employees’ tech-related tips for doing their work. The instant popularity of the community-led series led to speaker requests for TxTip presentations from several other offices at NASA, including the Office of STEM Engagement. Most recently, Selina has become a key contributor and partner in NASA’s Summer of AI upskilling campaign to help employees maximize the benefits of AI while managing risks. As a self-taught developer, Selina has created several tools and apps to streamline agency-wide collaboration and data collection. She leveraged PowerApps, Power Automate, and Power BI, integrated with SharePoint, to feed data to a dashboard used by the Agency Chief AI Officer to brief the Administrator on impact metrics from the Summer of AI campaign. Selina also developed and executed several events to engage and excite the workforce around this campaign, including conceiving the agency’s first “Battle of the Bots” event. Her Reddit-style “Ask Me Anything” event helped employees understand the differences in large language models by pitting ChatGPT against Microsoft CoPilot to respond to participant-submitted prompts and questions. The Battle of the Bots saw the highest engagement of any asynchronous Summer of AI event. Selina’s educational background aligns with her focus on the connective and collaborative aspects of Digital Transformation. She received her bachelor’s degree in business management with a focus in human resource management and her master’s degree in education and student affairs, which led to her interest in NASA’s internship and mentorship programs. The connection piece, she says, is what she enjoys most about collaborating with DT. “If you run into an issue, there’s a community of practice out there for you to reach out to and engage with…to build that network with other employees that are interested in and passionate about transformation.” The other influence Selina points to along her Digital Transformation journey is her military background. “I grew up in a military household, and then I joined the Navy right out of high school. There’s a culture there of how to get things done,” says Selina. “What drives my passion for processes and systems is that it’s transferrable to somebody else…I need to be able to pass that on to the next person.” She gets energized by learning new tools and finding solutions to roadblocks, especially when she can establish procedures for others to leverage and build on her work. “That’s something that I love about transformation and just change in general—that you get to develop and learn and connect with new people.” If there’s one message Selina hopes to spread at NASA through her achievements as a Digital Transformer, it’s that Digital Transformation is for everyone. “You don’t have to be in IT, you don’t have to have that background or technical [ability],” she says. “I mean, I’m in HR. Any field at NASA can utilize the digital landscape and digital transformation. Those principles and resources are available for everybody.” View the full article
  7. NASA’s Boeing Crew Flight Test Status News Conference
  8. The NASA Ames Science Directorate recognizes the outstanding contributions of (pictured left to right) Sangsavang Stevie Phothisane, Taryn Kavanagh, Andro Rios, and Hami Ray. Their commitment to the NASA mission represents the talent, camaraderie, and vision needed to explore this world and beyond. Earth Science Star: Sangsavang Stevie Phothisane Sangsavang Stevie Phothisane, a Deputy Project Manager in the Earth Science Project Office (ESPO), demonstrated outstanding leadership as the site manager for both of the field campaigns of the Arctic Radiation-Cloud-Aerosol-Surface Interaction Experiment (ARCSIX) based at Pituffik Space Base, Greenland. He has excelled in managing this large and complex project, which encompasses over 75 scientists and engineers and 3 research aircraft, in an extremely remote location 750 miles north of the Arctic Circle. Space Science & Astrobiology Star: Taryn Kavanagh Taryn Kavanagh, Research Support Specialist, is an indispensable member of the Astrophysics Branch. She is a consummate professional in all of her administrative duties and goes above and beyond expectations to support our team, our customers and our mission. Taryn recently supported many high-level visits with increased workload in addition to meeting branch needs which has boosted morale and goodwill with both internal and external partners. Space Science & Astrobiology Star of the Month: Andro Rios Dr. Andro Rios, a research scientist in the Exobiology Branch, established new strategic partnerships with San Jose State University and Skyline College through the Science Mission Directorate Bridge Program (now MOSAICS). He was awarded grant funding for the ASPIRE Program (Astrobiology Scholars Program Immersive Research Experience), offering a two-year internship for under-represented undergraduates to work with NASA scientists and engineers. Dr. Rios selected and successfully led the first cohort of students for ASPIRE this summer. Space Biosciences Star: Hami Ray Hami Ray has stepped up as the Deputy Project Manager for the Lunar Explorer Instrument for space biology Applications (LEIA) mission to study the biological effects of the lunar surface’s extreme environmental conditions on living organisms. She has been instrumental in timely and critical process improvement efforts for LEIA to enable project success. In addition to Ray’s role with LEIA, she also excels as the Deputy Project Manager for the Space Synthetic Biology (SynBio) mission and as the Project Manager for the GLOW mission concept to explore Venus’ upper atmospheric dynamics. View the full article
  9. The Dash 7 that will be modified into a hybrid electric research vehicle under NASA’s Electrified Powertrain Flight Demonstration (EPFD) project on display with its new livery for the first time. In front of the plane is an electric powertrain that magniX will integrate into the current aircraft to build a hybrid electric propulsion system.NASA/David C. Bowman In a special unveiling ceremony on Aug. 22, 2024, the public received a first look at magniX’s Dash 7 aircraft that will serve as a testbed for sustainable aviation research with NASA’s Electrified Powertrain Flight Demonstration (EPFD) project. Hosted by magniX at King County International Airport, commonly known as Boeing Field, in Seattle, Washington, leaders from NASA and magniX unveiled the research vehicle in its new livery. EPFD is a collaboration between NASA and industry to demonstrate the capabilities of electrified aircraft propulsion technologies in reducing emissions for future commercial aircraft in mid-2030s. As part of this demonstration, magniX will modify the Dash 7 with a new hybrid electric system to conduct ground and flight tests. NASA will use data gathered from these tests to identify and minimize barriers in certifying these new technologies and help inform new standards and regulations for future electrified aircraft. “We are a research organization that continues to advance aviation, solve the problems of flight, and lead the community into the future,” said Robert A. Pearce, associate administrator for NASA’s Aeronautics Research Mission Directorate. “Through our EPFD project, we’re taking big steps in partnership to make sure electric aviation is part of the future of commercial flight.” With the aircraft livery complete, magniX will begin the process of converting the Dash 7 into a research testbed with a hybrid electric propulsion system. Flight tests with the new system are planned for 2026. Image Credit: NASA/David C. Bowman View the full article
  10. The crew of the Human Exploration Research Analog’s Campaign 7 Mission 1 clasp hands above their simulated space habitat’s elevator shaft.Credit: NASA NASA is funding 11 new studies to better understand how to best support the health and performance of crew members during long-duration spaceflight missions. The awardees will complete the studies on Earth without the need for samples and data from astronauts. Together, the studies will help measure physiological and psychological responses to physical and mental challenges that astronauts may encounter during spaceflight. The projects will address numerous spaceflight risks related to team performance, communication, living environment, decision-making, blood flow, and brain health. With this information, NASA will better mitigate risks and protect astronaut health and performance during future long-duration missions to the Moon, Mars, and beyond. The 11 finalists were selected from 123 proposals in response to the 2024 Human Exploration Research Opportunities available through the NASA Solicitation and Proposal Integrated Review and Evaluation System. Selected proposals originate from 10 institutions, and the cumulative award totals about $14.6 million. The durations of the projects range from one to five years. The following investigators and teams were selected: Katya Arquilla, University Of Colorado, Boulder, “Investigating Countermeasures for Communication Delays through the Laboratory-based Exploration Mission Analog” Tripp Driskell, Florida Maxima Corporation, “CADMUS (Crew Adaptive Decision Making Under Stress) and Crew Decision Support System: Development, Validation, and Proof-of-Concept” Christopher Jones, University of Pennsylvania, Philadelphia, “Predicting Operationally Meaningful Performance with Multivariate Biomarkers Using Advanced Algorithms” Jessica Marquez, NASA Ames Research Center, Silicon Valley, California, “Enhancing Performance and Communication for Distributed Teams During Lunar Spacewalks” Shu-Chieh Wu, San Jose State University Research Foundation, California, “Lessening the Impact of Interface Inconsistency Through Goal-Directed Crew Operations” Erika Rashka, Johns Hopkins University, Baltimore, “Local Psychiatric Digital Phenotyping for Isolated, Constrained, and Extreme (ICE) Environments via Multimodal Sensing” Ana Diaz Artiles, Texas A&M Engineering Experiment Station, College Station, “Dose-response Curves of Cardiovascular and Ocular Variables During Graded Lower Body Negative Pressure in Microgravity Conditions Using Parabolic Flight” Theodora Chaspari, University Of Colorado, Boulder, “A Speech-Based Artificial Intelligence System for Predicting Team Functioning Degradation in HERA (Human Exploration Research Analog) Missions” Ute Fischer, Georgia Tech Research Corporation, Atlanta, “Supporting Collaboration and Connectedness between Space and Ground at Lunar Latencies” Xiaohong Lu, Louisiana State University, Shreveport, “Space Exposome Converges on Genotoxic Stress to Accelerate Brain Aging and Countermeasures to Mitigate Acute and Late Central Nervous System Risks” Catherine Davis, Henry M. Jackson Foundation For The Advancement of Military Medicine, North Bethesda, Maryland, “NeuroSTAR (Neurobehavioral Changes Following Stressors and Radiation): Predicting Mission Impacts from Analogous Human and Rodent Endpoints” Proposals were independently reviewed by subject matter experts in academia, industry, and government using a dual anonymous peer-review process to assess scientific merit. NASA assessed the top scoring proposals for relevance to the agency’s human research roadmap before final selections were made. ____ NASA’s Human Research Program pursues the best methods and technologies to support safe, productive human space travel. Through science conducted in laboratories, ground-based analogs, and the International Space Station, the program scrutinizes how spaceflight affects human bodies and behaviors. Such research continues to drive NASA’s mission to innovate ways that keep astronauts healthy as space exploration expands to the Moon, Mars, and beyond. Explore More 5 min read NASA Shares Asteroid Bennu Sample in Exchange with JAXA Article 2 hours ago 10 min read Preguntas frecuentes: Estado del retorno de la prueba de vuelo tripulado Boeing de la NASA Article 3 hours ago 2 min read 2025 Human Lander Challenge Article 2 days ago Keep Exploring Discover More Topics From NASA Living in Space Artemis Human Research Program Space Station Research and Technology View the full article
  11. As part of an asteroid sample exchange, NASA has transferred to JAXA (Japan Aerospace Exploration Agency) a portion of the asteroid Bennu sample collected by the agency’s OSIRIS-REx mission. The sample was officially handed over by NASA officials during a ceremony on Aug. 22 at JAXA’s Sagamihara, Japan, campus. The signature exchange for the Bennu sample transfer took place on Aug. 22, 2024, at JAXA’s (Japan Aerospace Exploration Agency) Institute of Space and Astronautical Science, Sagamihara Campus.JAXA This asteroid sample transfer follows the November 2021 exchange where JAXA transferred to NASA a portion of the sample retrieved from asteroid Ryugu by its Hayabusa2 spacecraft. This agreement allows NASA and JAXA to share achievements and promote scientific and technological cooperation on asteroid sample return missions. The scientific goals of the two missions are to understand the origins and histories of primitive, organic-rich asteroids and what role they may have played in the formation of the planets. “We value our continued collaboration with JAXA on asteroid sample return missions to both increase our science return and reduce risk on these and other missions,” said Kathleen Vander Kaaden, chief scientist for astromaterials curation in the Science Mission Directorate at NASA Headquarters in Washington. “JAXA has extensive curation capabilities, and we look forward to what we will learn from the shared analysis of the OSIRIS-REx samples.” The Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer, or OSIRIS-REx, spacecraft delivered 4.29 ounces (121.6 grams) of material from Bennu, more than double the mission’s mass requirement, as well as 24 steel Velcro® pads containing dust from the contact with Bennu. As part of the agreement, the Astromaterials Research and Exploration Science Division at NASA’s Johnson Space Center in Houston transferred to JAXA 0.023 ounces (0.66 grams) of the Bennu sample, equaling 0.55% of the total sample mass, and one of the 24 contact pads. Hayabusa2 collected 0.19 ounces (5.4 grams) of Ryugu between two samples and, in 2021, JAXA provided NASA with 23 millimeter-sized grains plus aggregate sample material from Ryugu, enabling both countries to get the most out of the samples and share the responsibility of sample curation. JAXA’s portion of the Bennu samples will be housed in the newly expanded clean rooms in the extraterrestrial sample curation center on the JAXA Sagamihara campus. The JAXA team received the samples enclosed in non-reactive nitrogen gas and will open them in similarly nitrogen-filled clean chambers, accessed with air-tight gloves. JAXA will now work to create an initial description of the sample, including weight measurements, imaging with both visible light and infrared light microscopes, and infrared spectroscopy. The sample will then be distributed through a competitively selected process for detailed analysis at other research institutes to study the differences and similarities between asteroids Bennu and Ryugu. JAXA “Thank you for safely bringing the precious asteroid samples from Bennu to Earth and then to Japan,” said Tomohiro Usui, Astromaterials Science Research Group Manager, Institute of Space and Astronautical Science, JAXA. “As fellow curators, we understand the tension and responsibility that accompany these tasks. Now, it is our turn at JAXA. We will go ahead with our plans to derive significant scientific outcomes from these valuable samples.” Asteroids are debris left over from the dawn of the solar system. The Sun and its planets formed from a cloud of dust and gas about 4.6 billion years ago, and asteroids are thought to date back to the first few million years of our solar system’s history. Sample return missions like OSIRIS-REx and Hayabusa2 help provide new data on how the solar system’s evolution unfolded. Initial analysis of the Bennu samples has revealed dust rich in carbon and nitrogen. Members of the OSIRIS-REx sample analysis team have also found evidence of organic molecules and minerals bearing phosphorous and water, which together could indicate the building blocks essential for life. Both the Bennu sample and the asteroid Ryugu sample delivered by JAXA’s Hayabusa2 mission appear to have come from an ancient parent object formed beyond the current orbit of Saturn that was broken up and transported into the inner solar system. The differences between these asteroids are emerging as the detailed chemistry is analyzed. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provided overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator. The university leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provided flight operations. Goddard and KinetX Aerospace were responsible for navigating the OSIRIS-REx spacecraft. Curation for OSIRIS-REx takes place at NASA Johnson. International partnerships on this mission include the OSIRIS-REx Laser Altimeter instrument from CSA (Canadian Space Agency) and asteroid sample science collaboration with JAXA’s Hayabusa2 mission. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. Find more information about NASA’s OSIRIS-REx mission at: https://science.nasa.gov/mission/osiris-rex -end- News Media Contacts Wynn Scott NASA’s Johnson Space Center, Houston 281-910-6835 wynn.b.scott@nasa.gov Karen Fox / Alana Johnson NASA Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / alana.r.johnson@nasa.gov View the full article
  12. 4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Boeing Crew Flight Test astronauts (from top) Butch Wilmore and Suni Williams inside the vestibule between the forward port on the International Space Station’s Harmony module and the Starliner spacecraft.NASA NASA astronauts Butch Wilmore and Suni Williams, inspect safety hardware aboard the International Space Station.NASA NASA astronauts Suni Williams and Butch Wilmore prepare orbital plumbing hardware for installation inside the International Space Station’s bathroom, also known as the waste and hygiene compartment, located in the Tranquility module.NASA NASA astronaut and Boeing Crew Flight Test Pilot Suni Williams, inside the International Space Station’s Unity module, displays portable carbon dioxide monitors recently delivered aboard Northrop Grumman’s Cygnus space freighter.NASA NASA astronaut and Boeing Crew Flight Test Commander Butch Wilmore performs spacesuit maintenance inside the International Space Station’s Quest airlock.NASA NASA astronaut and Boeing Crew Flight Test Pilot Suni Williams installs the Packed Bed Reactor Experiment, experimental life support hardware, inside the Microgravity Science Glovebox located aboard the International Space Station’s Destiny laboratory module.NASA Clockwise from bottom, NASA astronauts Matthew Dominick, Jeanette Epps, Suni Williams, Mike Barratt, Tracy C. Dyson, and Butch Wilmore, pose for a team portrait inside the vestibule between the Unity module and the Cygnus space freighter from Northrop Grumman. Dyson holds a photograph of NASA astronaut Patrica Hilliard for whom the Cygnus spacecraft, S.S. Patricia “Patty” Hilliard Robertson, is named after.NASA Clockwise from bottom, NASA astronauts Mike Barratt, Butch Wilmore, and Suni Williams are at work inside the International Space Station’s Unity module. The trio was configuring the ArgUS Mission 1 technology demonstration hardware to test the external operations of communications, computer processing, and high-definition video gear in the vacuum of space.NASA NASA astronauts (from left) Tracy C. Dyson and Suni Williams enjoy an ice cream dessert with fresh ingredients delivered aboard the Northrop Grumman Cygnus space freighter. The duo was enjoying their delicious snack inside the International Space Station’s Unity module where crews share meals in the galley.NASA NASA astronauts (from left) Tracy C. Dyson, Expedition 71 Flight Engineer, and Suni Williams, Pilot for Boeing’s Crew Flight Test, work inside the NanoRacks Bishop airlock located in the port side of the International Space Station’s Tranquility module. The duo installed the the ArgUS Mission-1 technology demonstration hardware inside Bishop for placement outside in the vacuum of space to test the external operations of communications, computer processing, and high-definition video gear.NASA NASA astronaut Butch Wilmore processes samples from Gaucho Lung, an experiment studying how the mucus lining in human airways affects drug delivery to the lungs. NASA NASA’s Boeing Crew Flight Test astronauts Suni Williams and Butch Wilmore (at center) pose with Expedition 71 Flight Engineers (far left) Mike Barratt and Tracy C. Dyson (far right), both NASA astronauts, in their spacesuits aboard the International Space Station’s Quest airlock.NASA NASA astronauts (from left) Suni Williams, Tracy C. Dyson, and Jeanette Epps pose for a portrait during dinner time aboard the International Space Station’s Unity module. Williams is the pilot for NASA’s Boeing Crew Flight Test and Dyson and Epps are both Expedition 71 Flight Engineers.NASA Since the start of International Space Station operations more than two decades ago, crews have lived and worked in microgravity to conduct an array of research that benefits life on Earth and future space exploration missions, and perform operational tasks to keep the state-of-the-art scientific lab in its highest-operating condition. The space station has seen the arrival of more than 270 people. The latest visitors include NASA astronauts Butch Wilmore and Suni Williams, who arrived on June 6 as part of the agency’s Boeing Crew Flight Test. Both veterans of two previous spaceflights, Wilmore and Williams quickly immersed themselves in station life, living and working in low Earth orbit alongside the Expedition 71 crew. The pair has completed a host of science and operational tasks, including fluid physics research, plant facility maintenance, robotic operations, Earth observations, and more. Check out some highlights from Wilmore and Williams’ mission below. (From left) NASA astronauts Suni Williams and Butch Wilmore perform maintenance work on the Plant Water Management (PWM) system. The duo is investigating how fluid physics, such as surface tension, hydroponics, or air circulation, could overcome the lack of gravity when watering and nourishing plants grown in space. The PWM, located in the station’s Harmony module, uses facilities to promote space agricultural activities on spacecraft and space habitat.NASA Providing adequate water and nutrition to plants grown in space is critical as missions expand in low Earth orbit and beyond to the Moon and eventually Mars. Throughout their stay aboard the orbiting laboratory, Wilmore and Williams have tested how different techniques could benefit crop growth in space through the Plant Water Management investigation. This investigation uses the physical properties of fluids—surface tension, wetting, and system geometry—to overcome the lack of gravity and provide hydration to plants, which could advance the development of hydroponic systems for use during future space travel. NASA astronaut Butch Wilmore is pictured installing a light meter inside the Veggie facility to obtain light measurements and adjust the light settings inside the plant research device.NASA Another investigation taking a deeper look at growing plants in space is the Vegetable Production System, or Veggie. Crews living aboard the space station have used Veggie to grow fresh produce and even flowers, providing astronauts with nutritious fresh foods, boosting morale, and enhancing well-being. In preparation for upcoming work with Veggie, Wilmore installed a light meter inside the facility, which will help crew members obtain light measurements and adjust light settings in the future when they practice their green thumb in space. NASA astronaut Suni Williams speaks into the microphone during a HAM Radio session with students from Banda Aceh, Indonesia.NASA For more than two decades, astronauts aboard the space station have connected with students and hobbyists worldwide, sharing details about living and working in microgravity. In early August, Williams used the Ham Radio to connect with students from Banda Aceh, Indonesia, and answer questions about station research as the orbiting lab passed overhead. These space-to-Earth calls inspire younger generations to pursue interests and careers in STEM and provide school communities with opportunities to learn about space technology and communications. NASA astronaut Suni Williams observes a pair of Astrobee free-flying robots as they demonstrate autonomous docking maneuvers inside the Kibo Laboratory Module.NASA Astrobee, a set of three free-flying robots, are often buzzing around the orbiting lab, demonstrating how technology could assist astronauts with various tasks such as routine chores and maintenance. Throughout the mission, Williams powered up and observed Astrobee operations as ground controllers remotely mapped the interior of the orbiting lab, practiced docking maneuvers, and tested how the robots carry out various tasks. (From top left) The Strait of Gibraltar separating Spain and Morocco, captured by NASA astronaut Butch Wilmore; Boeing’s Starliner spacecraft is seen docked to the Harmony module’s forward port. This long-duration, nighttime photo, shows light trails of civilization over the coast of Mumbai, India; (From bottom left) Two Patagonian Lakes, Viedma and Argentino, are pictured as the station orbited 272 miles above; Wilmore is photographed inside the cupola while taking pictures of Earth.NASA Since the early days of human spaceflight, astronauts have been photographing Earth from space, capturing the wonder and environmental condition of our home planet. Orbiting 250 miles above, crew members often spend their free time shooting photos from the cupola, or “window to the world.” The space station’s unique vantage point provides a glimpse at how Earth has changed over time and gives scientists a better look at key data from the perspective of the orbital complex while also improving crews’ mental well-being. During their mission, the astronaut duo has captured hundreds of photographs of Earth, ranging from auroras, land, sea, orbital sunrises and sunsets, and more. Wilmore and Williams continue to support daily space station operations as NASA and Boeing evaluate possible return options. For the latest updates on NASA’s commercial crew activities, including the Boeing Crew Flight Test, visit the Commercial Crew Program blog. For daily space station updates and to learn more about the research being conducted in microgravity, visit the space station blog. View the full article
  13. 9 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Read the article in English here. Los astronautas de la NASA Butch Wilmore y Suni Williams llegaron al laboratorio orbital el 6 de junio a bordo de la nave Boeing Starliner tras despegar el 5 de junio del Complejo de Lanzamiento Espacial-41 de la Estación Espacial de Cabo Cañaveral, en Florida. Durante el vuelo de Starliner a la estación espacial, los ingenieros observaron que algunos de los propulsores de la nave no funcionaban como se esperaba y también se observaron varias fugas en el sistema de helio de Starliner. Desde entonces, los equipos de ingeniería de la NASA y Boeing han llevado a cabo varias pruebas de los propulsores, así como revisiones exhaustivas de los datos para comprender mejor la nave espacial. Mientras los ingenieros se esfuerzan por resolver los problemas técnicos antes del regreso del Starliner a la Tierra, el dúo de astronautas ha estado trabajando con la tripulación de la Expedición 71, realizando investigaciones científicas y actividades de mantenimiento. La NASA tiene previsto llevar a cabo dos revisiones: una del junta de control del programa y una revisión del estado de preparación para el vuelo de la agencia, antes de decidir cómo regresará de manera segura a Wilmore y Williams de la. La NASA espera tomar una decisión sobre el curso a seguir a finales de agosto. He aquí algunas preguntas frecuentes sobre su misión. Sobre la misión y su retraso ¿Qué es la prueba de vuelo tripulado Boeing de la NASA? La la prueba de vuelo tripulado Boeing de la NASA despegó el 5 de junio y es el primer vuelo con astronautas de la nave Starliner a la Estación Espacial Internacional. La prueba de vuelo tiene como objetivo demostrar que el sistema está preparado para misiones de rotación a la estación espacial. La NASA quiere que, además de las naves Soyuz de Roscosmos, haya dos naves estadounidenses capaces de transportar astronautas para garantizar una tripulación permanente a bordo del complejo orbital. ¿Cuáles son los objetivos de la prueba de vuelo tripulado? Esta prueba de vuelo tiene por objeto demostrar la aptitud del Starliner para ejecutar una misión de rotación de seis meses a la estación espacial. Los objetivos de la prueba de vuelo se desarrollaron para respaldar el proceso de certificación de la NASA y recopilar los datos de rendimiento necesarios para evaluar la preparación antes de los vuelos de larga duración. ¿Por qué la prueba de vuelo tripulado permanecerá más tiempo del previsto a bordo de la estación espacial? Durante el vuelo de Starliner a la estación espacial, algunos de los propulsores de la nave no funcionaron como se esperaba y se observaron varias fugas en el sistema de helio de Starliner. Aunque la duración inicial de la misión estaba prevista en torno a una semana, no hay prisa por traer de vuelta a casa a la tripulación, por lo que la NASA y Boeing se están tomando un tiempo extra para aprender sobre la nave espacial. Se trata de una lección aprendida del accidente del transbordador espacial Columbia. Nuestros equipos de la NASA y Boeing están estudiando minuciosamente los datos de las pruebas y análisis adicionales en el espacio y en tierra, proporcionando a los gestores de la misión datos para tomar la mejor y más segura decisión sobre cómo y cuándo traer de vuelta a casa a la tripulación. Si se diera una emergencia en la estación espacial, ¿cómo volverían Butch y Suni a casa? El Starliner sigue siendo la principal opción para Butch y Suni si se produjera una emergencia y tuvieran que abandonar rápidamente la estación. No existe una necesidad urgente de traerlos a casa, y la NASA está utilizando el tiempo extra para comprender los problemas técnicos de la nave espacial antes de decidir un plan de regreso. ¿Cuánto tiempo podrían permanecer Butch y Suni en la estación espacial si no regresan a bordo de Starliner? Si la NASA decidiera devolver la nave Starliner sin tripulación, Butch y Suni permanecerían a bordo de la estación hasta finales de febrero de 2025. La NASA replanificaría la misión SpaceX Crew-9, enviando solo dos tripulantes en lugar de cuatro a finales de septiembre. Butch y Suni regresarían a la Tierra tras el incremento programado para Crew-9 a principios del próximo año. ¿Se quedarán Butch y Suni en el espacio hasta 2025? No se ha tomado ninguna decisión. La NASA sigue evaluando todas las opciones a medida que aprende más sobre el sistema de propulsión de Starliner. Butch y Suni podrían regresar a bordo de Starliner, o podrían volver como parte de la misión SpaceX Crew-9 de la agencia a principios del año que viene. ¿Puede Starliner volar sin astronautas? Sí, Starliner puede desacoplarse y abandonar la órbita de forma autónoma, si la NASA decide que la nave regrese sin tripulación. ¿Podría la NASA enviar una nave SpaceX Dragon para traer de vuelta a Butch y Suni? If NASA decides to return them aboard a SpaceX Dragon, NASA will replan its SpaceX Crew-9 mission by launching only two crew members in late September instead of four. Butch and Suni would then return to Earth after the regularly scheduled Crew-9 increment early next year. ¿Por qué necesita la NASA dos sistemas de transporte de tripulación? The main goal of the agency’s Commercial Crew Program is two, unique human spaceflight systems. Should any one system encounter an issue, NASA still has the capability to launch and return crew to ensure safety and a continuous human presence aboard the International Space Station. Sobre los astronautas ¿Están Butch y Suni atrapados en la estación espacial? No, Butch y Suni están a salvo a bordo de la estación espacial, trabajando junto a la tripulación de la Expedición 71. También han participado activamente en las pruebas y reuniones técnicas del Starliner. Butch y Suni podrían volver a casa a bordo de la nave Starliner en caso de emergencia. La agencia también dispone de otras opciones de regreso, en caso necesario, tanto para la planificación de contingencias como para el regreso en condiciones normales. ¿Están preparados Suni y Butch para una estancia más larga en la estación? Butch y Suni ya han realizado dos estancias de larga duración a bordo de la estación. Los astronautas de la NASA se embarcan en misiones plenamente conscientes de los diversos escenarios que podrían materializarse. Esta misión no es diferente, y entendían las posibilidades e incógnitas de este vuelo de prueba, incluyendo la posibilidad de permanecer a bordo de la estación más tiempo del previsto. ¿Cuánto duraría una estancia prolongada de Butch y Suni en comparación con la duración de otras misiones en la estación espacial? Una estancia típica a bordo de la Estación Espacial Internacional es de unos seis meses, y algunos astronautas de la NASA han permanecido en la estación espacial durante misiones de mayor duración. Las misiones anteriores han proporcionado a la NASA gran cantidad de datos sobre los vuelos espaciales de larga duración y sus efectos en el cuerpo humano, que la agencia aplica a cualquier misión con tripulación. ¿Tienen los astronautas todo lo que necesitan (por ejemplo, comida, ropa, oxígeno, artículos personales, etc.)? Sí. La Estación Espacial Internacional está bien provista de todo lo que necesita la tripulación, incluidos alimentos, agua, ropa y oxígeno. Además, la NASA y sus socios de la estación espacial lanzan con frecuencia misiones de reabastecimiento al complejo orbital con suministros y carga adicionales. Recientemente, llegaron a la estación una nave espacial Cygnus de Northrop Grumman que transportaba 3.720 kilogramos (8.200 libras) de alimentos, combustible, suministros y material científico, y una nave espacial de reabastecimiento Progress que transportaba 2.721 kilogramos (6.000 libras) de carga. La NASA tiene previstas misiones adicionales de SpaceX de reabastecimiento durante lo que queda de 2024. ¿Qué están haciendo a bordo de la estación espacial? La tripulación sigue supervisando los sistemas de vuelo del Starliner y recopilando datos de rendimiento para la certificación de sistemas. La NASA también está aprovechando el tiempo extra de Butch y Suni a bordo del laboratorio orbital, donde han completado varios experimentos científicos, tareas de mantenimiento y han colaborado en los preparativos de las caminatas espaciales. Algunos de los experimentos científicos que han llevado a cabo recientemente incluyen nuevas formas de producir cables de fibra óptica y el cultivo de plantas a bordo del complejo orbital. ¿Pueden hablar con sus familiares y amigos? Butch y Suni disfrutan de muchas de las comodidades que tenemos aquí en la Tierra. Pueden enviar correos electrónicos, llamar por teléfono y hacer videoconferencias con sus familiares y amigos cuando tienen tiempo libre a bordo de la Estación Espacial Internacional. Sobre el plan de regreso ¿Cuáles son las otras opciones para traer de vuelta a Butch y Suni? La NASA dispone de dos sistemas estadounidenses de transporte espacial capaces de transportar tripulación a la estación y de vuelta. Aunque no se ha tomado ninguna decisión, la NASA está considerando varias opciones para hacer regresar a Butch y Suni de la estación espacial, incluido su retorno a bordo de la nave Starliner, si se autoriza, o como parte de la misión SpaceX Crew-9 de la agencia en febrero de 2025. ¿Es más seguro traerlos a casa a bordo de una nave Dragon de SpaceX? Los vuelos de prueba tripulados son intrínsecamente arriesgados y, aunque las misiones de rotación puedan parecer rutinarias, tampoco están exentas de riesgos. Es competencia de la NASA evaluar ese riesgo antes de cada vuelo y determinar si es aceptable para la tripulación. ¿Qué otras medidas está tomando la NASA para traerlos a casa? La NASA ajustó el lanzamiento de la Tripulación-9 de SpaceX y el regreso de la Tripulación-8 de la agencia, lo que permite más tiempo para finalizar los planes de regreso de Starliner. La NASA también está examinando las asignaciones de tripulación para garantizar que Butch y Suni puedan regresar con Crew-9 si fuera necesario. Para consultar el blog de la NASA y obtener más información sobre la misión (en inglés), visita: https://www.nasa.gov/commercialcrew View the full article
  14. 2 min read Hubble Reaches a Lonely Light in the Dark NASA, ESA, C. Gallart (Instituto de Astrofisica de Canarias), A. del Pino Molina (Centro de Estudios de Fisica del Cosmos de Aragon), and R. van der Marel (Space Telescope Science Institute); Image Processing: Gladys Kober (NASA/Catholic University of America) A splatter of stars glows faintly at almost 3 million light-years away in this new image from NASA’s Hubble Space Telescope. Known as the Tucana Dwarf for lying in the constellation Tucana, this dwarf galaxy contains a loose bundle of aging stars at the far edge of the Local Group, an aggregation of galaxies including our Milky Way, bound together by gravity. The Tucana Dwarf was discovered in 1990 by R.J. Lavery, the same year Hubble launched. What makes the Tucana Dwarf distinct from other dwarf galaxies comes in two parts: its classification, and its isolation. As a dwarf spheroidal galaxy, it is much smaller and less luminous than most other dwarf galaxies. Dust is sparse and the stellar population skews towards the older range, giving them a dimmer look. Additionally, the Tucana Dwarf lies about 3.6 million light-years from the Local Group’s center of mass, far from the Milky Way and other galaxies. It is only one of two dwarf spheroidal galaxies in the Local Group to be this remote, making astronomers theorize that a close encounter with a larger galactic neighbor called Andromeda slingshotted it into the distance about 11 billion years ago. Having such pristine properties enables scientists to use the Tucana Dwarf as a cosmic fossil. Dwarf galaxies could be the early ingredients for larger galaxies, and with older stars residing in such an isolated environment, analyzing them can help trace galaxy formation back to the dawn of time. For that reason, Hubble reached far across the Local Group using the capabilities of the Advanced Camera for Surveys and Wide Field and Planetary Camera 2 to meet this distant, lonely galaxy. Examining its structure, composition, and star formation history sheds light on the epoch of reionization, when the first stars and galaxies arose from the dark billions of years ago. Download Image Explore More Hubble’s Galaxies Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Aug 23, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble Science Hubble’s Galaxies Stars View the full article
  15. 2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) An automated fiber placement machine on an industrial robot is seen at Fives Machining Systems Inc. Fives is one of the new partners joining a NASA project that explores ways to speed up the production of composite aircraft.Fives Machining Systems Inc. Gulfstream Aerospace Corporation and Fives Machining Systems Inc. have joined 20 other organizations to support NASA’s Hi-Rate Composite Aircraft Manufacturing (HiCAM) project. The project is addressing industry’s needs to meet growing demand for air travel, replace aging airliners, and secure U.S. competitiveness in the commercial aircraft industry. NASA and its partners are collaborating and sharing costs to increase the manufacturing rate for aircraft components made from composite (nonmetallic) materials. Gulfstream and Fives are the newest members in a public-private partnership called the Advanced Composites Consortium. Advanced Composites Consortium Members of the Consortium have significant and unique expertise in aircraft design, manufacturing, certification, testing, and tool development, with the new members bringing important new insights and capabilities to the team. “By partnering with U.S. industry, academia, and regulators, we’ll increase the likelihood of impacting the next generation of transports,” said Richard Young, manager for NASA’s HiCAM project, which oversees the consortium. The team is currently competing concepts to determine which technologies will have the greatest impact on manufacturing rates. Once the most promising concepts are selected, they’ll be demonstrated at full scale. The project and Advanced Composites Consortium contribute to NASA’s Sustainable Flight National Partnership by enabling broader use of lightweight composite airframes, which will reduce fuel consumption and carbon emissions, improving air quality and the environment.  HiCAM is managed under NASA’s Advanced Air Vehicles Program. Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 3 min read Beyond the Textbook: DC-8 Aircraft Inspires Students in Retirement Article 4 hours ago 2 min read NASA Celebrates Ames’s Legacy of Research on National Aviation Day Article 3 days ago 4 min read At Work and Beyond, NASA Employees Find Joy in Aviation Article 4 days ago Keep Exploring Discover More Topics From NASA Missions Artemis Aeronautics STEM Explore NASA’s History Share Details Last Updated Aug 22, 2024 EditorJim BankeContactRobert Margettarobert.j.margetta@nasa.gov Related TermsAeronauticsAdvanced Air Vehicles ProgramAeronautics Research Mission DirectorateGreen Aviation TechHi-Rate Composite Aircraft ManufacturingSustainable Flight National Partnership View the full article
  16. NASA

    Testing blogs

    this is a test View the full article
  17. 3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Idaho State University class of 2025 poses with their new hands-on learning tool, the DC-8 aircraft, after it was retired from NASA in May 2024 and arrived in Pocatello, Idaho. The university will use the aircraft to provide a hands-on learning experience for students in the university’s aircraft maintenance technology program.Idaho State University In May 2024, Idaho State University’s class of 2025 received a new learning tool from NASA. The DC-8 aircraft served the world’s scientific community for decades as a platform under NASA’s Airborne Science Program before retiring to Idaho State University (ISU) to provide a hands-on learning experience for students in the university’s aircraft maintenance technology program. “The DC-8 has quickly become a cornerstone of our Aircraft Maintenance Technology program at ISU,” said Jake Dixon, Director of Marketing and Recruitment at the ISU College of Technology. “It has already enhanced our summer classes ahead of its full integration with the start of the new school year this fall.” The DC-8 flew its final flight from NASA’s Armstrong Flight Research Center in Edwards, California to Idaho State University in Pocatello, Idaho in May 2024. That flight represented the retirement of the aircraft after 37 years of supporting airborne science missions as a NASA aircraft. “The opportunity for students to interact firsthand with the aircraft’s systems and features significantly extends their learning beyond what theory or textbooks can provide,” Dixon said. The DC-8 flies low for the last time over NASA’s Armstrong Flight Research Center in Edwards, California, before it retires to Idaho State University in Pocatello, Idaho. The DC-8 is providing real-world experience to train future aircraft technicians at the college’s Aircraft Maintenance Technology Program.NASA/Genaro Vavuris The DC-8 served as an educational platform for years. Beginning in 2009, the DC-8 functioned as an airborne science laboratory for NASA’s Student Airborne Research Program (SARP), where rising-senior undergraduates were selected to participate in a real science campaign and acquire hands-on research experience. The educational impact of the DC-8 is evident in the professional growth of scientists who have experienced it. “Almost everything I’ve learned about using an airplane to collect scientific data can be linked back to my time flying projects on the DC-8.” says Jonathan Zawislak, Flight Director with the Aircraft Operations Center at the National Oceanic and Atmospheric Administration (NOAA). “It has left an indelible mark on the Earth science community and no doubt paved the way for a new generation of scientists, as it did for me and my career as a science aviator.” NASA Armstrong’s Student Airborne Research Program celebrated 15 years of success in 2023. An eight-week summer internship program, SARP offered upper-level undergraduate students the opportunity to acquire hands-on research experience as part of a scientific campaign using NASA Airborne Science Program flying science laboratories – aircraft outfitted specifically for research projects. NASA/Carla Thomas Real-life platforms like the DC-8 are an exciting and meaningful learning tool that enable college students to go beyond the textbook, and they make a lasting impact on communities adjacent to its activities. “We have seen so much enthusiasm surrounding the DC-8’s arrival that we are organizing an open house in the future to allow the community and aviation enthusiasts alike to explore this historic aircraft,” said Dixon. “Doing so will help preserve the remarkable legacy of the DC-8, ensuring it continues to inspire and educate for years to come.” Whether as a science platform or as a unique aircraft, the DC-8 has a legacy that continues to inspire and educate generations of scientists, engineers, and aviators. Learn more about NASA’s SARP program Learn more about the retired DC-8 aircraft Learn more about NASA’s Armstrong Flight Research Center Share Details Last Updated Aug 22, 2024 Related TermsArmstrong Flight Research CenterScience in the AirScience Mission Directorate Explore More 4 min read Into The Field With NASA: Valley Of Ten Thousand Smokes To better understand Mars, NASA’s Goddard Instrument Field Team headed deep into the backcountry of… Article 2 hours ago 2 min read NASA’s DART Team Earns AIAA Space Systems Award for Pioneering Mission NASA’s DART (Double​ Asteroid Redirection Test) mission continues to yield scientific discoveries and garner accolades for its groundbreaking… Article 1 day ago 2 min read Hubble Spots Billowing Bubbles of Stellar Floss A bubbling region of stars both old and new lies some 160,000 light-years away in… Article 3 days ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Armstrong Programs & Projects Armstrong Technologies Armstrong Flight Research Center History View the full article
  18. 5 min read NASA’s EXCITE Mission Prepared for Scientific Balloon Flight Scientists and engineers are ready to fly an infrared mission called EXCITE (EXoplanet Climate Infrared TElescope) to the edge of space. EXCITE is designed to study atmospheres around exoplanets, or worlds beyond our solar system, during circumpolar long-duration scientific balloon flights. But first, it must complete a test flight during NASA’s fall 2024 scientific ballooning campaign from Fort Sumner, New Mexico. “EXCITE can give us a three-dimensional picture of a planet’s atmosphere and temperature by collecting data the whole time the world orbits its star,” said Peter Nagler, the mission’s principal investigator at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Only a handful of these types of measurements have been done before. They require a very stable telescope in a position to track a planet for several days at a time.” EXCITE (EXoplanet Climate Infrared TElescope) hangs from a ceiling at the Columbia Scientific Balloon Facility’s location in Fort Sumner, New Mexico. The mission team practiced taking observations ahead of flight by looking out the hanger doors at night. NASA/Jeanette Kazmierczak EXCITE will study hot Jupiters, giant gas exoplanets that complete an orbit once every one to two days and have temperatures in the thousands of degrees. The worlds are tidally locked, which means the same side always faces the star. The telescope will observe how heat is distributed across the planet, from the scalding hemisphere facing the star to the relatively cooler nightside. It will also determine how molecules in a world’s atmosphere absorb and emit light over the entire orbit, a process called phase-resolved spectroscopy. Not only can this data reveal the presence of compounds — like water, methane, carbon dioxide, and others — but also how they circulate globally as the planet orbits its star. NASA’s Hubble, James Webb, and retired Spitzer space telescopes have collected a handful of these measurements between them. In 2014, for example, Hubble and Spitzer observed an exoplanet called WASP-43 b. To collect data over the world’s 22-hour day, scientists needed 60 hours of Hubble time and 46 hours from Spitzer. Resource-intensive studies like this on space-based observatories are difficult. Time is a limited resource, and studies must compete with hundreds of other requests for that time. “During its first science flight, EXCITE aims to fly for over a dozen days from the Columbia Scientific Balloon Facility’s site in Antarctica,” said Kyle Helson, an EXCITE team member and a research scientist at the University of Maryland, Baltimore County and NASA Goddard. “And at the pole, the stars we’ll study don’t set, so our observations won’t be interrupted. We hope that the mission will effectively double the number of phase-resolved spectra available to the science community.” EXCITE will fly to about 132,000 feet (40 kilometers) via a scientific balloon filled with helium. That takes it above 99.5% of Earth’s atmosphere. At that altitude, the telescope will be able to observe multiple infrared wavelengths with little interference. “The telescope collects the infrared light and beams it into the spectrometer, where it kind of goes through a little obstacle course,” said Lee Bernard, an EXCITE team member and a graduate research assistant at Arizona State University in Tempe. “It bounces off mirrors and through a prism before reaching the detector. Everything must be aligned very precisely — just a few millimeters off center and the light won’t make it.” The spectrometer rests inside a vessel called a cryostat situated behind the telescope. The cryostat cools the spectrometer’s detector — once a flight candidate from Webb’sNIRSpec (Near InfraRed Spectrograph)— to about 350 degrees below zero Fahrenheit (minus 210 degrees Celsius) so it can measure tiny intensity changes in the infrared light. The EXCITE infrared detector, shown here, was once a flight candidate from NASA’s James Webb Space Telescope’s NIRSpec (Near InfraRed Spectrograph) instrument. Before being added to the mission’s spectrometer assembly, it was mounted to a copper base and topped with a protective black case. The detector allows EXCITE to collect spectroscopic measurements from 1 to 4 microns — the near-infrared portion of the electromagnetic spectrum. NASA/Sophia Roberts The entire telescope and cryostat assembly rests in a rowboat-shaped base where it can rotate along three axes to maintain stable pointing down to 50 milliarcseconds. That’s like holding a steady gaze on a U.S. quarter coin from 65 miles away. “Several different institutions contributed to EXCITE’s subsystems,” said Tim Rehm, an EXCITE team member and a graduate research assistant at Brown University in Providence, Rhode Island. “It’s great to see them all assembled and working together. We’re excited to do this test flight, and we’re looking forward to all the future science flights we hope to have.” The EXCITE instrument was primarily built by NASA Goddard, Brown, Arizona State University, and StarSpec Technologies in Ontario, with additional support from collaborators in the U.S., Canada, Italy, and the United Kingdom. NASA’s scientific balloons offer frequent, low-cost access to near-space to conduct scientific investigations and technology maturation in fields such as astrophysics, heliophysics, and atmospheric research, as well as training for the next generation of leaders in engineering and science. To follow the missions in the 2024 Fort Sumner fall campaign, visit NASA’s CSBF (Columbia Scientific Balloon Facility) website for real-time updates of a balloon’s altitude and GPS location during flight. NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon flight program with 10 to 15 flights each year from launch sites worldwide. Peraton, which operates CSBF in Texas, provides mission planning, engineering services, and field operations for NASA’s scientific balloon program. The CSBF team has launched more than 1,700 scientific balloons over some 40 years of operations. NASA’s balloons are fabricated by Aerostar. The NASA Scientific Balloon Program is funded by the NASA Headquarters Science Mission Directorate Astrophysics Division. By Jeanette Kazmierczak NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Claire Andreoli 301-286-1940 claire.andreoli@nasa.gov NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Aug 22, 2024 Editor Jeanette Kazmierczak Related Terms Astrophysics Exoplanets Goddard Space Flight Center Infrared Light Scientific Balloons The Universe Wallops Flight Facility View the full article
  19. Credit: NASA NASA has selected three additional companies to provide launch services for future agency missions through its VADR (Venture-Class Acquisition of Dedicated and Rideshare) contract. The companies awarded are: Arrow Science and Technology LLC of Webster, Texas Impulse Space Inc. of Redondo Beach, California Momentus Space LLC of San Jose, California The VADR contract is a firm-fixed-price, indefinite-delivery/indefinite-quantity instrument with an ordering period through Feb. 3, 2027 and a maximum total value of $300 million across all VADR contracts. NASA selected the new launch providers in accordance with VADR’s on-ramp provision, allowing the agency to add new capabilities not available or identified at the time of the initial award. NASA will issue firm-fixed-price task orders for launch services as needed for future agency and agency-sponsored missions. The VADR contract builds on NASA’s previous procurement efforts, such as the VCLS (Venture Class Launch Services) and VCLS Demo 2, providing a broad range of Federal Aviation Administration-licensed commercial launch services capable of delivering Class D, CubeSats, and higher risk-tolerant payloads to a variety of orbits. By using a lower level of mission assurance and commercial best practices for launching rockets, these highly flexible contracts help broaden access to space through lower launch costs and serve as an ideal platform for contributing to NASA’s science research and technology development. NASA’s Launch Services Program, based at the agency’s Kennedy Space Center in Florida, manages the VADR contracts. The program also works with private industry, spacecraft projects, and international partners to launch science payloads ranging from small satellites with colleges and universities to NASA’s highest priority missions. For more information about NASA’s launch services, visit: https://go.nasa.gov/46SorXk -end- Josh Finch / Julian Coltre Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / julian.n.coltre@nasa.gov Patti Bielling / Amanda Griffin Kennedy Space Center, Florida 321-501-7575 / 321-593-6244 patricia.a.bielling@nasa.gov / amanda.griffin@nasa.gov Share Details Last Updated Aug 22, 2024 LocationNASA Headquarters Related TermsSpace Operations Mission DirectorateCubeSatsKennedy Space CenterLaunch Services OfficeLaunch Services ProgramNASA Headquarters View the full article
  20. 4 Min Read Into The Field With NASA: Valley Of Ten Thousand Smokes NASA scientists begin a day’s field research in Katmai National Park. Credits: NASA/Patrick Whelley In June 2024, the Goddard Instrument Field Team (GIFT) hiked deep into the backcountry of Alaska’s Katmai National Park to study the Valley of Ten Thousand Smokes, site of the largest volcanic eruption of the twentieth century. The team’s task: traverse a vast volcanic debris field layered with glacier ice, gathering data and samples to help us better understand this place on Earth and similar terrain on other worlds. Buried glaciers on Mars and Earth. Top: Orbital view of partially-exposed ice beneath an eroding deposit on Mars, from HiRISE. Bottom: Edge-on view of a partially buried glacier in Alaska with a LiDAR (Light Detection and Ranging) device in the foreground, from the Goddard Instrument Field Team. Novarupta, the volcano that erupted here in 1912, ejected more than three cubic miles of ash from Earth’s subsurface. The ice nearby is now insulated by, and mixed with, thick layers of geologically “young” volcanic debris. (For comparison, many of the eruption sites NASA teams study are tens of thousands to millions of years old.) Mars, too, has glaciers and ice sheets covered in layers of airfall materials, including dust and volcanic ash. On Mars, as on Earth, some of the planet’s history is in disguise. Ancient volcanic materials are buried underneath newer deposits of ashy debris. Patterns in these layers (think thickness or thinness, color and texture, chemical and mineral signatures) hold a lot of information, but the message isn’t always clear. Erosion and other surface processes hide evidence of past eruptions, even enormous ones. Since relatively fresh volcanic material blankets the Valley of Ten Thousand Smokes, it’s an ideal place to observe the early stages of these changes. Cherie Achilles raises a rock hammer as Alexandra Matiella Novak stands by with a hand-held spectrometer and Alice Baldridge holds a container of rock samples. The hand-held spectrometer gives on-the-spot information about what its targets are made of, helping the team decide which samples to collect and bring back to the lab. In three days of violent eruption, Novarupta blasted an uncommonly wide variety of clays, minerals, and volcanic rocks throughout the surrounding valley. Since then, hot, sulfurous gases have filtered up through underground channels and escaped into the air via countless fumaroles (a.k.a. the “ten thousand smokes”). Fumaroles, together with erosion and other alteration processes, affect how minerals near Novarupta move and change. Research here can help us understand mineral movement and alteration on Mars and other worlds, too. The range of starting materials and alteration patterns in this valley, all from a single eruption, is difficult to match anywhere else. Heather Graham studies a fumarole – a place where volcanic gases escape from underground – using a hydrogen sulfide collector and sampling equipment. Their goal: check the fumarole for encrusted evidence that microscopic organisms once lived here, consuming energy and changing the rocks’ composition. Research on these kinds of biosignatures helps us understand what the search for life could look like on other worlds. It’s a tough field site to access, especially with heavy science instruments. GIFT worked closely with local collaborators including Katmai National Park to coordinate the expedition. After years of planning and months of training, twelve field team members gathered and geared up in Anchorage, Alaska. Two tiny airplane flights, one all-terrain bus ride, and sixteen hiking miles later, they set up a base camp. From there, small groups hiked out and back each day, gathering data and sample material from throughout the valley. Left to right: Tabb Prissel, Emileigh Shoemaker, Heather Graham, Andrew Johnson, Justin Hayles, Aditi Pandey, and Patrick Whelley hike out of the Valley of Ten Thousand Smokes. Scientists teamed up to carry large equipment from place to place and bring each other data from far-flung targets. Some results were predictable, like a new library of samples collected from several different “packages” of differently-composed volcanic debris. Some were surprising–like a core sample that came up containing a pocket of empty space instead of buried glacial ice. Emileigh Shoemaker and her team use Ground Penetrating Radar (the red box shown here is the GPR antenna) to gather information about long stretches of Earth’s subsurface before physically breaking ground. Here, Shoemaker stands on a huge pile of volcanic ash; hidden beneath the debris is a glacier. GPR data, combined with core samples, soil moisture measurements, and pits dug at strategic locations, can reveal how the glacier is preserved. Analyzing the samples, processing the data, and putting it all together will take time. This is the beginning of GIFT’s Novarupta research, but it’s a chapter of a science story long in the making. Previous studies of the 1912 eruption and its aftermath influenced this expedition’s science plan. The 2024 data and samples, and the new questions arising from the team’s time in the field, are already shaping ideas about future work. NASA has visited before, too. Apollo astronauts and their geology trainers spent time in the Valley in 1965, finding it an unusually Moon-like place to study. Fieldwork still plays a role in astronaut training–and in advancing lunar science. For example: Novarupta’s chemistry is partly a result of Earth’s plate tectonics. The Moon has volcanic landscapes with similar chemistry, but no tectonic plates. So, what else could explain the parallel? To help address this question, the 2024 team collected samples and ground-truth data from a range of rock formations comparable to the Moon’s Gruithuisen Domes. Tabb Prissel, Aditi Pandey, and Justin Hayles at Novarupta. The dome of dark rubble behind the scientists is what’s left of the volcano itself: in 1912, material erupted from this spot buried miles of glaciated valley. On Earth, the Moon, Mars, and beyond, geologic processes encode pieces of our solar system’s history. Volcanic deposits store details about a world’s insides at the time of an eruption and evidence of what’s happened at the surface since. Rippling fields of sand dunes, gravel, and ash record the influence of wind where atmospheres exist, like on Venus, Mars, and Titan. Glaciers can tell us about climate history and future–and on Mars, ice research also helps to lay the groundwork for human exploration. It’s much easier to take a close look at these features and processes here on Earth than anywhere else. So, to understand planets (including our own), NASA field scientists start close to home. Read More About the Author Caela Barry Share Details Last Updated Aug 22, 2024 Related Terms Analog Field Testing Earth Earth Science Earth Surface & Interior Goddard Space Flight Center Planetary Environments & Atmospheres Planetary Geosciences & Geophysics Planetary Science Planetary Science Division Science & Research Science Mission Directorate The Solar System Uncategorized Explore More 5 min read NASA’s EXCITE Mission Prepared for Scientific Balloon Flight Article 11 mins ago 9 min read Looking Back on Looking Up: The 2024 Total Solar Eclipse Article 7 hours ago 2 min read Hubble Finds Structure in an Unstructured Galaxy Article 7 hours ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
  21. Boeing’s Starliner spacecraft that launched NASA’s Crew Flight Test astronauts Butch Wilmore and Suni Williams to the International Space Station is pictured docked to the Harmony module’s forward port. (Credit: NASA) NASA Administrator Bill Nelson and leadership will hold an internal Agency Test Flight Readiness Review on Saturday, Aug. 24, for NASA’s Boeing Crew Flight Test. About an hour later, NASA will host a live news conference at 1 p.m. EDT from the agency’s Johnson Space Center in Houston. Watch the media event on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Learn how to stream NASA content through a variety of platforms, including social media. Media interested in attending the news conference must contact the newsroom at NASA Johnson no later than 1 p.m., Friday, Aug. 23, at 281-483-5111 or jsccommu@mail.nasa.gov. Media participating by phone must RSVP no later than one hour prior to the start of the event. A copy of NASA’s media accreditation policy is online. NASA and Boeing have gathered data, both in space and on the ground, regarding the Starliner spacecraft’s propulsion and helium systems to better understand the ongoing technical challenges. The review will include a mission status update, review of technical data and closeout actions, as well as certify flight rationale to proceed with undocking and return from the space station. NASA’s Boeing Crew Flight Test launched on June 5 on a ULA (United Launch Alliance) Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. It is an end-to-end test of the Starliner system as part of the agency’s Commercial Crew Program. Through partnership with American private industry, NASA is opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. For NASA’s blog and more information about the mission, visit: https://www.nasa.gov/commercialcrew -end- Meira Bernstein / Josh Finch Headquarters, Washington 202-358-1100 meira.b.bernstein@nasa.gov / joshua.a.finch@nasa.gov Leah Cheshier / Sandra Jones Johnson Space Center, Houston 281-483-5111 leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov Steve Siceloff / Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov View the full article
  22. NASA

    Sunrise Begins

    The International Space Station was orbiting on a northeast track 261 miles above the Pacific Ocean when this photograph captured the first rays of an orbital sunrise illuminating Earth’s atmosphere.NASA/Matthew Dominick NASA astronaut Matthew Dominick captured the start of this orbital sunrise on Aug. 15, 2024, while aboard the International Space Station. Crew members aboard the orbital lab have produced hundreds of thousands of images of the land, oceans, and atmosphere of Earth, and even of the Moon through Crew Earth Observations. Their photographs of Earth record how the planet changes over time due to human activity and natural events. This allows scientists to monitor disasters and direct response on the ground and study a number of phenomena, from the movement of glaciers to urban wildlife. Image Credit: NASA/Matthew Dominick View the full article
  23. Crews moved the cone-shaped launch vehicle stage adapter out of NASA Marshall’s Building 4708 to the agency’s Pegasus barge on August 21. The barge will ferry the adapter first to NASA’s Michoud Assembly Facility, where it will pick up additional SLS hardware for future Artemis missions, and then travel to NASA Kennedy. In Florida, teams with NASA’s Exploration Ground Systems will prepare the adapter for stacking and launch.NASA/Samuel Lott NASA rolled out a key piece of space flight hardware for the SLS (Space Launch System) rocket for the first crewed mission of NASA’s Artemis campaign from Marshall Space Flight Center in Huntsville, Alabama, on Wednesday, Aug. 21 for shipment to the agency’s Kennedy Space Center in Florida. The cone-shaped launch vehicle stage adapter connects the rocket’s core stage to the upper stage and helps protect the upper stage’s engine that will help propel the Artemis II test flight around the Moon, slated for 2025. “The launch vehicle stage adapter is the largest SLS component for Artemis II that is made at the center,” said Chris Calfee, SLS Spacecraft Payload Integration and Evolution element manager. “Both the adapters for the SLS rocket that will power the Artemis II and Artemis III missions are fully produced at NASA Marshall. Alabama plays a key role in returning astronauts to the Moon.” Crews moved the adapter out of NASA Marshall’s Building 4708 to the agency’s Pegasus barge Aug. 21. The barge will ferry the adapter first to NASA’s Michoud Assembly Facility in New Orleans, where crews will pick up additional SLS hardware for future Artemis missions, before traveling to NASA Kennedy. Once in Florida, the adapter will join the recently delivered core stage. There, teams with NASA’s Exploration Ground Systems will prepare the adapter for stacking and launch. Engineering teams at NASA Marshall are in the final phase of integration work on the launch vehicle stage adapter for Artemis III. The stage adapter is manufactured by prime contractor Teledyne Brown Engineering and the Jacobs Space Exploration Group’s ESSCA (Engineering Services and Science Capability Augmentation) contract using NASA Marshall’s self-reacting friction-stir robotic and vertical weld tools. Through the Artemis campaign, NASA will land the first woman, first person of color, and its first international partner astronaut on the Moon. The rocket is part of NASA’s deep space exploration plans, along with the Orion spacecraft, supporting ground systems, advanced spacesuits and rovers, Gateway in orbit around the Moon, and commercial human landing systems. NASA’s SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. For more on SLS, visit: https://www.nasa.gov/sls News Media Contact Jonathan Deal Marshall Space Flight Center, Huntsville, Ala. 256-544-0034 jonathan.e.deal@nasa.gov View the full article
  24. Earth Observer Earth Home Earth Observer Home Editor’s Corner Feature Articles Meeting Summaries News Science in the News Calendars In Memoriam More Archives 9 min read Looking Back on Looking Up: The 2024 Total Solar Eclipse Credit: NASA’s Glenn Research Center (GRC) Introduction First as a bite, then a half Moon, until crescent-shaped shadows dance through the leaves and the temperature begins to drop – a total solar eclipse can be felt growing in the atmosphere. As the sky darkens in the few minutes before totality, the sounds of animals begin to dissipate along with the vibrancy of red and orange hues, and we enter the mesopic zone, or twilight vision. All is quiet in these cold, silvery-blue moments, until the Moon lines up perfectly with the Sun from our viewpoint on Earth – an odd quirk of the Moon–Earth system, and an occurrence that does not exist elsewhere in the solar system. Millions of people gazed up at the sky on April 8, 2024, as a total solar eclipse darkened the skies across a thin ribbon of North America – spanning Mexico’s Pacific coast to the Atlantic coast of Newfoundland, Canada – see Figure 1. Figure 1. A total solar eclipse was visible along a narrow track stretching from Texas to Maine on April 8, 2024. A partial eclipse was visible throughout all 48 contiguous U.S. states. Figure credit: NASA Scientific Visualization Studio A pearly, iridescent halo lined the perimeter of the Moon as it crossed in front of the Sun, revealing the Sun’s corona – see Photo 1. Solar prominences – bright features made of plasma flowing outwards through tangled structures of magnetic fields along the Sun’s surface – were observable as reddish-pink dots rising from the edges of the eclipsed Sun – see Photo 2. Photo 1. The moment of totality in Cleveland, OH. Photo credit: NASA’s Glenn Research Center (GRC) Photo 2. Solar prominence [lower right of the solar disc] seen during totality in Cleveland, OH. Photo credit: GRC Snapshots of NASA Science Outreach Along the Path of Totality Over 400 NASA staff took up positions along the path of totality, hosting various events to engage the public in outreach activities spanning the scope of NASA Science. NASA staff hosted 14 “SunSpot” locations across 7 states (Texas, Arkansas, Ohio, Indiana, Pennsylvania, New York, and Maine), including 224 NASA engagement and Science Activation events. As an example, Zoe Jenkins [NASA Headquarters/Arctic Slope Regional Corporation (ASRC) Federal—Graphic Designer] was stationed in Maine to view the eclipse –see Photos 3–4. More information about events at these SunSpots is available at the eclipse website. The Science Activation Program furthered NASA’s message, reaching all 50 states through public events by sharing information and providing professional development programming for educators. (To learn more about NASA’s Science Activation Program, see NASA Earth Science and Education Update: Introducing the Science Activation Program, The Earth Observer, 35:6, 6–12.) Photo 3. NASA Eclipse celebration at the SunSpot in Houlton, ME. Photo credit: Zoe Jenkins/NASA Headquarters (HQ)/Arctic Slope Regional Corporation (ASRC) Federal Photo 4. View of the black hole of the Moon’s shadow over the Sun during totality in Houlton, ME. Photo credit: Zoe Jenkins Among the SunSpot locations across the path of totality, NASA’s Science Support Office (SSO) staffed events at two of them: in Cleveland, OH and Kerrville, TX. The Great Lakes Science Center and its two partners – NASA’s Glenn Research Center (GRC) and the Cleveland Orchestra – presented “Total Eclipse Fest 2024,” a three-day celestial celebration at North Coast Harbor in downtown Cleveland beginning April 6 and culminating on the day of the eclipse. The event included free concerts, performances, speakers, and hands-on science activities. At the heart of the festival was the “NASA Village,” an immersive experience featuring the agency’s major missions and projects aimed at advancing space exploration and revolutionizing air travel. Figure 2 shows the location of each outreach tent in the village, while Figure 3 provides descriptions of each activity. More than 36,000 attendees visited the NASA village over the three-day event. Exhibits focused on innovations in aeronautics, space, solar, and lunar science, and best practices for ensuring a safe solar eclipse viewing experience. Through virtual and augmented simulations, attendees had the opportunity to take a supersonic flight, walk on Mars, and visit the International Space Station. Attendees of all ages participated in hands-on activities and talked to NASA scientists and engineers about their work and how to join the NASA team. Attendees could also walk through Journey to Tomorrow, a traveling exhibit complete with interactive English and Spanish-language content, and see an Apollo-era Moon rock. Visitors also explored large-scale, inflatable displays of the X-59 plane designed to quiet supersonic air travel, the Space Launch System rocket slated to take the first woman and person of color to the Moon, and a Mars habitat concept. Throughout the NASA Village, attendees could take advantage of several photo opportunities, including iconic NASA cutouts and displays. NASA also hosted astronaut autograph signing sessions, as well as special guest “meet and greets.” Figure 2. Map of the “NASA Village” at the Eclipse festival in Cleveland, OH, hosted by GRC. See Figure 3 for activity descriptions. Figure credit: GRC Figure 3. Descriptions of each outreach activity stationed at individual tents within the NASA Village over the three-day festival. See Figure 2 for map. Figure credit: GRC A View of the Eclipse from Cleveland In Cleveland, the eclipse began at 1:59 PM EDT, with totality spanning 3:13–3:17 PM. The eclipse concluded at 4:28 PM. SSO staff supported total eclipse outreach from April 5–9, specifically engaging attendees at the Solar Science tent within the NASA Village and providing information about eclipse safety and heliophysics, and handing out items such as the NASA Science calendar, NASA tote bags, and other outreach materials. SSO also supported a NASA photo booth with eclipse-themed props and took hundreds of souvenir photos for visitors to remember their time at the festival – see Photos 5–9. Photo 5. SSO staff member Dalia Kirshenblat [NASA’s Goddard Space Flight Center (GSFC)/Global Science and Technology Inc.(GST)] handed out NASA Science calendars, eclipse glasses, posters, and other NASA outreach materials. The materials informed attendees about eclipse viewing safety and shared NASA science, engaging in topics that explained how eclipses occur. Photo credit: GRC Photo 6. Jack Kaye [NASA HQ—Associate Director for Research, Earth Science Division (ESD)] hands out eclipse posters and other outreach materials to attendees at Eclipse Fest 2024. Photo credit: GRC Photo 7. Steve Graham [GSFC/GST], Dalia Kirshenblat, and Danielle Kirshenblat [Space Telescope Science Institute (STScI)] pose with NASA SSO photo booth props at Eclipse Fest 2024. SSO staff took hundreds of pictures of visitors with the photo booth props as keepsakes. Photo credit: NASA Photo 8. Dalia Kirshenblat and Danielle Kirshenblat watching the eclipse begin in Cleveland, OH, at approximately 2:00 PM EDT. Photo credit: NASA Photo 9. Steve Graham, Dalia Kirshenblat, Danielle Kirshenblat, and other Eclipse Fest attendees gaze at the celestial show unfolding above them as totality begins in Cleveland, OH, at approximately 3:13 PM EDT. Photo credit: Danielle Kirshenblat Eclipse Engagement in Texas In addition to the Cleveland eclipse festival, SSO staff members supported total eclipse engagement in Kerrville, TX, from April 5–9, including several small events at Cailloux Theatre, Doyle Community Center, Trailhead Garden, and Kerrville-Schreiner Park leading up to the eclipse. (While a bit more remote than Cleveland, Kerville was chosen as a SunSpot location during the total eclipse because it was also in the path of the October 2023 annular eclipse, NASA had outreach activities in Kerville for that eclipse as well). The events culminated on April 8 at Louise Hays Park. NASA’s impact on the community was wide-reaching, engaging approximately 4000 individual interactions with community members and visitors. The feedback was overwhelmingly positive and appreciative. On April 8, SSO provided astronaut handler support for NASA Astronaut Reid Wiseman – who will command the Artemis II Moon mission – during a “photos with an astronaut” session. SSO staff also escorted Wiseman to and from a main stage speaking engagement and the NASA broadcast engagement – see Photos 10–13. Photo 10. Ellen Gray [GSFC/KBR—Senior Outreach Specialist] engaging attendees in Kerrville, TX with various NASA Science outreach materials. Photo credit: NASA Photo 11. NASA Astronaut Reid Wiseman poses with a potential future astronaut and attendee at the Eclipse event in Kerrville, TX. Photo credit: NASA Photo 12. Astronaut Reid Wiseman speaks at a NASA broadcast in Kerrville, TX. Photo credit: NASA Photo 13. [left to right] Nicola Fox [NASA HQ—Associate Administrator for the Science Mission Directorate (SMD)], Alex Lockwood [NASA HQ—Strategic Engagement Lead], and Astronaut Reid Wiseman. Photo credit: NASA NASA Science Engagement Across the Agency As millions gazed at totality from the ground, NASA was conducting science from the skies. Atmospheric Perturbations around the Eclipse Path (APEP), a NASA sounding rocket mission, launched three rockets from NASA’s Wallops Flight Facility in Virginia to study how the sudden dip in sunlight that occurs during an eclipse affects the upper atmosphere. Each rocket deployed four scientific instruments that measured changes in electric and magnetic fields, density, and temperature – see Photo 14. Photo 14. The Atmospheric Perturbations launched around the Eclipse Period (APEP) sounding rocket during the total eclipse on April. This photo shows the third APEP sounding rocket – launched during the October 2023 annular eclipse – leaving the launchpad. Photo credit: WSMR Army Photo As part of the Nationwide Eclipse Ballooning Project, student teams constructed hundreds of balloons and launched them during the eclipse, encouraging students to consider careers in the STEM workforce. Also, two WB-57 aircraft carried instruments to further extend scientific observations made during the eclipse. By taking images above Earth’s atmosphere, scientists were able to see new details of structures in the middle and lower corona. The observations – taken with a camera that images in infrared and visible light at high resolution and high speed – could improve our understanding of the dust ring around the Sun and help search for asteroids that may orbit near the Sun. The WB-57 flights also carried instruments to learn more about the temperature and chemical composition of the corona and coronal mass ejections – or large bursts of solar material. By flying these instruments on a WB-57, the scientists extended their time in the Moon’s shadow by over two minutes from what could be achieved using ground-based observations. A third experiment used an ionosonde to study the ionosphere – the charged layer of Earth’s upper atmosphere. The device functions like a simple radar, sending out high frequency radio signals and listening for their echo rebounding off the ionosphere. The echoes allow researchers to measure how the ionosphere’s charge changed during the eclipse – see Photo 15. Photo 15. Pilots prepare for the 2024 total solar eclipse experiments on the NASA WB-57 aircraft on April 8, 2024 at Ellington Field in Houston, TX. Photo credit: NASA/James Blair The eclipse also provided an opportunity for the public to contribute to the NASA Citizen Science program – a project called Eclipse Soundscapes reached over 900 people during their training programs to prepare for the eclipse. Over 36,000 individual citizen scientists contributed more than 60,000 data submissions across the eclipse path, recording the reactions of wildlife before, during, and after this celestial event. As part of NASA’s Heliophysics Big Year to celebrate the Sun, NASA played a key role in enabling safe participation as well as working with new-to-NASA audiences. NASA’s Science Mission Directorate ordered and distributed 2.05 million eclipse glasses across the country, with distribution locations including K–12 schools, libraries, minority-serving institutions, community events, museums, partner organizations, underserved communities, science centers, and NASA personnel. As of April 8, Science Activation reached over 2000 educators across the country through programming designed to prepare educators for the eclipse and provide them with educational resources to train students in STEM. NASA broadcasted a livestream of engagement events on NASA+, the NASA App, NASA.gov, and NASA social media channels. By 4:30 PM EDT, NASA’s websites spiked (e.g., nasa.gov, science.nasa.gov, plus.nasa.gov, and ciencia.nasa.gov) with nearly 28.9 million views and 15.6 million unique visitors. At its peak, 1,458,212 people watched the eclipse broadcast live, experiencing the eclipse together through the eyes of NASA. Total viewership as of 4:30 PM EDT was 13,511,924. NASA’s Office of Communications Engagement Division organized at least 17 in-person and digital partner interactions, including several Major League Baseball games, Google eclipse safety Doodle and search effect, coverage of NASA on NASDAQ’s screen in Times Square, a solar songs request weekend on Third Rock Radio, and a Snoopy visit to the Cleveland sunspot. Several partners also interacted on social media, including Barbie, Cookie Monster, Elmo, Snoopy, LEGO, and other partner accounts. Conclusion The 2024 total eclipse brought joy and awe to millions, inspiring so many to look up, be curious about the natural world around them, and explore the sky. The next total solar eclipse will occur in 2026 and will be visible in Spain, a small area of Portugal, as well as Iceland, Greenland, and Russia. We won’t see another total eclipse in the U.S. until 2044. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Movie. Timelapse of the eclipse’s totality in Cleveland, OH. Video credit: Danielle Kirshenblat Dalia Kirshenblat NASA’s Goddard Space Flight Center/Global Science and Technology, Inc. dalia.p.zelmankirshenblat@nasa.gov Share Details Last Updated Aug 22, 2024 Related Terms Earth Science View the full article
  25. 2 min read Hubble Finds Structure in an Unstructured Galaxy NASA, ESA, A. del Pino Molina (CEFCA), K. Gilbert and R. van der Marel (STScI), A. Cole (University of Tasmania); Image Processing: Gladys Kober (NASA/Catholic University of America) This NASA Hubble Space Telescope image features the nearby dwarf irregular galaxy Leo A, located some 2.6 million light-years away. The relatively open distribution of stars in this diminutive galaxy allows light from distant background galaxies to shine through. Astronomers study dwarf galaxies like Leo A because they are numerous and may offer clues to how galaxies grow and evolve. Dwarf galaxies are small and dim making the most distant members of this galaxy type difficult to study. As a result, astronomers point their telescopes toward those that are relatively near to our own Milky Way galaxy, like Leo A. Leo A is one of the most isolated galaxies in our Local Group of galaxies. Its form appears as a roughly spherical, sparsely populated mass of stars with no obvious structural features like spiral arms. The data that created this image come from four Hubble observing programs. Three of these looked at star formation histories of relatively nearby dwarf galaxies. The fourth sought to better determine the mass of our Local Group by looking at the motions of dwarf galaxies just outside of the Local Group. The Hubble observations that looked at star formation found distinct structural differences in the age and distribution of stars in the galaxy. Most of the younger stars are located in the middle of the galaxy, while the number of older stars increases as you move outward from the center. Hubble observations also suggest that the galaxy’s halo of stars is about one-third larger than previous estimates. This distribution suggests that star formation in Leo A occurred from the outside-in, or that older stars efficiently migrated to the outskirts of Leo A in the early stages of its evolution. Download Image Explore More Hubble’s Galaxies Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Aug 22, 2024 Editor Michelle Belleville Location NASA Goddard Space Flight Center Related Terms Astrophysics Galaxies Goddard Space Flight Center Hubble Space Telescope Stars Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Hubble Science Hubble’s Galaxies Stars View the full article
×
×
  • Create New...