Members Can Post Anonymously On This Site
-
Posts
4,764 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
The year 2023 was productive for the Loads & Dynamics (L&D) Technical Discipline Team (TDT). New shock and modal analysis techniques were developed and mentoring the next generation of NASA discipline experts continued. Additionally, NESC Technical Bulletin No. 23-3, New Transient Finite Energy Shock Prediction Methodology, was released. Early Career Community Nurtures Development of NASA’s Future Discipline Leaders NASA has acknowledged the need for “attracting and advancing a highly skilled, competent, and diverse workforce in order to cultivate an innovative work environment…” as stated in Objective 3.1 of the 2014 NASA Strategic Plan. A survey conducted in 2014 by Emerge, the early-career professional group at JSC, showed that recent hires believe that “communication and collaboration amongst organizations” is a key area of improvement, while “lack of opportunities for professional growth” is the top reason why they would consider leaving the Agency. This, when coupled with NASA’s aging workforce (the average age as of 2016 was 49), stresses the importance of capturing knowledge to pass along to the next generation of NASA engineers. The Structures, Loads and Dynamics, Mechanical Systems, and Materials (SLAMMS) disciplines have also been identified as critical fields for the advancement of NASA’s strategic vision, which emphasizes the importance of developing and retaining engineers in those areas. Consequently, the SLAM(M)S Steering Committee (Materials was not initially included), comprising center SLAMS Division/Branch Chiefs and NASA Technical Fellows, formed the Young Professionals Forum in 2012, which evolved into the current Early Career Forum (ECF) in 2017, and was expanded to provide year-round activities (e.g., monthly meetings, training opportunities) for the Early Career Community (ECC). Over the lifetime of the ECC, the SLAMS Steering Committee was dissolved, and the stewardship of the ECC relied on the Technical Fellows, who empowered ECC leaders to take on the primary responsibility of planning and running the ECC and ECF events. Today’s SLAMMS Early Career Community Within the past few years, a new SLAMMS Division/Branch Chief collaboration group was formed, called the SLAMMS Leadership Working Group (LWG), and is led by James Loughlin, GSFC Mechanical Systems Division Chief, with co-lead Elonso Rayos, JSC Structures Engineering Assistant Division Chief. The LWG is a forum focused on capability sustainment, discipline technical challenges, and workforce concerns. For example, disparate Agency technical resource access is discussed, collaboration is coordinated, and critical gaps in expertise are filled using cross-Agency cooperation. The current SLAMMS ECE leadership team includes Khadijah Shariff (JSC-Structures), Dr. Matthew Chamberlain (LaRC- Loads & Dynamics), Dr. Jonathan Sauder (JPL-Mechanical Systems), and Cassie Smith (JPL-Mechanical Systems). NASA Technical Fellows supporting SLAMMS are Deneen Taylor (Structures), Dr. Dexter Johnson (Loads & Dynamics), Dr. Michael Dube (Mechanical Systems), and Dr. Bryan McEnerney (Materials). The SLAMMS Early Career Forum The ECF is the annual “face-to-face” workshop for the community. The ECF is held at a different NASA center each year and features technical presentations by early career engineers (ECE), splinter sessions with NASA Technical Fellows, mentor presentations, facility tours, networking events, design challenges, and evening social activities to advance the SLAMMS disciplines and develop NASA’s future workforce. The ECF features technical presentations given by the ECEs to their peers, senior engineers, and Technical Fellows. The 12th Annual SLAMMS ECF was held at MSFC and virtually. Sixty-six ECEs, Technical Fellows, TDT mentors, and discipline managers from the SLAMMS LWG were in attendance. ECEs from 8 centers made 16 technical presentations and 18 posters, which were ranked by mentors for the top awards. Multiple splinter sessions provided ECEs with opportunities to ask career-related advice from Technical Fellows, project and systems management, and individuals experienced in design, analysis, and testing. In addition, there was a detailed discussion for each of the technical disciplines represented at the forum, and multiple site tours were provided. Attendees of the 12th annual SLAMMS EFC at MSFC 2023. The Future of the SLAMMS ECC The SLAMMS ECC will continue to evolve as discussions with the ECE leadership team and Technical Fellows continue towards mapping its future. SLAMMS is igniting cross-Agency collaboration for future generations. Its current goals include communication and collaboration among organizations, professional growth of early career engineers, knowledge capturing for the next generation of NASA engineers, and developing and retaining engineers in the specific SLAMMS disciplines. It will nurture the technical, professional, and personal development of NASA’s next generation of SLAMMS discipline leaders. Awards presented by Dr. Dexter Johnson. Left: “Best Presentation” (Mitchell Haglund-GSFC) Right: “Best Poster” (Tessa Fedotowsky-MSFC). Updating Guidance on Shock Qualification and Acceptance Test Requirements The L&D TDT has completed work that will have a positive impact on shock testing of NASA flight hardware. Pyroshock is the transient response of a structure to loading induced by activation of attached or incorporated pyrotechnic devices. Typical pyrotechnic devices include frangible bolts, separation nuts, and pin pullers that are used to assemble, separate, and reconfigure spaceflight hardware during a mission. Shocks can easily propagate through structure and damage sensitive components. Thus, successful pyroshock testing is considered essential to mission success. At the request of the Gateway Program Chief Engineer, the NASA Chief Engineer initiated an inquiry to reevaluate shock testing approaches for both unit and major assembly flight hardware and requested recommendations for potential revisions to NASA-STD-7003B, Pyroshock Test Criteria, that would clarify the guidance and applicability to new programs. The work delves into topics of shock acceptance and qualification testing for unit and major assemblies, shock test tolerances, shaker shock testing, and the distinction between mechanical shock and pyroshock testing. It also provides recommendations for their inclusion in the next Agency-wide revision of NASA-STD-7003B. Current NASA-STD-7003B Requirements Unit and major assembly flight hardware acceptance and qualification testing are discussed in NASA-STD-7003B. It requires that all units go through shock qualification testing, with few exceptions. The purpose of a qualification test is to verify the design integrity of the flight hardware. The standard calls for pyroshock qualification testing of nonflight hardware for externally induced environments to be performed with a 3 dB margin added to the maximum predicted environment (MPE), with two shocks per each orthogonal axis. Qualification tests are performed on hardware that will not be flown but is manufactured using the same drawings, materials, tooling, processes, inspection methods, and personnel competency as used for the flight hardware. The flight hardware is not recommended to go through shock test, therefore, it lacks workmanship screening testing. The required random vibration (RV) test is considered to be a partial workmanship screening, covering only up to 2000 Hz. A full workmanship screening test for unique and sensitive hardware that may have modes above 2000 Hz needs to be evaluated on a case-by-case basis by an expert in pyroshock dynamics and approved within a program’s risk management system and/or governing board. The major assembly acceptance and qualification testing are not recommended, considering that the MPE and design margin cannot be demonstrated at the system-level tests. The major assembly unmargined testing, however, may achieve three objectives. First, the functional demonstration of shock separation devices—probably the most important part of the major assembly level testing—demonstrates the source electrical and mechanical hardware functions as expected, and the interface separates without any issues. Second, the major assembly testing provides the validation of the unit shock environments. Third, the major assembly testing provides transfer functions (TF) that may help to estimate the attenuation—and in some cases structural amplifications—throughout the system with all assemblies in flight configuration. NASA-STD-7003B contains discussions for the first two major assembly test objectives. However, there are no discussions on the third test objective related to the TFs. The TFs provide qualitative assessment of shock propagation paths and attenuations at joints and interfaces. The TFs may be used qualitatively as attenuation is highly dependent on the materials and joint construction and may be different if there are changes in the system configuration. Suggestions for Improving NASA-STD-7003B The shock tolerance specified in NASA-STD-7003B is ±6 dB from 100 Hz to 3 kHz and +9/-6 dB above 3 kHz. The constant ±6 dB tolerance bandwidths across all frequencies are possible, as many existing shock simulation systems are able to simulate shock signatures that fall within these tolerances without difficulty. These tolerances are based on practical test implementation and shock simulation equipment consideration. The tolerance tightening should be considered at the flight hardware resonant frequencies to avoid over/under testing. However, if detonator or explosive shock simulation systems are used to qualify flight hardware, the shock tolerances above 3 kHz may be kept at +9/-6 dB. Measurements from many different pyro/non-pyro separation systems have been shown to have broader shock signatures and do not support the mechanical shock as being applicable to low- and mid-frequency shocks only. The standard discusses this topic and has an example of far field SRS indicating shock energy above 2 kHz. The future revision should clarify the applicability of the mechanical shocks to be broader and not to be limited to 2 kHz and below (see figure below). An example shock response spectrum (SRS) obtained from a mechanical shock separation system, indicating a broad signature is produced by pyro devices. The Gateway Program has benefitted from the updated guidance recommended for NASA-STD-7003B. Even though shaker shock testing has been used in the past and is still used by some NASA organizations and contractors, there are multiple technical issues with this type of testing. The shaker-generated shock signatures in the low- and mid-frequency range (typically up to ~2 kHz) provide severe shock environments that may lead to structural failures. Most shakers are also not able to generate SRS above ~2 kHz, therefore, shaker shock test is deficient in meeting the shock requirement up to 10 kHz frequency. NASA-STD-7003B does not recommend the shaker method of shock testing due to the above limitations. This should be emphasized more in the standard. The shaker shock simulation test may be used if it is able to generate time histories that resemble signatures generated by space separation devices, and SRS levels meet the entire frequency range requirements. For the next NASA-STD-7003B revision, recommendations are being made to include acceptance RV testing for partial workmanship screening testing, add the TFs to be used as qualitative information in assessing the attenuation in the structural shock paths, change the shock tolerance to ±6 dB across all frequencies, and consider mechanical shocks to be broader and not limited to low- and mid-frequency SRSs. In summary, the updated guidance provides clarification to the question/uncertainty of the applicability of historical guidance to current programs, while ensuring proper applicability to future programs. This work directly benefitted the Gateway Program, and could potentially benefit the Human Lander System (HLS). References: Kolaini, A.R., Kinney, T., and Johnson, D.: Guidance on Shock Qualification and Acceptance Test Requirements. SCLV, June 27-29, 2023, EL Segundo, CA. Available from: https://ntrs.nasa.gov/citations/20230009008 NASA-STD-7003B, “Pyroshock Test Criteria,” June 11, 2020. HLS could benefit from the updated guidance recommended for NASA-STD-7003B. Credit: Blue Origin View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) By Daniel Boyette Jeremy Kenny squinted his eyes as he looked toward the brilliant light. Then came the deafening sound waves that vibrated his body. This was the moment he’d dreamed about since childhood. It was Nov. 16, 2009, at NASA’s Kennedy Space Center in Florida, and Kenny and his wife were watching space shuttle Atlantis embark on a mission to the International Space Station. Kenny, who was less than two years into his NASA career, had the opportunity to see the liftoff from Launch Pad 39A as part of receiving the Space Flight Awareness Award for supporting the Space Shuttle Program’s solid rocket booster flight program. “That was the first launch I ever witnessed in person,” said Kenny, whose inspiration for working at NASA came from watching televised shuttle launches as a youth. “It was amazing and made me appreciate how such a powerful system could be designed and flown so successfully.” Jeremy Kenny, manager of NASA’s Cryogenic Fluid Management Portfolio Project, holds a model spacecraft for the proposed large cryogenic demonstration mission. The mission aims to demonstrate liquid hydrogen management, including near-zero propellant boil off and highly efficient propellant transfer, needed to achieve long-duration transit to/from Mars and spacecraft loitering during on-surface campaigns.Credit: NASA/Danielle Burleson With the final shuttle mission two years later, NASA set its sights on designing and building its future Artemis rocket: SLS (Space Launch System). Kenny was selected to lead the SLS Modal Acoustic Test program, which helped engineers understand how loud the rocket would be during liftoff. He later joined another key Artemis effort, the Human Landing System program, as a technical manager, overseeing the development of lander systems that will transport astronauts to the Moon’s surface. “Artemis is an inspiring campaign for future human spaceflight exploration,” Kenny said. “I worked with SLS, Orion, and Exploration Ground Systems, and it was very fulfilling to see all the pieces come together for the successful Artemis I launch.” In January, Kenny was named manager of NASA’s Cryogenic Fluid Management (CFM) Portfolio project, where he oversees a cross-agency team based at NASA’s Marshall Space Flight Center in Huntsville, Alabama, and Glenn Research Center in Cleveland. The CFM portfolio includes innovative technologies to store, transfer, and measure ultra-cold fluids – such as liquid hydrogen, liquid oxygen, and liquid methane. These cryogens are the most common propellants in space exploration, making CFM integral to NASA’s future exploration and science efforts. “We must mature CFM technologies to support future flight mission architectures,” said Kenny. “The strong partnership between Marshall and Glenn in CFM maturation continues to produce excellent results, enabling in-space cryogenic systems vital to NASA’s Moon to Mars vision.” Kenny’s choice of profession comes as little surprise, given his family background. He had a grandfather and an uncle who worked with the U.S. Army Corps of Engineers in the family’s hometown of Vicksburg, Mississippi. From them, Kenny learned how math and physics could be implemented in real-world applications. He earned three degrees in mechanical engineering: a bachelor’s from Mississippi State University in Starkville, a master’s from Georgia Tech in Atlanta, and a doctorate from the University of Alabama in Huntsville. “My grandfather showed me various engineering software programs he worked on to simulate ground terrains for military transportation systems,” Kenny said. “My uncle worked on engineering developments for various military systems; he was a key influence for me to pursue graduate degrees in mechanical engineering.” When Kenny’s not working to evolve technology for NASA’s future deep space exploration missions, he’s spending time with his wife and their two daughters, who are involved in choir and dance. “Watching them practice and perform inspires me,” Kenny said with a smile. “My biggest challenge is balancing my professional work, which I love, and spending time with my family, who I love. With work comes many exciting opportunities, and solving hard problems is fun. But that excitement should not detract from keeping your personal relationships healthy. One day, I’ll retire and spend all my free time with family.” The CFM Portfolio Project’s work is under NASA’s Technology Demonstration Missions Program, part of NASA’s Space Technology Mission Directorate, which oversees a broad portfolio of technology development and demonstration projects across NASA centers and American industry partners. Learn more about CFM Ramon J. Osorio Marshall Space Flight Center, Huntsville, Alabama 256-544-0034 ramon.j.osorio@nasa.gov Share Details Last Updated Mar 21, 2024 Related TermsMarshall Space Flight CenterCryogenic Fluid Management (CFM)Technology Demonstration Missions Program Explore More 22 min read The Marshall Star for March 20, 2024 Article 22 hours ago 3 min read NASA Artemis Mission Progresses with SpaceX Starship Test Flight Article 7 days ago 4 min read NASA Lights ‘Beacon’ on Moon With Autonomous Navigation System Test Article 1 week ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
The Thermal and Fluids Analysis Workshop (TFAWS) is an annual event cosponsored by the NESC’s Thermal Control & Protection, Environmental Control & Life Support, Aerosciences, and Cryogenics Technical Discipline Teams in collaboration with the TFAWS Steering Committee. It is well known for a diverse set of events and remains a model for Community of Practice technical discipline workshops. Originally devised as an analysis tool training opportunity for new engineers, TFAWS has grown in scope over more than three decades to include a variety of activities including training, theory-based short courses, paper sessions, student posters, center tours, and vendor presentations. Most important though, it remains an excellent forum for technical interchange between thermal, fluids, cryogenics, and aerothermal professionals from across NASA, other U.S. government agencies, industry, and academia. After three virtual workshops due to the COVID pandemic, TFAWS resumed as an in-person event in 2023 under the planning leadership of GSFC, this year’s host center. TFAWS has become known as a forum to train the next generation of engineers. A poster session gave students an opportunity to showcase their work and build connections with engineers in government and industry. A “speed mentoring” event was initiated this year and gave many early career engineers and students an opportunity to benefit from the experience of senior engineers and leaders. This year’s event drew a total of 350 attendees representing NASA, the aerospace industry, academia, and international participants from 23 countries. The 4-day workshop consisted of 80 paper presentations, 16 short courses and panel discussions, 7 analysis tool and hardware hands-on short courses, 14 vendor participants, and 13 hardware and analysis tool vendor presentations. Tours highlighting GSFC facilities were provided the day after the workshop adjourned. GSFC’s Jordan Effron builds a multi-layer insulation blanket during a hands-on short course Dr. Bhanu Sood discusses GSFC technology development strategy and technical thrusts during a lunchtime talk. Students and early career engineers meet with senior NASA engineers during the inaugural “speed mentoring” session.View the full article
-
NASA/Joel Kowsky A fast boat crosses the waters several hours after NASA’s SpaceX Crew-7 splashdown on March 12, 2024. The SpaceX Dragon Endurance spacecraft landed in the Gulf of Mexico off the coast of Pensacola, Florida. The Crew-7 members spent nearly six months in space as part of Expedition 70 on the International Space Station. Throughout their mission, the Crew-7 members contributed to a host of science and maintenance activities and technology demonstrations. Moghbeli conducted one spacewalk, joined by NASA astronaut Loral O’Hara, replacing one of the 12 trundle bearing assemblies on the port solar alpha rotary joint, which allows the arrays to track the Sun and generate electricity to power the station. Image Credit: NASA/Joel Kowsky View the full article
-
As NASA continues to pursue new human missions to low Earth orbit, lunar orbit, the lunar surface, and on to Mars, the NESC continues to provide a robust technical resource to address critical challenges. The NESC Environmental Control and Life Support Systems (ECLSS), Crew Systems, and Extravehicular Activity (EVA) discipline is led by the NASA Technical Fellow for ECLS, Dr. Morgan Abney, ECLSS & Crew Systems Deputy Dave Williams, Extravehicular & Human Surface Mobility Deputy Danielle Morris, and EVA Deputy Colin Campbell. In 2023, this team led assessments and provided support to the Commercial Crew Program, ISS, Orion Multi-Purpose Crew Vehicle, Extravehicular and Human Mobility Program, Gateway International Habitat, and Moon-to-Mars Program. Three of the most notable activities in 2023 are briefly described below. Mitigation for Water in the Helmet During EVA During EVA22 in 2013, water was observed in the helmet and assumed to be the result of a “burp” from the drink bag. No further investigation was pursued because water had been observed to some degree (water on visor, wet hair, etc.) on eight previous occasions. The result was a nearly catastrophic event during EVA23, where astronaut Luca Parmitano experienced dangerous quantities of water in his helmet. Both EVA23 and EVA35 in 2016 contributed to identification of drowning as a key risk, which resulted in several water mitigation approaches. Based on these approaches, the program determined the risk level to be acceptable for nominal EVA. However, in March 2022, a crewmember returning from EVA80 noticed water accumulated on the visor of his helmet obstructing ~30-50% of his field of view. Due to the increasing complexity of EVA objectives on EVA80 and forward, the ISS Program identified loss or reduction of visibility as a greater risk than previously recognized and sought to identify methods to prevent even small quantities of liquid water from forming in the helmet during EVA. The NESC was asked to provide support to the activity through modeling of the helmet and two-phase (water and oxygen) flow behavior in microgravity, through model validation testing, and through testing of mitigation hardware identified by the larger team. The model predictions provided a map (Figure 1) of anticipated liquid water formations based on the contact angle between the face or head and the helmet surface. Based on the ISS helmet with no water mitigations, the model predicted that large blobs would most likely form bridges between the helmet and face and that rupture of those bridges would result in the majority of liquid transferring to the face. To mitigate this risk, the ISS EVA80 team devised a solution to add absorbent materials in the path of the oxygen and water entering the helmet. Following EVA23, the helmet absorption pad (HAP) was added for bulk water collection. The improved mitigation strategy based on EVA80 included a HAP extender (HAP-E) and a helmet absorption band (HAB) (Figure 2). The NESC provided modeling of the mitigation hardware and validation testing of the HAB configuration using flow conditions anticipated in ISS operation (Figure 3). The testing provided ground validation of the HAB performance. The HAB and HAP-E have both been implemented in flight. Figure 1. Map of predicted water formations within a helmet as a function of face/head and helmet contact angles. Dashed rectangle indicates the expected domain of the ISS helmet with no water mitigations. Figure 2. Water mitigation strategy for the ISS helmet: a) sketch of HAP, HAP-E, and HAB, b) side view of early prototype, c) bottom view of early prototype. Figure 3. HAB ground validation testing under trickle water flow conditions. Evaluation of Terrestrial Portable Fire Extinguishers for Microgravity Applications The tragic fire of Apollo 1 has, of necessity, instilled in NASA an enduring respect for the risk of fire in spacecraft. As such, robust fire detection and response systems have been a cornerstone of NASA-designed vehicles. Portable fire extinguishers (PFE) are a fundamental fire response capability of spacecraft and both carbon dioxide and water-based PFEs have been used by NASA historically. However, terrestrial-based PFEs, particularly those using new halon-based suppressants, may provide improved capability beyond the NASA state-of-the-art. In 2023, the NESC sought to evaluate the effectiveness of commercial-off-the-shelf (COTS) PFEs in microgravity. The team developed an analytical model to predict the discharge rate of three terrestrial COTS PFEs containing CO2, HFC-227ea, and Novec 1230. The model considered the internal geometry of the PFEs, the material properties of the suppressants and their corresponding PFE tanks, and the effects of microgravity and in-flight perturbations. The results predicted that for PFE tanks containing dip tubes, like those for HFC-227ea and Novec 1230 where nitrogen gas is used as a pressurant, microgravity plays a significant role in the discharge performance due to two-phase flow. Figure 4 shows the various equilibrium configurations based on gravity and perturbations. As a comparison, the analysis predicts >80% discharge of the HFC-227ea in the COTS PFE within ~30 seconds with the remainder discharging over ~0.5-1 hours when discharged in a terrestrial fire (Figure 4A), while only 60-80% discharges in 30 seconds with the remainder discharging over 1-2 hours in microgravity (Figure 4C). Figure 4. Equilibrium two-phase configurations of nitrogen (white)-pressurized liquid suppressant (blue). A) PFE held nominally with nozzle up in 1-g with no perturbations, B) PFE held inverted in 1-g or in 0-g where liquid preferentially accumulates away from the dip tube entrance with no perturbations, C) PFE in 0-g at the statistically most probable state with no perturbations, D) PFE in 0-g where nitrogen preferentially accumulates at ends of the PFE with no perturbations, E) PFE in any level gravity with significant perturbations (shaken up), and F) statistically most probable state in 0-g following complete discharge. Based on this analysis, the use of terrestrially designed PFEs containing gaseous pressurant over a liquid suppressant will likely result in decreased initial discharge of the suppressant and significantly longer total discharge times in microgravity as compared to terrestrial discharge performance. Testing is ongoing to validate the models using a custom-designed PFE test stand (Figures 5 and 6) that enables multi-configuration testing of COTS PFEs. Figure 5. (left) PFE test stand for model validation. Design prevents directional load effects to enable accurate mass measurement during PFE discharge. Figure 6. (right) Insulated PFE housing and remote discharge control allows for accurate, real-time thermal measurements during validation testing. Standardized Abrasion, Cut, and Thermal Testing for Spacesuit Gloves and Materials State-of-the-art spacesuit gloves have been optimized for the challenges of ISS. Artemis missions call for high-frequency EVAs at the lunar south pole, where temperatures in the permanently shadowed region (PSR) will expose crew gloves to temperatures lower than ever previously experienced and where frequent and repeated exposure to regolith dust and rocks will present significantly increased risk for abrasion and cuts. With the development of new spacesuits by commercial partners, inexpensive and repeatable test methods are needed to characterize, evaluate, and compare gloves and glove materials for their thermal performance at PSR temperatures and for their resistance to lunar regolith abrasion and cuts. To address these needs, the NESC is leading a team to develop standardized test methods in coordination with ASTM International Committee F47 on Commercial Spaceflight. Three standardized methods are currently in development. The first method seeks to standardize lunar dust abrasion testing of glove (and suit) materials based on adapted “tumble testing” first proposed at NASA in 1990. The NASA-designed tumbler (Figure 7) enables testing of six samples per run and compares pre- and post-tumbled tensile strength of materials to compare abrasion resistance. The method is highly controlled using a commercially available tumble medium and lunar regolith simulant. Because material properties change with temperature, the second method seeks to develop a standardized approach to evaluate the cut resistance of glove materials at relevant cryogenic temperatures. The method is an adaptation of ASTM F2992 Standard Test Method for Measuring Cut Resistance of Materials Used in Protective Clothing with Tomodynamometer (TDM-100) Test Equipment. In order to allow for cut evaluation at cryogenic temperatures, the TDM-100 cut fixture was modified to include channels for liquid nitrogen flow (Figure 8A), thereby cooling the test material to 77 K. Figure 7. Hardware used in the tumble test method. Tumbler apparatus (left). Tumbler with panel removed to show lunar regolith simulant and commercially available tumbler media (top right). Tumbler panel showing lunar regolith simulant (bottom right). The third method seeks to evaluate the thermal performance of gloves down to PSR requirement temperature of 48 K. Historical thermal testing of gloves was conducted with human-in-the-loop (HITL) testing for both radiative and conductive cooling. Conductive cooling was accomplished by having the test subject grab thermally controlled “grasp objects” and maintain contact until their skin temperature reached 283 K (50 ºF) or until they felt sufficient discomfort to end the test themselves. While HITL testing is critical for final certification of gloves, iterative design and development testing would benefit from a faster, less expensive test. To meet this need, the NESC is developing a glove thermal test that uses a custom manikin hand designed by Thermetrics, LLC (Figure 8B). Figure 8. A) Mandrel used in cut testing as designed for ambient testing (left) and cryogenic testing (right). Flow channels allow for liquid nitrogen flow to cool the material sample to cryogenic temperatures. B) Prototype of Thermetrics, LLC custom manikin hand for spacesuit glove thermal testing. The manikin hand is outfitted with temperature and heat flux sensors to monitor heat transfer to the hand. The hand is placed within a spacesuit glove and thermally controlled with internal water flow to simulate human heat generation. The Cryogenic Ice Transfer, Acquisition, Development, and Excavation Laboratory (CITADEL) chamber at JPL is then used to test the glove thermal performance at a range of temperatures from 200 K down to 48 K. Thermal performance is evaluated to mimic historical HITL testing under both radiative and conductive cooling. Conductive cooling is accomplished through a temperature-controlled touch object and is evaluated using two touch pressures. All three methods will be incorporated as ASTM F47 standard test procedures following NASA and ASTM committee review and approvals (targeting 2024). ASA astronaut and Expedition 68 Flight Engineer Nicole Mann is pictured in her Extravehicular Mobility Unit (EMU) during an EVA. The NESC has recently contributed to astronaut safety investigations of water accumulating in EMU helmets during EVAs, and developing EMU gloves for use in the harsh conditions of the lunar south pole.View the full article
-
NASA Administrator Bill Nelson delivers remarks during an event with Department of Health and Human Services Secretary Xavier Becerra to highlight how the agencies are making progress toward President Joe Biden and First Lady Jill Biden’s Cancer Moonshot initiative, Thursday, March 21, 2024, in the Earth Information Center at the Mary W. Jackson NASA Headquarters building in Washington. NASA is working with agencies and researchers across the federal government to help cut the nation’s cancer death rate by at least 50% in the next 25 years, a goal of the Cancer Moonshot Initiative. Credit: NASA/Keegan Barber During an event at NASA Headquarters in Washington Thursday, NASA Administrator Bill Nelson and U.S. Department of Health and Human Services (HHS) Secretary Xavier Becerra united to note progress their respective agencies are making in space and on Earth toward President Biden and First Lady Jill Biden’s Cancer Moonshot initiative. “We go to space not just to explore the stars, but to improve life here on Earth,” said Nelson. “In that microgravity environment, NASA is studying cancer growth—and the effect of cancer treatments— much faster than we can on Earth. I am grateful for President Biden’s leadership as we continue to make moonshot after moonshot to end cancer as we know it.” Also participating in the event was Dr. W. Kimryn Rathmell, director of the National Cancer Institute, as well as NASA astronauts Stephen Bowen and Frank Rubio, both of whom each recently served extended science missions 250 miles off the Earth aboard the International Space Station where they conducted cancer-related research. As the second leading cause of death in the United States, the President and First Lady’s Cancer Moonshot is a national effort to end cancer. Nelson noted several related experiments space station astronauts have conducted aboard the orbital laboratory for the benefit of all including protein crystal growth, nanoparticle drug delivery, tissue engineering, and stem cell research. In addition to $2.9 billion across HHS in the President’s fiscal year 2025 budget proposal, Becerra discussed his agency’s capabilities to accelerate progress toward the President’s moonshot goals. “Eliminating cancer as we know it is a goal that unifies the country,” said Becerra. “We all know someone, and most of us love someone, who has battled this terrible disease. As we did during the race to the Moon, we believe our technology and scientific community are capable of making the impossible a reality when it comes to ending cancer as we know it.” The backdrop for the event was NASA’s Earth Information Center, which provides access to NASA satellites and other data to see how our planet is changing. NASA is working with HHS and researchers across the federal government to help cut the nation’s cancer death rate by at least 50% in the next 25 years, a goal of the Cancer Moonshot Initiative. Learn more about Cancer Moonshot at: https://www.whitehouse.gov/cancermoonshot/ -end- Faith McKie / Cheryl Warner Headquarters, Washington 202-358-1600 faith.d.mckie@nasa.gov / cheryl.m.warner@nasa.gov Renata Miller Health and Human Services, Washington 202-570-8194 renata.miller@hhs.gov Share Details Last Updated Mar 21, 2024 LocationNASA Headquarters Related TermsScience in the AirAstronautsISS ResearchNASA Headquarters View the full article
-
Sea level rise is affecting coastal communities around the world, especially those like Honolulu, pictured, that are located on islands.NOAA Teacher at Sea Program, NOAA Ship HI’IALAKAI A long-term sea level dataset shows ocean surface heights continuing to rise at faster and faster rates over decades of observations. Global average sea level rose by about 0.3 inches (0.76 centimeters) from 2022 to 2023, a relatively large jump due mostly to a warming climate and the development of a strong El Niño. The total rise is equivalent to draining a quarter of Lake Superior into the ocean over the course of a year. This NASA-led analysis is based on a sea level dataset featuring more than 30 years of satellite observations, starting with the U.S.-French TOPEX/Poseidon mission, which launched in 1992. The Sentinel-6 Michael Freilich mission, which launched in November 2020, is the latest in the series of satellites that have contributed to this sea level record. The data shows that global average sea level has risen a total of about 4 inches (9.4 centimeters) since 1993. The rate of this increase has also accelerated, more than doubling from 0.07 inches (0.18 centimeters) per year in 1993 to the current rate of 0.17 inches (0.42 centimeters) per year. This graph shows global mean sea level (in blue) since 1993 as measured by a series of five satellites. The solid red line indicates the trajectory of this increase, which more than doubled over the past three decades. The dotted red line projects future sea level rise.NASA/JPL-Caltech “Current rates of acceleration mean that we are on track to add another 20 centimeters of global mean sea level by 2050, doubling the amount of change in the next three decades compared to the previous 100 years and increasing the frequency and impacts of floods across the world,” said Nadya Vinogradova Shiffer, director for the NASA sea level change team and the ocean physics program in Washington. Seasonal Effects Global sea level saw a significant jump from 2022 to 2023 due mainly to a switch between La Niña and El Niño conditions. A mild La Niña from 2021 to 2022 resulted in a lower-than-expected rise in sea level that year. A strong El Niño developed in 2023, helping to boost the average amount of rise in sea surface height. La Niña is characterized by cooler-than-normal ocean temperatures in the equatorial Pacific Ocean. El Niño involves warmer-than-average ocean temperatures in the equatorial Pacific. Both periodic climate phenomena affect patterns of rainfall and snowfall as well as sea levels around the world. “During La Niña, rain that normally falls in the ocean falls on the land instead, temporarily taking water out of the ocean and lowering sea levels,” said Josh Willis, a sea level researcher at NASA’s Jet Propulsion Laboratory in Southern California. “In El Niño years, a lot of the rain that normally falls on land ends up in the ocean, which raises sea levels temporarily.” To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This animation shows the rise in global mean sea level from 1993 to 2023 based on data from a series of five international satellites. The spike in sea level from 2022 to 2023 is mostly a consequence of climate change and the development of El Niño conditions in the Pacific Ocean. Credit: NASA’s Scientific Visualization Studio A Human Footprint Seasonal or periodic climate phenomena can affect global average sea level from year to year. But the underlying trend for more than three decades has been increasing ocean heights as a direct response to global warming due to the excessive heat trapped by greenhouse gases in Earth’s atmosphere. “Long-term datasets like this 30-year satellite record allow us to differentiate between short-term effects on sea level, like El Niño, and trends that let us know where sea level is heading,” said Ben Hamlington, lead for NASA’s sea level change team at JPL. These multidecadal observations wouldn’t be possible without ongoing international cooperation, as well as scientific and technical innovations by NASA and other space agencies. Specifically, radar altimeters have helped produce ever-more precise measurements of sea level around the world. To calculate ocean height, these instruments bounce microwave signals off the sea surface, recording the time the signal takes to travel from a satellite to Earth and back, as well as the strength of the return signal. The researchers also periodically cross-check those sea level measurements against data from other sources. These include tide gauges, as well as satellite measurements of factors like atmospheric water vapor and Earth’s gravity field that can affect the accuracy of sea level measurements. Using that information, the researchers recalibrated the 30-year dataset, resulting in updates to sea levels in some previous years. That includes a sea level rise increase of 0.08 inches (0.21 centimeters) from 2021 to 2022. When researchers combine space-based altimetry data of the oceans with more than a century of observations from surface-based sources, such as tide gauges, the information dramatically improves our understanding of how sea surface height is changing on a global scale. When these sea level measurements are combined with other information, including ocean temperature, ice loss, and land motion, scientists can decipher why and how seas are rising. Learn more about sea level and climate change: https://sealevel.nasa.gov/ News Media Contacts Jane J. Lee / Andrew Wang Jet Propulsion Laboratory, Pasadena, Calif. 818-354-0307 / 626-379-6874 jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov 2024-031 Share Details Last Updated Mar 21, 2024 Related TermsOceansClimate ChangeEarthJet Propulsion LaboratorySentinel-6 Michael Freilich SatelliteTOPEX / Poseidon (ocean TOPography EXperiment) Explore More 5 min read US, Germany Partnering on Mission to Track Earth’s Water Movement Article 2 days ago 5 min read NASA Study: Asteroid’s Orbit, Shape Changed After DART Impact Article 2 days ago 3 min read Student-Built Robots Clash at Competition Supported by NASA-JPL Article 3 days ago View the full article
-
Quasar H1821+643.X-ray: NASA/CXC/Univ. of Nottingham/H. Russell et al.; Radio: NSF/NRAO/VLA; Image Processing: NASA/CXC/SAO/N. Wolk This image shows a quasar, a rapidly growing supermassive black hole, which is not achieving what astronomers would expect from it, as reported in our latest press release. Data from NASA’s Chandra X-ray Observatory (blue) and radio data from the NSF’s Karl G. Jansky’s Very Large Array (red) reveal some of the evidence for this quasar’s disappointing impact on its host galaxy. Known as H1821+643, this quasar is about 3.4 billion light-years from Earth. Quasars are a rare and extreme class of supermassive black holes that are furiously pulling material inwards, producing intense radiation and sometimes powerful jets. H1821+643 is the closest quasar to Earth in a cluster of galaxies. Quasars are different than other supermassive black holes in the centers of galaxy clusters in that they are pulling in more material at a higher rate. Astronomers have found that non-quasar black holes growing at moderate rates influence their surroundings by preventing the intergalactic hot gas from cooling down too much. This regulates the growth of stars around the black hole. The influence of quasars, however, is not as well known. This new study of H1821+643 that quasars — despite being so active — may be less important in driving the fate of their host galaxy and cluster than some scientists might expect. To reach this conclusion the team used Chandra to study the hot gas that H1821+643 and its host galaxy are shrouded in. The bright X-rays from the quasar, however, made it difficult to study the weaker X-rays from the hot gas. The researchers carefully removed the X-ray glare to reveal what the black hole’s influence is, which is reflected in the new composite image showing X-rays from hot gas in the cluster surrounding the quasar. This allowed them to see that the quasar is actually having little effect on its surroundings. Using Chandra, the team found that the density of gas near the black hole in the center of the galaxy is much higher, and the gas temperatures much lower, than in regions farther away. Scientists expect the hot gas to behave like this when there is little or no energy input (which would typically come from outbursts from a black hole) to prevent the hot gas from cooling down and flowing towards the center of the cluster. A paper describing these results has been accepted into the Monthly Notices of the Royal Astronomical Society and is available online. The authors are Helen Russell (University of Nottingham, UK), Paul Nulsen (Center for Astrophysics | Harvard & Smithsonian), Andy Fabian (University of Cambridge, UK), Thomas Braben (University of Nottingham), Niel Brandt (Penn State University), Lucy Clews (University of Nottingham), Michael McDonald (Massachusetts Institute of Technology), Christopher Reynolds (University of Maryland), Jeremy Saunders (Max Planck Institute for Extraterrestrial Research), and Sylvain Veilleux (University of Maryland). NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. For more Chandra images, multimedia and related materials, visit: https://www.nasa.gov/mission/chandra-x-ray-observatory/ Visual Description: This composite image shows a quasar, a rare and extreme class of supermassive black hole, that’s located about 3.4 billion light-years from Earth. At the center of the image is a bright, white, circular light, similar to the beam of a flashlight if it was pointed directly toward you. A fuzzy, bar-shaped structure of red-colored radio light, slightly larger than the width of the white light, surrounds the circular structure. The red bar also extends above and below the white light, stretching in a somewhat straight line from about the one o’clock position to the seven o’clock position on a clock face. On either side of the red bar, X-ray light is present as blue, wispy clouds of hot gas that are brighter closer to the red and white features. The brighter clouds represent more dense gas. News Media Contact Megan Watzke Chandra X-ray Center Cambridge, Mass. 617-496-7998 Jonathan Deal Marshall Space Flight Center Huntsville, Ala. 256-544-0034 View the full article
-
“Not only was I going to school, raising a family, and working a full-time job, but I was also the state director for my sorority [and was responsible for] over 1,200 members at one time. And I think it comes down to perseverance. At the end of the day, you’re going to do what needs to be done if you truly want to get it done. You’re going to make the sacrifices that you need to make in order to be successful. “I’m a night person. So my big homework hours were between 11 p.m. and 3 a.m. I made the time because it was important. And we all do that — we make the time for what’s important to us. I hear people say, ‘There’s no way I could have done that.’ Well, it’s easy when you truly want something with your whole heart. “…When I actually defended my dissertation and my family was able to attend, that’s when it hit them. They were like, ‘You did all this while we were asleep? You did all this while we were on family vacation?’ I could feel the pride from them because for them, it seemed like it was seamless. But for me, it was heavy. It was heavy, but necessary. “I believe in giving people their roses while they’re still here to collect them. A few years before I started my doctorate program, my mother had a medical issue and we thought we were going to lose her. And that was the point that I said, ‘I need to go to school and I need to do this for her, because I want her to see me walk across that stage.’ “[Getting my doctorate] made me sit up a little straighter. It’s made me smile a little bit more. It’s made me feel like I can do anything. Not many people can say that. “…It is something that at the end of the day, no one could ever take away from me. Ever. No matter how much money I have in the bank, no matter where I live or if I have a roof over my head, no one can ever take that away.” – Dr. Danielle May, Contract Specialist, NASA’s Langley Research Center Image Credit: NASA/Mark Knopp Interviewer: NASA/Thalia Patrinos Check out some of our other Faces of NASA. View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A total solar eclipse creates stunning celestial views for people within the path of the Moon’s shadow. This astronomical event is a unique opportunity for scientists to study the Sun and its influence on Earth, but it’s also a perfect opportunity to capture unforgettable images. Whether you’re an amateur photographer or a selfie master, try out these tips for photographing the eclipse. A total solar eclipse is a unique opportunity for scientists studying in the shadow of the Moon, but it’s also a perfect opportunity to capture unforgettable images. Whether you’re an amateur photographer or a selfie master, try out these tips for photographing the eclipse. NASA/Beth Anthony #1 – Safety First Looking directly at the Sun is dangerous to your eyes and your camera. To take images when the Sun is partially eclipsed, you’ll need to use a special solar filter to protect your camera, just as you’ll need a pair of solar viewing glasses (also called eclipse glasses) to protect your eyes. However, at totality, when the Moon completely blocks the Sun, make sure to remove the filter so you can see the Sun’s outer atmosphere – the corona. #2 – Any Camera Is a Good Camera Taking a stunning photo has more to do with the photographer than the camera. Whether you have a high-end DLSR or a camera phone, you can take great photos during the eclipse; after all, the best piece of equipment you can have is a good eye and a vision for the image you want to create. If you don’t have a telephoto zoom lens, focus on taking landscape shots and capture the changing environment. Having a few other pieces of equipment can also come in handy during the eclipse. Using a tripod can help you stabilize the camera and avoid taking blurry images when there is low lighting. Additionally, using a delayed shutter release timer will allow you to snap shots without jiggling the camera. People watch a partial eclipse in Belfast, Northern Ireland, on March 20, 2015.Credits: Robin Cordiner #3 – Look Up, Down, All Around While the Sun is the most commanding element of a solar eclipse, remember to look around you. As the Moon slips in front of the Sun, the landscape will be bathed in eerie lighting and shadows. As light filters through the overlapping leaves of trees, it creates natural pinholes that project miniature eclipse replicas on the ground. Anywhere you can point your camera can yield exceptional imagery, so be sure to compose some wide-angle photos that can capture your eclipse experience. NASA photographer Bill Ingalls recommends focusing on the human experience of watching the eclipse. “The real pictures are going to be of the people around you pointing, gawking, and watching it,” Ingalls noted. “Those are going to be some great moments to capture to show the emotion of the whole thing.” #4 – Practice Be sure you know the capabilities of your camera before eclipse day. Most cameras, and even some camera phones, have adjustable exposures, which can help you darken or lighten your image during the tricky eclipse lighting. Make sure you know how to manually focus the camera for crisp shots. For DSLR cameras, the best way to determine the correct exposure is to test settings on the uneclipsed Sun beforehand. Using a fixed aperture of f/8 to f/16, try shutter speeds between 1/1000 to 1/4 second to find the optimal setting, which you can then use to take images during the partial stages of the eclipse. During totality, the corona has a wide range of brightness, so it’s best to use a fixed aperture and a range of exposures from approximately 1/1000 to 1 second. #5 – Share! Share your eclipse experience with friends and family afterwards. Tag @NASA to connect your photos on social media to those taken around the country and share them with NASA. While you’re snapping those eclipse photos, don’t forget to stop and look at the eclipse with your own eyes. Just remember to wear your solar viewing glasses (also called eclipse glasses) for all stages of the eclipse before and after totality! Related Links Learn more about the 2024 total solar eclipse Eclipse Photographers Will Help Study Sun During Its Disappearing Act By Mara Johnson-Groh NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Mar 21, 2024 Related TermsScience & Research2017 Solar Eclipse2024 Solar EclipseEclipsesHeliophysicsHeliophysics DivisionScience Mission DirectorateSkywatchingSolar EclipsesThe Sun Explore More 6 min read Sketch the Shape of the Sun for Science During the Solar Eclipse Calling all eclipse admirers! The SunSketcher team is looking for one million volunteers to capture… Article 2 days ago 5 min read Casey Honniball: Finding Her Space in Lunar Science Article 2 days ago 5 min read NASA Study: Asteroid’s Orbit, Shape Changed After DART Impact Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
4 min read NASA’s Hubble Finds that Aging Brown Dwarfs Grow Lonely It takes two to tango, but in the case of brown dwarfs that were once paired as binary systems, that relationship doesn’t last for very long, according to a recent survey from NASA’s Hubble Space Telescope. Brown dwarfs are interstellar objects larger than Jupiter but smaller than the lowest-mass stars. They are born like stars – out of a cloud of gas and dust that collapses – but do not have enough mass to sustain the fusion of hydrogen like a normal star. This is an artist’s concept of a brown dwarf. This class of object is too large to be a planet (and did not form in the same way), but is too small to be a star because it cannot sustain nuclear fusion, since it is less massive than even the smallest stars. A brown dwarf is marked by wind-driven horizontal bands of thick clouds that may alternate with relatively cloud-free bands, giving the object a striped appearance. Whirling storm systems as big as terrestrial continents, or even small planets, might exist. The name “brown dwarf” is a misnomer because the object would typically appear red to the naked eye. It is brightest in infrared light. Many brown dwarfs have binary companions. But as they age, the binary system gravitationally falls apart, and each dwarf goes its separate way, according to a recent Hubble Space Telescope study. The background stars in this illustration are a science visualization assembled from the Gaia spacecraft star catalog. The synthesized stars are accurate in terms of position, brightness, and color. Because this is not an image of the Milky Way, missing are glowing nebulae and dark dust clouds. NASA, ESA, Joseph Olmsted (STScI) Astronomers using Hubble confirm that companions are extremely rare around the lowest-mass and coldest brown dwarfs. Hubble can detect binaries as close to each other as a 300-million-mile separation – the approximate separation between our Sun and the asteroid belt. But they didn’t find any binary pairs in a sample of brown dwarfs in the solar neighborhood. This implies that a binary pair of dwarfs is so weakly linked by gravity that they drift apart over a few hundred million years due to the pull of bypassing stars. “Our survey confirms that widely separated companions are extremely rare among the lowest-mass and coldest isolated brown dwarfs, even though binary brown dwarfs are observed at younger ages. This suggests that such systems do not survive over time,” said lead author Clémence Fontanive of the Trottier Institute for Research on Exoplanets, Université de Montréal, Canada. In a similar survey Fontanive conducted a couple of years ago, Hubble looked at extremely young brown dwarfs and some had binary companions, confirming that star-forming mechanisms do produce binary pairs among low-mass brown dwarfs. The lack of binary companions for older brown dwarfs suggests that some may have started out as binaries, but parted ways over time. The new Hubble findings, published in The Monthly Notices of the Royal Astronomical Society, further support the theory that brown dwarfs are born the same way as stars, through the gravitational collapse of a cloud of molecular hydrogen. The difference being that they do not have enough mass to sustain nuclear fusion of hydrogen for generating energy, whereas stars do. More than half of the stars in our galaxy have a companion star that resulted from these formation processes, with more massive stars more commonly found in binary systems. “The motivation for the study was really to see how low in mass the trends seen among multiple stars systems hold up,” said Fontanive. “Our Hubble survey offers direct evidence that these binaries that we observe when they’re young are unlikely to survive to old ages, they’re likely going to get disrupted. When they’re young, they’re part of a molecular cloud, and then as they age the cloud disperses. As that happens, things start moving around and stars pass by each other. Because brown dwarfs are so light, the gravitational hold tying wide binary pairs is very weak, and bypassing stars can easily tear these binaries apart,” said Fontanive. The team selected a sample of brown dwarfs previously identified by NASA’s Wide-Field Infrared Survey Explorer. It sampled some of the coldest and lowest-mass old brown dwarfs in the solar neighborhood. These old brown dwarfs are so cool (a few hundred degrees warmer than Jupiter in most cases) that their atmospheres contain water vapor that condensed out. To find the coolest companions, the team used two different near-infrared filters, one in which cold brown dwarfs are bright, and another covering specific wavelengths where they appear very faint due to water absorption in their atmospheres. “This is the best observational evidence to date that brown dwarf pairs drift apart over time,” said Fontanive. “We could not have done this kind of survey and confirmed earlier models without Hubble’s sharp vision and sensitivity.” The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. Goddard also conducts mission operations with Lockheed Martin Space based in Denver, Colorado. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA. Learn More NASA Telescopes See Weather Patterns in Brown Dwarf Small Companion to Brown Dwarf Media Contacts: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Ray Villard Space Telescope Science Institute, Baltimore, MD Science Contact: Clémence Fontanive Trottier Institute for Research on Exoplanets at Université de Montréal Share Details Last Updated Mar 21, 2024 Editor Andrea Gianopoulos Related Terms Brown Dwarfs Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Stars Stories Galaxies Stories Eclipse 2024 Science View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Wallops Flight Facility supported the successful launch of a Rocket Lab Electron rocket at X:XX a.m. EDT, Thursday, March 21, from Virginia’s Mid-Atlantic Regional Spaceport on Wallops Island, Virginia. The rocket carried three collaborative research missions for the National Reconnaissance Office (NRO). The mission, dubbed NROL-123, was the first NRO mission to fly on a Rocket Lab rocket launched from the United States. Rocket Lab’s Electron rocket lifts off from NASA’s Wallops Flight Facility March 21, 2024, at X a.m. EDT. The rocket carried small research satellites for the NROL-123 mission for National Reconnaissance Office. NASA/Jamie Adkins “We are proud to support our commercial and government launch partners with world-class launch range, safety and support services,” said David L. Pierce, Wallops Flight Facility director. “It was a picture perfect launch following a smooth countdown.” This was the third Electron launch from Wallops and the fourth launch from Rocket Lab’s Launch Complex-2 in Virginia. The next launch from Wallops is scheduled April 8, 2024, during the solar eclipse. The Atmospheric Perturbations around Eclipse Path (APEP) mission will launch three sounding rockets before, during, and after peak eclipse time to study how the sudden drop in sunlight affects the Earth’s upper atmosphere. NASA’s Wallops Flight Facility provides agile, low-cost flight and launch range services to meet government and commercial sector needs for accessing flight regimes worldwide from the Earth’s surface to the Moon and beyond. Wallops’ flight assets – ranging from research aircraft, unmanned aerial systems, and high-altitude balloons to suborbital and orbital rockets – provide a dynamic range of flight capabilities. In addition, operational launch range and airfield assets at the facility enable science, aerospace, defense, and industry sectors. Share Details Last Updated Mar 21, 2024 EditorJamie AdkinsContactJeremy Eggers Related TermsWallops Flight Facility View the full article
-
12 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA is partnered with other government agencies, industry, and academia to conduct Advanced Air Mobility (AAM) research to benefit a future transportation system with routine flight of air taxis and drones. See the current partnerships below and in the map above. Aerostar Sioux Falls, South Dakota NASA and Aerostar are conducting collaborative evaluation of a NASA prototype simulated Upper Class E Traffic Management (ETM) system. AeroVironment Simi Valley, California NASA and AeroVironment are conducting research, development, testing, and evaluation of a NASA prototype simulated Upper Class E Traffic Management (ETM) system. AFWERX – U.S. Air Force Wright-Patterson Air Force Base, Ohio NASA and AFWERX have ongoing information exchange efforts across multiple AAM areas. NASA is using Joby’s air taxi aircraft for testing at Edwards Air Force Base in partnership with the U.S. Air Force’s AFWERX program. Air Force Research Laboratory Aerospace Systems Directorate (AFRL) Wright-Patterson Air Force Base, Ohio NASA and AFRL are sharing data about autonomous systems in AAM vehicles, airspace management systems, and infrastructure. Research includes configuration of formal methods, control systems validation, and flight critical software verification and validation. AIRT Miami, Florida NASA and AIRT are developing a safety management system to enable highly-automated AAM-focused aviation for emergency response. A&P Technology Cincinnati, Ohio NASA and A&P Technology are developing new braided composite materials to improve the crash safety of composite aircraft. A&P Technology and NASA will work together from the design phase, to fabrication, to dynamic crush test experiments on the materials. Archer Aviation San Jose, California NASA and Archer will focus on testing the safety, energy and power performance capabilities of the Archer air taxi’s battery cells at NASA’s Johnson Space Center. The goal is to jointly improve overall safety of AAM and human spacecraft battery applications. AURA Network Systems McLean, Virginia NASA and AURA Network Systems will perform AAM flight test evaluations of Communication, Navigation, and Surveillance (CNS) technologies to advance the maturity of these technologies for AAM aircraft. The City of Orlando Orlando, Florida NASA is working with city and state governments to brainstorm the ways that air taxis and drones, and the infrastructure for this new transportation system, could be integrated into city planning. NASA is exchanging information with these governments to identify the best practices for how a local government could design this system. Each city or state government involved will create a joint document with NASA using computer modeling software to describe how this could work in their locality. Boeing Huntsville, Alabama NASA and Boeing are researching the integration, demonstration, and evaluation of autonomous systems and tools to support AI standardization. Defense Advanced Research Projects Agency (DARPA) Arlington, Virginia NASA and Lockheed Martin – Sikorsky are working together with DARPA under a DARPA agreement to research air taxi automation technology using Sikorsky helicopters. In a separate effort, NASA is working with DARPA on the Automated Rapid Certification Of Software (ARCOS) program, which will aid in developing the criteria for automation software certification. Embry-Riddle Aeronautical University Daytona Beach, Florida NASA and Embry-Riddle are examining existing mishap data collected from the NASA Human Contribution to Safety (HC2S) test bed, and data collected independently, to identify realistic, actionable methods to promote better response to disturbances in flight. DLR – German Aerospace Center Braunschweig, Germany Cologne, Germany NASA and DLR researchers are designing algorithms and conducting fast-time simulations to help address the challenges of a future air traffic management system with more aircraft. In a separate effort, NASA and DLR are researching the air flow generated by rotary wing aircraft. The team is using visual tools like schlieren and shadowgraph techniques to see the directions of airflow invisible to the naked eye. General Electric Company Niskayuna, New York NASA and General Electric Company are researching flight safety in autonomous systems. Efforts focus on assurance of flight-critical systems (including airborne and ground software systems), human autonomy teaming, and efficient airspace operations. George Washington University Washington, D.C. NASA and several universities are demonstrating a NASA-created safety management system called “In-Time Learning-Based Safety Management for Scalable Heterogeneous AAM Operations.” This is a combined effort with George Washington University, Vanderbilt University, MIT/Lincoln Labs, and UT-Austin. Iowa State Ames, Iowa NASA, Iowa State and Notre Dame University are developing and evaluating automated techniques for predicting, detecting, diagnosing, and mitigating diverse configuration problems and runtime failures in small Uncrewed Aerial Systems (sUAS), also called drones. Joby Aviation Santa Cruz, California NASA and Joby are testing the human response to autonomy to find management solutions for autonomous air taxis using only a small number of human ground operators. This research will lead to a better understanding of technology solutions needed to ensure safe, routine, multi-aircraft AAM flights. In another effort, in partnership with the U.S. Air Force’s AFWERX program, NASA is using Joby’s aircraft for testing at Edwards Air Force Base. Lockheed Martin – Sikorsky Bridgeport, Connecticut NASA and Lockheed Martin – Sikorsky are conducting dynamic crush and ballistic impact testing of new woven composite materials. The test material will be provided by Lockheed Martin and NASA will conduct the testing. The goal is to improve NASA’s impact modeling capabilities and to improve the crash safety of future composite aircraft. Lone Star UAS Center of Excellence and Innovation at Texas A&M University Corpus Christi, Texas NASA and the Lone Star UAS Center of Excellence and Innovation are developing and testing new AAM technologies through experiments, measurements, and flight tests. Longbow Hampton, Virginia NASA and Longbow will conduct collaborative flight tests and use NASA-developed prognostic services to increase situational awareness and decrease exposure to hazards. Massachusetts Department of Transportation Boston, Massachusetts NASA is working with city and state governments to brainstorm the ways that air taxis and drones, and the infrastructure for this new transportation system, could be integrated into city planning. NASA is exchanging information with these governments to identify the best practices for how a local government could design this system. Each city or state government involved will create a joint document with NASA using computer modeling software to describe how this could work in their locality. Massachusetts Institute of Technology (MIT) Cambridge, Massachusetts NASA and MIT are capturing the human contribution to safety and are developing methods to increase safety in autonomous systems like training a machine to “see” the obstacles that a human would see. Minnesota Department of Transportation St. Paul, Minnesota NASA is working with city and state governments to brainstorm the ways that air taxis and drones, and the infrastructure for this new transportation system, could be integrated into city planning. NASA is exchanging information with these governments to identify the best practices for how a local government could design this system. Each city or state government involved will create a joint document with NASA using computer modeling software to describe how this could work in their locality. MIT/Lincoln Labs Lexington, Massachusetts NASA and several universities are demonstrating a NASA-created safety management system called “In-Time Learning-Based Safety Management for Scalable Heterogeneous AAM Operations.” This is a combined effort with George Washington University, Vanderbilt University, MIT/Lincoln Labs, and UT-Austin. Mitre Bedford, Massachusetts NASA and Mitre are researching the accuracy of positioning, navigation, and timing (PNT) of different aviation navigation systems in modeling and simulation. In a separate agreement, NASA and Mitre are developing a service to predict GPS connectivity in urban areas to help adapt pre-flight and in flight routes for AAM aircraft. Moog East Aurora, New York NASA is partnered with Moog to conduct acoustic testing of their SureFly aircraft. Moog is providing the test vehicle and executing the flight test, while NASA is collecting acoustic data during the tests using an array of ground microphones. These acoustic measurements will provide valuable data used to improve NASA’s noise prediction tools for air taxis. National Institute of Standards and Technology (NIST) Gaithersburg, Maryland NASA and NIST are investigating software for autonomous vehicles to improve the software verification and coordination. North Central Texas Council of Governments Arlington, Texas NASA is working with city and state governments to brainstorm the ways that air taxis and drones, and the infrastructure for this new transportation system, could be integrated into city planning. NASA is exchanging information with these governments to identify the best practices for how a local government could design this system. Each city or state government involved will create a joint document with NASA using computer modeling software to describe how this could work in their locality. Northrop Grumman West Falls Church, Virginia Palmdale, California NASA and Northrop Grumman are investigating the use of large Uncrewed Aircraft Systems (UAS) for cargo transportation between airports and/or other National Airspace System (NAS) access points. Notre Dame University South Bend, Indiana NASA, Notre Dame and Iowa State are developing and evaluating automated techniques for predicting, detecting, diagnosing, and mitigating diverse configuration problems and runtime failures in small Uncrewed Aerial Systems (sUAS), also called drones. Ohio Department of Transportation (ODOT) Springfield, Ohio NASA and ODOT will share critical flight and ground operations safety data during flight tests. These flight tests will help evaluate safety management systems for highly-automated aircraft. In a separate effort, NASA and ODOT are exchanging information to advance autonomous cargo aircraft operations. NASA is also working with ODOT to brainstorm the ways that air taxis and drones, and the infrastructure for this new transportation system, could be integrated into city planning by creating a joint document with NASA using computer modeling software to describe how this could work in their locality. Old Dominion University Norfolk, Virginia NASA and Old Dominion University are conducting studies focusing on the collaboration between humans and autonomous systems to see how the two would work together to manage large numbers of autonomous AAM flights. NASA is developing a Human Autonomy Teaming Task Battery to evaluate performance and workload for a human working with an autonomous system. ONERA (Office National d’Etudes et de Recherches Aérospatiales) – The French Aerospace Lab Palaiseau, France In one effort, NASA and ONERA are using computational fluid dynamics (CFD), or the use of mathematics, physics and computational software to visualize how a gas or liquid flows, for broadband noise prediction of a hovering rotor to advance broadband noise prediction capabilities for AAM aircraft. In another effort, NASA and ONERA are collaborating on the acoustics modeling of ducted rotors with optimized liners. These findings will be used to improve the acoustic performance of future tilt-duct aircraft. Penn State University State College, Pennsylvania NASA and Penn State are developing safe role allocations and communication between human-to-human or human-to-machine communication to assure new delegations of authority and responsibility will work in autonomous systems. Stanford University Stanford, California NASA and Stanford are developing and demonstrating a framework for providing algorithmic assurances and designing fault detection, isolation, and recovery (FDIR) methods for those components of the autonomy stack that rely on data-driven methods based on machine learning. University Of Central Florida (UCF) Orlando, Florida NASA is working with UCF to improve the safety of drones through data-driven predictive analytics. Université de Sherbrooke Quebec, Canada NASA and Université de Sherbrooke are investigating the noise generated by fundamental airfoil shapes. NASA will provide customized test articles that will be tested in the University’s anechoic wind tunnel facility. The findings will be used to improve noise predictions for a wide variety of aircraft. U.S. Army Combat Capabilities Development Command (DEVCOM) and U.S. Navy Office of Naval Research (ONR) Moffett Field, California Arlington, Virginia Effort between NASA, DEVCOM and ONR to fund the Vertical Lift Research Centers of Excellence (VLRCOE). The VLRCOE program was renewed in 2021, with three awardees selected to receive approximately $22M in funding over five years. The Georgia Institute of Technology, Penn State University, and the University of Maryland were selected to perform research on a wide variety of vertical lift technology topics. In addition to establishing a workforce pipeline, this effort will help improve the safety, performance and affordability of civilian and military helicopters and other vertical lift aircraft. University of Texas Austin, Texas NASA and several universities are demonstrating a NASA-created safety management system called “In-Time Learning-Based Safety Management for Scalable Heterogeneous AAM Operations.” This is a combined effort with George Washington University, Vanderbilt University, MIT/Lincoln Labs, and UT-Austin. Vanderbilt University Nashville, Tennessee NASA and several universities are demonstrating a NASA-created safety management system called “In-Time Learning-Based Safety Management for Scalable Heterogeneous AAM Operations.” This is a combined effort with George Washington University, Vanderbilt University, MIT/Lincoln Labs, and UT-Austin. Virginia Commonwealth University (VCU) Richmond, Virginia NASA, VCU and NIST are developing and evaluating an integrated model- and data-driven approach for risk monitoring to identify and predict elevated risk states for known risk(s) in autonomous technology. Wisk Mountain View, California NASA and Wisk are testing the human response to autonomy to find management solutions for autonomous air taxis using only a small number of human ground operators. This research will lead to a better understanding of technology solutions needed to ensure safe, routine, multi-aircraft AAM flights. Xwing San Francisco, California NASA and Xwing are sharing critical flight and ground operations data, algorithms, and evaluating safety management systems to ensure autonomous aircraft operations are safe. Zipline San Francisco, California NASA and Zipline are testing the human response to autonomy to find management solutions for autonomous air taxis using only a small number of human ground operators. This research will lead to a better understanding of technology solutions needed to ensure safe, routine, multi-aircraft AAM flights. Active NASA Space Act Agreements and NASA Interagency Agreements that relate to Advanced Air Mobility (AAM) are listed here. NASA does not endorse any entity listed here. NASA works with research partners under these agreements to improve technology for the entire AAM industry’s benefit. AAM Partners List (PDF) Partnerships Contact Jamie Turner jamie.m.turner@nasa.gov Media Contact Teresa Whiting teresa.whiting@nasa.gov Facebook logo @NASA@NASAaero@NASA_es @NASA@NASAaero@NASA_es Instagram logo @NASA@NASAaero@NASA_es Linkedin logo @NASA Explore More 4 min read NASA Autonomous Flight Software Successfully Used in Air Taxi Stand-Ins Article 2 months ago 3 min read NASA Flies Drones Autonomously for Air Taxi Research Researchers at NASA’s Langley Research Center in Hampton, Virginia recently flew multiple drones beyond visual… Article 3 months ago 3 min read NASA, Joby Pave the Way for Air Taxis in Busy Airports Article 3 months ago Keep Exploring Discover More Topics From NASA Missions Humans In Space Solar System Exploration Solar System Overview The solar system has one star, eight planets, five dwarf planets, at least 290 moons, more than… Explore NASA’s History Share Details Last Updated Mar 20, 2024 EditorLillian GipsonContactJim Bankejim.banke@nasa.gov Related TermsAdvanced Air Mobility View the full article
-
22 Min Read The Marshall Star for March 20, 2024 Marshall Technologist Talks Solar Sail Technology in Rocket Center Exhibit By Jessica Barnett Space enthusiasts at the U.S. Space & Rocket Center were treated to a special exhibit featuring technologist Les Johnson of NASA’s Marshall Space Flight Center and a look at the future of solar sail technology. NASA technologist Les Johnson, on stage, discusses how the solar sail can use solar propulsion to travel farther in space than anyone has traveled before during an exhibit held March 12 at the U.S. Space & Rocket Center. NASA/Charles Beason Johnson shared the latest updates on the solar sail technology through brief presentations onstage in the Rocket Center’s atrium as well as one-on-one interactions with museum guests at the various displays set up near the stage. He discussed how the technology will work, showed a video of the solar sail team testing one of the sail’s four quadrants, and discussed what it could mean for the future of space exploration. “I’m excited about this type of propulsion, because it’s free, it doesn’t run out of fuel, and you can use it to do amazing things in the future,” Johnson said. “We could build really big sails – 10 to 100 times bigger than the Solar Cruiser sail – and instead of using sunlight, we could shine lasers on it and go out in the solar system, literally where we’ve never been before.” NASA continues to unfurl plans for solar sail technology as a promising method of deep space transportation. The agency cleared a key technology milestone in January with one of four identical solar sail quadrants successfully deploying. Together, the solar sail quadrants will make up the 17,800-square-foot sail. Marshall leads the solar sail team, which includes Florida-based Redwire Corporation as prime contractor and Huntsville-based NeXolve as subcontractor. Barnett, a Media Fusion employee, supports the Marshall Office of Communications. › Back to Top Robert Champion Named Manager of SLS Exploration Upper Stage Office at Marshall Robert Champion has been named as manager of the SLS (Space Launch System) Exploration Upper Stage Office at NASA’s Marshall Space Flight Center, effective March 24th. In his role, he will be responsible for the continued development of the exploration upper stage on the more powerful SLS Block 1B rocket, which is set to debut for the Artemis IV mission. Marshall manages the SLS Program. Robert Champion has been named as manager of the SLS (Space Launch System) Exploration Upper Stage Office at NASA’s Marshall Space Flight Center.NASA Champion has been director of the Office of Center Operations at Marshall since 2021. In that role, he managed center services that included industrial labor relations, environmental engineering, occupational health, facility management, logistics and transportation, protective services, emergency management, and subordinate site operations. Champion previously served as the director of NASA’s Michoud Assembly Facility in New Orleans from 2019 to 2021; deputy director of Marshall’s Propulsion Systems Department from 2015 to 2019; deputy director of Marshall’s Space Systems Department from 2014 to 2015; and deputy director at Michoud from 2010 to 2014. His 37-year career at NASA has included leadership roles in engineering, program and project organizations focused on launch vehicle development, system engineering, and propulsion systems. Champion has received several of NASA’s highest awards, including the Presidential Rank Award, the Exceptional Achievement Medal, the Medal for Exceptional Service, Space Flight Awareness Honoree, Director’s Commendation, and the Contracting Officers Technical Representative of the Year. He was selected as an American Institute of Aeronautics and Astronautics Associate fellow and received the organization’s 2018-2019 Holger Toftoy Award for outstanding technical management in the fields of aeronautics and astronautics. A native of Woodstock, Alabama, Champion holds a bachelor’s degree in aerospace engineering from Auburn University. He lives in Hazel Green with his wife, Maria Shelby. They have five adult children and six grandchildren. › Back to Top June Malone Named Director of the Office of Center Operations at Marshall June Malone has been named as director of the Office of Center Operations at NASA’s Marshall Space Flight Center, effective March 24. With an annual budget of approximately $94 million, the organization includes 120 engineers and specialized civil servants and more than 500 contractors. Services provided by Center Operations include industrial labor relations, environmental engineering, occupational health, facility management, logistics and transportation, protective services, emergency management, and subordinate site operations. June Malone has been named as director of the Office of Center Operations at NASA’s Marshall Space Flight Center.NASA Malone has been director of the Office of Strategic Analysis & Communications at Marshall since 2021. In that role, she led the organization in providing strategic planning, objective analysis, and comprehensive communication to support the policy, program, and budget decisions for the center. Malone has worked in a variety of leadership roles throughout her 30-year NASA career. She previously was manager for Marshall’s Office of Communications from 2019 to 2021, overseeing the center’s full communications portfolio, including media, social media, website content, exhibits, history, and employee communications. Previously in 2019, she worked in Marshall’s Office of Human Capital, where she established a new Human Resources Business Partner organization and operating model. She also held a year-long position in 2016-2017 as deputy director of the Office of Strategic Analysis & Communications. From 2014-2016 and again 2017-2019, Malone was manager of Marshall’s Office of Communication, guiding media and social media for all center projects, programs, and activities, including crisis and risk communication. She has managed public affairs and media relations activities for the Space Shuttle Propulsion Projects Office, the Space Launch Initiative, the Advanced Space Transportation Program, and the full suite of science and engineering work at Marshall. She was the primary NASA spokesperson for the Space Shuttle Propulsion Projects Office, communicating with media and the public on technical subjects and controversial issues that included the Columbia accident and Return to Flight. Prior to joining NASA in 1991, Malone was an active-duty Air Force officer from 1985-1991. She worked at the Pentagon on the secretary of the Air Force staff in the Office of Public Affairs as a public affairs officer, and subsequently at Tactical Air Command at Langley Air Force Base in Hampton, Virginia, during Operation Desert Storm. She formulated and implemented public affairs and media relations policy, strategic public affairs activities, and media relations plans. Malone holds a bachelor’s degree in communications from Southern Illinois University and a master’s degree in communications research from The Florida State University in Tallahassee. Her awards include a Silver Snoopy, NASA Outstanding Leadership Medal, Air Force Meritorious Service Medal, and Rotary National Award for Communication. An Illinois native, Malone and her husband, Roy, reside in Huntsville. Their son, Wil, is a NASA engineer, and their daughter, Madison, is a medical doctor in San Francisco. › Back to Top NASA Lights ‘Beacon’ on Moon with Autonomous Navigation System Test By Rick Smith For 30 total minutes in February, NASA lit a beacon on the Moon – successfully testing a sophisticated positioning system that will make it safer for Artemis-era explorers to visit and establish a permanent human presence on the lunar surface. Evan Anzalone, at lower left, principal investigator for the Lunar Node-1 demonstrator payload, monitors the LN-1 mission from the Lunar Utilization Control Area in the Huntsville Operations Support Center at NASA’s Marshall Space Flight Center. LN-1 successfully tested an autonomous navigation and geo-positioning system that will make Artemis-era lunar explorers safer as they work to establish a permanent human presence on the lunar surface.NASA The Lunar Node 1 demonstrator, or LN-1, is an autonomous navigation system intended to provide a real-time, point-to-point communications network on the Moon. The system – tested during Intuitive Machines’ IM-1 mission as part of NASA’s CLPS (Commercial Lunar Payload Services) initiative – could link orbiters, landers, and even individual astronauts on the surface, digitally verifying each explorer’s position relative to other networked spacecraft, ground stations, or rovers on the move. That system would be a marked improvement over conventional, Earth-based radio data relays, NASA researchers said – even more so compared to Apollo-era astronauts trying to “eyeball” distance and direction on the vast, mostly grey lunar surface. “We’ve lit a temporary beacon on the lunar shore,” said Evan Anzalone, LN-1 principal investigator at NASA’s Marshall Space Flight Center. “Now, we seek to deliver a sustainable local network – a series of lighthouses that point the way for spacecraft and ground crews to safely, confidently spread out and explore.” The experiment was launched Feb. 15 as a payload on the IM-1 mission. The Nova-C lander, named Odysseus, successfully touched down Feb. 22 near Malapert A, a lunar impact crater near the Moon’s South Pole region, executing the first American commercial uncrewed landing on the Moon. The lander spent its subsequent days on the surface conducting six science and technology demonstrations, among them LN-1, before it officially powered down on Feb. 29. “This feat from Intuitive Machines, SpaceX, and NASA demonstrates the promise of American leadership in space and the power of commercial partnerships under NASA’s CLPS initiative,” NASA Administrator Bill Nelson said in a statement after the landing. “Further, this success opens the door for new voyages under Artemis to send astronauts to the Moon, then on to Mars.” During IM-1’s translunar journey, the Marshall team conducted daily tests of the LN-1 beacon. The original plan was for the payload to transmit its beacon around the clock upon landing. NASA’s Deep Space Network, the international giant radio antenna array, would have received that signal for, on average, 10 hours daily. Instead, due to the lander’s touchdown orientation, LN-1 conducted two 15-minute transmissions from the surface. DSN assets successfully locked on the signal, feeding telemetry, navigation measurements, and other data to researchers at Marshall, NASA’s Jet Propulsion Laboratory, and Morehead State University in Morehead, Kentucky. The team continues to evaluate the data. LN-1 even provided critical backup to IM-1’s onboard navigation system, noted Dr. Susan Lederer, CLPS project scientist at NASA’s Johnson Space Center. The LN-1 team “really stepped up to the task,” she said, by relaying spacecraft positioning data during translunar flight to NASA’s Deep Space Network satellites at the Goldstone and Madrid Deep Space Communications Complexes in Fort Irwin, California, and Robledo de Chavela, Spain, respectively. Taken on Feb. 27, Odysseus captured an image using its narrow-field-of-view camera.Intuitive Machines In time, navigation aids such as Lunar Node-1 could be used to augment navigation and communication relays and surface nodes, providing increased robustness and capability to a variety of users in orbit and on the surface. As the lunar infrastructure expands, Anzalone envisions LN-1 evolving into something akin to a network that monitors and maintains a busy metropolitan subway system, tracking every “train” in real time, and operating as one part of a larger, LunaNet-compatible architecture, augmenting other NASA and international investments, including the Japanese Aerospace Exploration Agency’s Lunar Navigation Satellite System. And the technology promises even greater value to NASA’s Moon to Mars efforts, he said. LN-1 may improve data delivery to lunar explorers by just a matter of seconds over conventional relays – but real-time navigation and positioning becomes much more vital on Mars, where transmission delays from Earth can take up to 20 minutes. “That’s a very long time to wait for a spacecraft pilot making a precision orbital adjustment, or humans traversing uncharted Martian landscapes,” Anzalone said. “LN-1 can make lighthouse beacons of every explorer, vehicle, temporary or long-term camp, and site of interest we send to the Moon and to Mars.” Marshall engineers designed, developed, integrated, and tested LN-1 as part of the NPLP (NASA-Provided Lunar Payloads) project funded by the agency’s Science Mission Directorate. Marshall also developed MAPS (Multi-spacecraft Autonomous Positioning System), the underlying networked computer navigation software. MAPS previously was tested on the International Space Station in 2018, using NASA’s Space Communications and Navigations (SCaN) Testbed. NASA’s CLPS initiative oversees industry development, testing, and launch of small robotic landers and rovers supporting NASA’s Artemis campaign. Learn more here. Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications. › Back to Top NASA Artemis Mission Progresses with SpaceX Starship Test Flight As part of NASA’s Artemis campaign to return humans to the Moon for the benefit of all, the agency is working with SpaceX to develop the company’s Starship human landing system (HLS), which will land astronauts near the Moon’s South Pole during the Artemis III and Artemis IV missions. On March 14, SpaceX launched the third integrated flight test of its Super Heavy booster and Starship upper stage, an important milestone toward providing NASA with a Starship HLS for its Artemis missions. SpaceX launched the third integrated flight test of its Super Heavy booster and Starship upper stage from the company’s Starbase orbital launch pad at 8:25 a.m. CT on March 14. This flight test is an important milestone toward providing NASA with a Starship HLS for its Artemis missions.SpaceX A complement of 33 Raptor engines, fueled by super-cooled liquid methane and liquid oxygen, powered the Super Heavy booster with Starship stacked on top, from the company’s Starbase orbital launch pad at 8:25 a.m. CDT. Starship, using six Raptor engines, separated from the Super Heavy booster employing a hot-staging technique to fire the engines before separation at approximately three minutes into the flight, in accordance with the flight plan. This was the third flight test of the integrated Super Heavy-Starship system. “With each flight test, SpaceX attempts increasingly ambitious objectives for Starship to learn as much as possible for future mission systems development. The ability to test key systems and processes in flight scenarios like these integrated tests allows both NASA and SpaceX to gather crucial data needed for the continued development of Starship HLS,” said Lisa Watson-Morgan, HLS Program Manager at NASA’s Marshall Space Flight Center. This test accomplished several important firsts that will contribute to the development of Starship for Artemis lunar landing missions. The spacecraft reached its expected orbit and Starship completed the full-duration ascent burn. One objective closely tied to future Artemis operations is the transfer of thousands of pounds of cryogenic propellant between internal tanks during the spacecraft’s coast phase as part of NASA’s Space Technology Missions Directorate 2020 Tipping Point awards. The propellant transfer demonstration operations were completed, and the NASA-SpaceX team is currently reviewing the flight data that was received. This Tipping Point technology demonstration is one of more than 20 development activities NASA is undertaking to solve the challenges of using cryogenic fluids during future missions. As a key step toward understanding how super-cooled propellant sloshes within the tanks when the engines shut down, and how that movement affects Starship’s stability while in orbit, engineers will study flight test data to assess the performance of thrusters that control Starship’s orientation in space. They are also interested to learn more about how the fluid’s movement within the tanks can be settled to maximize propellant transfer efficiency and ensure Raptor engines receive needed propellant conditions to support restart in orbit. “Storing and transferring cryogenic propellant in orbit has never been attempted on this scale before,” said Jeremy Kenny, project manager, NASA’s Cryogenic Fluid Management Portfolio at Marshall. “But this is a game-changing technology that must be developed and matured for science and exploration missions at the Moon, Mars, and those that will venture even deeper into our solar system.” Under NASA’s Artemis campaign, the agency will land the first woman, first person of color, and its first international partner astronaut on the lunar surface and prepare for human expeditions to Mars. Commercial human landing systems are critical to deep space exploration, along with the Space Launch System rocket, Orion spacecraft, advanced spacesuits and rovers, exploration ground systems, and the Gateway space station. Read more about NASA’s Human Landing System. › Back to Top Evolved Adapter for Future NASA SLS Flights Readied for Testing A test article of the universal stage adapter for NASA’s more powerful version of its SLS (Space Launch System) rocket arrived to Building 4619 at NASA’s Marshall Space Flight Center on Feb. 22 from Leidos in Decatur, Alabama. A test article of the universal stage adapter for NASA’s more powerful version of its SLS (Space Launch System) rocket arrived to Building 4619 at NASA’s Marshall Space Flight Center on Feb. 22 from Leidos in Decatur, Alabama.NASA/Sam Lott The universal stage adapter will connect the rocket’s upgraded in-space propulsion stage, called the exploration upper stage, to NASA’s Orion spacecraft as part of the evolved Block 1B configuration of the SLS rocket. It will also serve as a compartment capable of accommodating large payloads, such as modules or other exploration spacecraft. The SLS Block 1B variant will debut on Artemis IV and will increase SLS’s payload capability to send more than 84,000 pounds to the Moon in a single launch. In Building 4619’s Load Test Annex High Bay at Marshall, the development test article will first undergo modal testing that will shake the hardware to validate dynamic models. Later, during ultimate load testing, force will be applied vertically and to the sides of the hardware. Unlike the flight hardware, the development test article has flaws intentionally included in its design, which will help engineers verify that the adapter can withstand the extreme forces it will face during launch and flight. The test article joins an already-rich history of rocket hardware that has undergone high-and-low pressure, acoustic, and extreme temperature testing in the multipurpose, high-bay test facility; it will be tested in the same location that once bent, compressed, and torqued the core stage intertank test article for SLS rocket’s Block 1 configuration. Leidos, the prime contractor for the universal stage adapter, manufactured the full-scale prototype at its Aerospace Structures Complex in Decatur. NASA is working to land the first woman, first person of color, and its first international partner astronaut on the Moon under Artemis. SLS is part of NASA’s backbone for deep space exploration, along with the Orion spacecraft and Gateway in orbit around the Moon and commercial human landing systems, next-generational spacesuits, and rovers on the lunar surface. SLS is the only rocket that can send Orion, astronauts, and supplies to the Moon in a single launch. Marshall manages the SLS and human landing system programs. › Back to Top NASA Study: Asteroid’s Orbit, Shape Changed After DART Impact When NASA’s DART (Double Asteroid Redirection Test) deliberately smashed into a 560-foot-wide asteroid on Sept. 26, 2022, it made its mark in more ways than one. The demonstration showed that a kinetic impactor could deflect a hazardous asteroid should one ever be on a collision course with Earth. Now a new study published in the Planetary Science Journal shows the impact changed not only the motion of the asteroid, but also its shape. The asteroid Dimorphos was captured by NASA’s DART mission just two seconds before the spacecraft struck its surface on Sept. 26, 2022. Observations of the asteroid before and after impact suggest it is a loosely packed “rubble pile” object.NASA/Johns Hopkins APL DART’s target, the asteroid Dimorphos, orbits a larger near-Earth asteroid called Didymos. Before the impact, Dimorphos had a roughly symmetrical “oblate spheroid” shape – like a squashed ball that is wider than it is tall. With a well-defined, circular orbit at a distance of about 3,900 feet from Didymos, Dimorphos took 11 hours and 55 minutes to complete one loop around Didymos. “When DART made impact, things got very interesting,” said Shantanu Naidu, a navigation engineer at NASA’s Jet Propulsion Laboratory in Southern California, who led the study. “Dimorphos’ orbit is no longer circular: Its orbital period” – the time it takes to complete a single orbit – “is now 33 minutes and 15 seconds shorter. And the entire shape of the asteroid has changed, from a relatively symmetrical object to a ‘triaxial ellipsoid’ – something more like an oblong watermelon.” Naidu’s team used three data sources in their computer models to deduce what had happened to the asteroid after impact. The first source was aboard DART: The spacecraft captured images as it approached the asteroid and sent them back to Earth via NASA’s Deep Space Network (DSN). These images provided close-up measurements of the gap between Didymos and Dimorphos while also gauging the dimensions of both asteroids just prior to impact. The second data source was the DSN’s Goldstone Solar System Radar, located near Barstow, California, which bounced radio waves off both asteroids to precisely measure the position and velocity of Dimorphos relative to Didymos after impact. Radar observations quickly helped NASA conclude that DART’s effect on the asteroid greatly exceeded the minimum expectations. The third and most significant source of data: ground telescopes around the world that measured both asteroids’ “light curve,” or how the sunlight reflecting off the asteroids’ surfaces changed over time. By comparing the light curves before and after impact, the researchers could learn how DART altered Dimorphos’ motion. As Dimorphos orbits, it periodically passes in front of and then behind Didymos. In these so-called “mutual events,” one asteroid can cast a shadow on the other, or block our view from Earth. In either case, a temporary dimming – a dip in the light curve – will be recorded by telescopes. See the DART impact with NASA’s Eyes on the Solar System. “We used the timing of this precise series of light-curve dips to deduce the shape of the orbit, and because our models were so sensitive, we could also figure out the shape of the asteroid,” said Steve Chesley, a senior research scientist at JPL and study co-author. The team found Dimorphos’ orbit is now slightly elongated, or eccentric. “Before impact,” Chesley continued, “the times of the events occurred regularly, showing a circular orbit. After impact, there were very slight timing differences, showing something was askew. We never expected to get this kind of accuracy.” This illustration shows the approximate shape change that the asteroid Dimorphos experienced after DART hit it. Before impact, left, the asteroid was shaped like a squashed ball; after impact it took on a more elongated shape, like a watermelon.NASA/JPL-Caltech The models are so precise, they even show that Dimorphos rocks back and forth as it orbits Didymos, Naidu said. The team’s models also calculated how Dimorphos’ orbital period evolved. Immediately after impact, DART reduced the average distance between the two asteroids, shortening Dimorphos’ orbital period by 32 minutes and 42 seconds, to 11 hours, 22 minutes, and 37 seconds. Over the following weeks, the asteroid’s orbital period continued to shorten as Dimorphos lost more rocky material to space, finally settling at 11 hours, 22 minutes, and 3 seconds per orbit – 33 minutes and 15 seconds less time than before impact. This calculation is accurate to within 1 ½ seconds, Naidu said. Dimorphos now has a mean orbital distance from Didymos of about 3,780 feet – about 120 feet closer than before impact. “The results of this study agree with others that are being published,” said Tom Statler, lead scientist for solar system small bodies at NASA Headquarters. “Seeing separate groups analyze the data and independently come to the same conclusions is a hallmark of a solid scientific result. DART is not only showing us the pathway to an asteroid-deflection technology, it’s revealing new fundamental understanding of what asteroids are and how they behave.” These results and observations of the debris left after impact indicate that Dimorphos is a loosely packed “rubble pile” object, similar to asteroid Bennu. ESA’s (European Space Agency) Hera mission, planned to launch in October 2024, will travel to the asteroid pair to carry out a detailed survey and confirm how DART reshaped Dimorphos. DART was designed, built, and operated by the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Planetary Defense Coordination Office, which oversees the agency’s ongoing efforts in planetary defense. The mission is a project of the agency’s Planetary Mission Program Office, which is at NASA’s Marshall Space Flight Center. DART was humanity’s first mission to intentionally move a celestial object. JPL, a division of Caltech in Pasadena, California, manages the DSN for NASA’s Space Communications and Navigation (SCaN) program within the Space Operations Mission Directorate at the agency’s headquarters. › Back to Top Crew, Cargo Launches to Space Station Scheduled for March 21 Equipment installs, health investigations, and training occupied the schedule aboard the International Space Station on March 19 as the seven orbital residents near the arrival of three crew members and a cargo delivery. NASA astronaut Tracy C. Dyson, Roscosmos cosmonaut Oleg Novitskiy, and spaceflight participant Marina Vasilevskaya of Belarus pose for a portrait at the Gagarin Cosmonaut Training Center on Nov. 2, 2023.Credits: GCTC/Andrey Shelepin NASA’s SpaceX 30th commercial resupply mission to the station is scheduled for launch at 3:55 p.m. CDT March 21 from Space Launch Complex 40 in Florida. The Dragon cargo craft will deliver food, supplies, and new science investigations to the crew, including a set of sensors for the free-flying Astrobee robots and a new botany experiment to examine how two types of grass capture carbon dioxide from the atmosphere. Dragon will autonomously dock to the zenith port of the Harmony module at 6:30 a.m. March 23. Ahead of Dragon’s liftoff, three crew members – NASA astronaut Tracy Dyson, cosmonaut Oleg Novitsky, and Flight Engineer Marina Vasilevskaya of Belarus – will launch from the Baikonur Cosmodrome in Kazakhstan at 8:21 a.m. March 21. The international crew will take a short ride to the station, docking only a few hours later at 11:39 p.m., before opening the hatch and joining the Expedition 70 crew in microgravity. Dyson will begin a six-month microgravity research mission once aboard, while Novitsky and Vasilevskaya will spend 12 days on station before departing back to Earth with NASA astronaut Loral O’Hara. NASA TV will cover both launches beginning at 7:20 a.m. and 3:35 p.m. respectively. Aboard station, the crew returned to work March 19 following a few days off-duty. Throughout the day, O’Hara and two of her NASA crewmates, Michael Barratt and Matthew Dominick, completed a round of SpaceX Dragon rendezvous training ahead of Dragon’s cargo arrival. The HOSC (Huntsville Operations Support Center) at NASA’s Marshall Space Flight Center provides engineering and mission operations support for the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within the HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day. › Back to Top Europa Clipper Mission Highlighted on ‘This Week at NASA’ Technicians at NASA’s Kennedy Space Center recently fully extended the first of two five-panel solar arrays for the agency’s Europa Clipper spacecraft. The mission is featured in “This Week @ NASA,” a weekly video program broadcast on NASA-TV and posted online. The 46.5-foot arrays also will be inspected and cleaned as part of assembly, test, and launch operations. Targeted for launch in October 2024, the mission will study Jupiter’s moon Europa, which is believed to have a global ocean beneath its icy crust that has more water than all of Earth’s oceans combined. Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission. View this and previous episodes at “This Week @NASA” on NASA’s YouTube page. › Back to Top View the full article
-
The four crew members of NASA’s SpaceX Crew-7 mission are seated inside the SpaceX Dragon spacecraft after landing in the Gulf of Mexico on March 12, 2024.Credits: NASA/Joel Kowsky After spending 199 days in space, NASA’s SpaceX Crew-7 crew members will discuss their science mission aboard the International Space Station during a news conference at 2:30 p.m. EDT Monday, March 25, at the agency’s Johnson Space Center in Houston. NASA astronaut Jasmin Moghbeli, ESA (European Space Agency) astronaut Andreas Mogensen, JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa, and Roscosmos cosmonaut Konstantin Borisov returned to Earth aboard a SpaceX Dragon spacecraft, splashing down at 5:47 a.m., March 12, off the coast of Pensacola, Florida, before flying back to Houston. Crew will answer media questions about their mission aboard the space station and their return to Earth. Event coverage will stream live on NASA+, NASA Television, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media. Media are invited to attend in-person or virtually. Media must RSVP to the Johnson newsroom no later than 12:30 p.m. March 25 at jsccommu@mail.nasa.gov or 281-483-5111. Media should dial-in to the news conference by 2 p.m. the day of the event to ask a question. Questions also may be submitted on social media using #AskNASA. A copy of NASA’s media accreditation policy is online. The crew spent six-and-a-half months in space, with 197 days total aboard the space station. During the mission, Moghbeli completed a spacewalk, a first in her career, alongside NASA astronaut Loral O’Hara. It was the first spaceflight for Moghbeli and Borisov, and the second for Furukawa and Mogensen. The crew lived and worked aboard the station since Aug. 26, 2023. During the mission, crew contributed to hundreds of experiments and technology demonstrations, including studying plant immune function in microgravity, testing materials in the space environment, and observing thunderstorms to understand the effects of lightning and electrical activity on Earth’s climate and atmosphere. These experiments are helping to prepare for exploration beyond low Earth orbit and to benefit life on Earth. They spent five days with the newly arrived crew of NASA’s SpaceX Crew-8 mission, who docked to the station on March 5, and conducted a direct handover introducing three first-time flyers to the space station, discussing ongoing tasks and system statuses. Get the latest NASA space station news, images and features on Instagram, Facebook, and X. Learn more about NASA’s Commercial Crew Program: https://www.nasa.gov/commercialcrew -end- Josh Finch / Claire O’Shea Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov Chelsey Ballarte Johnson Space Center, Houston 281-483-5111 chelsey.n.ballarte@nasa.gov Share Details Last Updated Mar 20, 2024 LocationNASA Headquarters Related TermsInternational Space Station (ISS)AstronautsHumans in SpaceISS ResearchJasmin MoghbeliJohnson Space Center View the full article
-
NASA/Kim Shiflett and Isaac Watson In celebration of Women’s History Month, NASA highlights the multifaceted group of women behind the launch and recovery efforts for Artemis missions. They are a driving force in preparing and planning for crewed missions and are helping inspire the next generation of space explorers – the Artemis Generation. On the left is Artemis Launch Director Charlie Blackwell-Thompson and some of the women of the launch team wearing green to symbolize they are “go” for launch. As the agency prepares to return to the Moon under Artemis, the teams in the launch control center at NASA’s Kennedy Space Center in Florida are responsible for launching the SLS (Space Launch System) rocket and Orion spacecraft. The team consists of about 30% women, in contrast to when there was only one woman sitting on launch console during the Apollo 11 Moon landing mission. On the right is Artemis Landing and Recovery Director Lili Villarreal during Underway Recovery Test-11. This most recent recovery test marked the first time teams and the Artemis II astronauts practiced the procedures and operations they will undergo after Orion splashes down in the Pacific Ocean at the end of the Artemis II test flight. View the full article
-
The road to the Moon landing cleared a major hurdle in March 1969 with the flight of Apollo 9 that tested all components of the spacecraft in low Earth orbit. Astronauts James A. McDivitt and Russell L. Schweickart flew the Lunar Module (LM) Spider while David R. Scott awaited their return in the Command Module (CM) Gumdrop. The success of Apollo 9 paved the way for Apollo 10, the next mission planned for May, to test the combined spacecraft in lunar orbit. Preparations for Apollo 10 continued with the rollout of the Saturn V to its launch pad. And if that dress rehearsal mission completed all its objectives, Apollo 11 could achieve the first Moon landing in July. The astronauts for that mission continued their training as engineers tested the spacecraft and assembled the rocket. Apollo 9 Left: Apollo 9 astronauts James A. McDivitt, left, David R. Scott, and Russell L. Schweickart pose in front of their Saturn V rocket at NASA’s Kennedy Space Center in Florida. Middle: The Apollo 9 crew patch. Right: Liftoff of Apollo 9! At 11 a.m. on March 3, 1969, Apollo 9 lifted off from Launch Pad 39A at NASA’s Kennedy Space Center (KSC) in Florida. For only the second time, the giant Saturn V lifted three astronauts into space. Although planned for Feb. 28, managers delayed the liftoff by three days to give the astronauts time to recover from upper respiratory infections. The incident prompted NASA to institute a preflight medical quarantine for astronauts on future missions to minimize their risk of contracting infectious diseases. Left: In the Launch Control Center (LCC) at NASA’s Kennedy Space Center (KSC) in Florida, KSC Director Kurt H. Debus, left, gives a tour to Vice President Spiro T. Agnew as they await the launch of Apollo 9. Middle: Controllers in the LCC’s Firing Room 2 monitor Apollo 9’s countdown. Right: In Mission Control at the Manned Spacecraft Center, now NASA’s Johnson Space Center in Houston, Apollo 9 Lead Flight Director Eugene F. Kranz, seated, monitors the flight’s progress. Controllers in Firing Room 2 of the Launch Control Center (LCC) monitored Apollo 9’s smooth countdown. Vice President Spiro T. Agnew, who chaired the National Aeronautics and Space Council, attended the launch, escorted by NASA Acting Administrator Thomas O. Paine and KSC Director Kurt H. Debus. As soon as the Saturn V cleared the launch tower, control of the flight switched from the LCC to Mission Control at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Apollo 9 Lead Flight Director Eugene F. Kranz and his team of controllers monitored the launch. Eleven minutes after liftoff, the Saturn V’s three stages placed Apollo 9 in orbit around the Earth. During the 10-day mission, Flight Directors Gerald D. Griffin and M.P. “Pete” Frank took their turns along with Kranz leading their teams to monitor the flight. Left: The Lunar Module Spider still attached to the Saturn V rocket’s S-IVB third stage. Middle: Apollo 9 astronaut Russell L. Schweickart on Spider’s front porch during the mission’s dual spacewalk – note fellow astronaut David R. Scott reflected in Schweickart’s visor. Right: Scott in the open hatch of the Command Module Gumdrop. Two hours and 41 minutes after launch, the Command and Service Module (CSM) separated from the S-IVB third stage and pulled a safe distance away to begin the Transposition and Docking maneuver. Scott turned Gumdrop around to face Spider, still attached to the S-IVB, and slowly closed the gap between the two spacecraft, completing the first successful docking of the Apollo program. About an hour later, springs ejected the docked spacecraft from the S-IVB. Over the next few hours, ground controllers twice restarted the S-IVB’s engine to simulate a Trans Lunar Injection, eventually sending the spent rocket stage into solar orbit. Meanwhile, the astronauts pressurized the tunnel between Gumdrop and Spider and connected umbilicals to power the LM while the two spacecraft remained docked. The astronauts next performed the first of eight planned burns of the Service Module’s (SM) Service Propulsion System (SPS) engine, a five-second maneuver that raised the spacecraft’s orbit. The burn validated that the docking mechanism between the two vehicles and that the LM itself could withstand the firing of the large SPS engine. The crew settled down for their first night’s sleep in space – for the first time in the Apollo Program, all crew members slept at the same time and not in shifts as on previous missions. The next day, the crew conducted three SPS engine burns of varying durations to demonstrate the controllability of the docked vehicles using the spacecraft’s digital autopilot. The third day saw the initial activation of the LM Spider. Schweickart first and then McDivitt floated through the tunnel from Gumdrop. They closed the hatch, brought the LM’s systems to life, and extended the vehicle’s four landing legs. McDivitt informed Mission Control that Schweickart had experienced symptoms of space motion sickness, including vomiting twice, but that he now felt better. Mission Control, in consultation with flight surgeons and the crew, agreed that the mission could continue as planned, but out of an abundance of caution they curtailed the spacewalk scheduled for the next day. Instead of translating to Gumdrop and back as originally planned, Schweickart would remain on Spider’s front porch to evaluate the spacesuit and the Portable Life Support System (PLSS) backpack. Schweickart and McDivitt then began the first TV transmission of the mission, a seven-minute broadcast showing the duo in the confined space of the LM. McDivitt and Schweickart moved on to perform the first test of the Descent Propulsion System (DPS) engine, the rocket used to land the LM on the Moon. Although successfully tested during the uncrewed Apollo 5 mission in January 1968, this test included a CSM docked to the LM. The burn evaluated if the LM’s engine could serve as a backup in case of a problem with the SPS – in retrospect a very useful test given Apollo 13 relied on the method just over a year later. After the 372-second burn, capsule communicator (capcom) Stuart A. Roosa called up to the crew, “Spider, that was a beautiful burn, man, you were right down the tube,” generating this response from McDivitt, “Looked pretty neat from here, too.” McDivitt and Schweickart deactivated Spider for the night and transferred back to Gumdrop. The crew conducted the 43-second fifth burn of the SPS to circularize the spacecraft’s orbit. The Apollo 9 astronauts began their fourth day in space by donning their spacesuits and Schweicakrt and McDivitt once again transferred to Spider. In the LM, Schweickart, fully recovered from his earlier illness, donned the PLSS that provided him with oxygen during his spacewalk. Scott received his life support via umbilicals connected to the CM and McDivitt similarly used the LM’s life support system. McDivitt depressurized Spider, and minutes later Scott did the same with Gumdrop. Schweickart floated out through the LM’s side hatch onto the front porch, exclaiming “Hey, this is like spectacular.” He placed his feet into specialized gold-painted foot restraints dubbed the “golden slippers.” Scott then opened the CM side hatch and floated partway out of the spacecraft. Mission Control now communicated with three different parties, with Schweickart picking up the callsign Red Rover, a nod to his red hair. Scott retrieved thermal samples from the outside of Gumdrop. Schweickart did the same from the outside of Spider and tested out the handrails near the hatch and found them to be easy for maneuvering. Scott and Schweickart reentered their respective vehicles, having each spent about 37 minutes outside. Mission Control considered this first, and the only one before the Moon landing, test of the spacesuits and PLSS a complete success. After a 15-minute TV broadcast, McDivitt and Schweickart returned to Gumdrop to rejoin Scott for the night. Left: The Lunar Module (LM) Spider with James A. McDivitt and Russell L. Schweickart aboard, begins its departure from the Command Module (CM) Gumdrop, with David R. Scott aboard. Middle: McDivitt and Schweickart aboard Spider’s ascent stage have returned to Gumdrop. Right: View of Gumdrop from Spider. For their fifth day in space, the Apollo 9 crew had a full plate – undocking of Spider from Gumdrop, testing the LM’s Descent and Ascent Stage engines by conducting separation maneuvers followed by a rendezvous and docking with the CM. This marked the first time astronauts flew in a spacecraft not designed to reenter the Earth’s atmosphere, making redocking with Gumdrop essential. Spider backed away from Gumdrop to about 50 feet and began a slow turn so Scott in the CM could inspect it. He commented about Spider, “That’s a nice looking machine.” A small 10-second burn by the SM’s Reaction Control System (RCS) thrusters increased the separation distance to about three miles. About 45 minutes after undocking, McDivitt fired Spider’s DPS engine for 19 seconds, first at 10% thrust then throttling it up to 40% thrust, to begin the separation maneuver that placed it about 50 miles from Gumdrop before orbital mechanics brought the two spacecraft closer again. The next maneuver in the separation sequence, a 22-second DPS burn, opened the distance to about 100 miles. To begin the rendezvous back to Gumdrop, McDivitt first fired Spider’s Ascent Stage RCS thrusters for 32 seconds, at the same time jettisoning the Descent Stage. It remained in orbit until March 22, burning up on reentry over the Indian Ocean. The next rendezvous maneuver, lasting three seconds, tested the Ascent Propulsion System (APS) engine for the first time, followed by a second APS burn lasting 38 seconds, putting Spider on an intercept course with Gumdrop. Two small course corrections refined the trajectory and Spider stopped about 100 feet from Gumdrop to begin a pitchover maneuver, allowing Scott to inspect the ascent stage including its engine, commenting, “You’re the biggest, friendliest, funniest looking Spider I’ve ever seen.” The two craft docked, having flown separately for six hours 23 minutes. Two hours after docking, McDivitt and Schweickart rejoined Scott in Gumdrop, and then they jettisoned Spider. Mission Control commanded Spider’s APS to fire for six minutes, placing it into a highly elliptical Earth orbit from which it did not decay until Oct. 23, 1981. The Apollo 9 astronauts had met their mission’s primary objectives, and they still had five more days in space. Left: Experiment S065 multispectral camera installed on the Command Module’s side hatch window. Middle: Multispectral image of the San Diego area. Right: Color infrared image of the Salton Sea area in California. The first major task of flight day six involved the sixth SPS engine. This brief one and a half second burn lowered the low point of Gumdrop’s orbit, to enhance a backup capability to use the RCS thrusters for the deorbit burn at the end of the mission, should a problem arise with the SPS. Shortly after this burn, the crew set up the one formal scientific investigation of their mission – Experiment S065 Multispectral Terrain Photography, a cluster of four Hasselblad 70 mm cameras mounted in Gumdrop’s round hatch window. The experiment provided photographs taken simultaneously in four specific portions of the visible and near infrared spectrum. The experiment served as a precursor for the Earth Resources Technology Satellite (ERTS), later renamed Landsat, and for multispectral photography conducted aboard the Skylab space station in the early 1970s. Over the next four days, the astronauts continued observations with the S065 camera system, exposing 127 complete four-frame sets. Left: The Apollo 9 Command Module Gumdrop descends on its three main parachutes just moments before touchdown. Middle: Minutes after splashdown, the rescue helicopter from the U.S.S. Guadalcanal prepares to drop swimmers into the water to safe the capsule and retrieve the astronauts. Right: Apollo 9 astronauts Russell L. Schweickart, left, David R. Scott, and James A. McDivitt safely aboard the Guadalcanal. On flight day eight, the crew completed the seventh SPS burn, a 25-second firing to establish the proper trajectory for the deorbit burn. On Mar. 13, 1969, after 151 revolutions around the Earth and while passing over Hawaii, the crew fired the SPS engine for the eighth and final time. Lasting just under 12 seconds, the burn brought Apollo 9 out of orbit. Gumdrop separated from its SM and pointed its heat shield in the direction of flight. During reentry, a sheath of ionized gas formed around the capsule by the rapid deceleration led to a 4-minute radio blackout, after which the drogue parachutes deployed. The three main parachutes opened at 10,000 feet altitude, slowing the spacecraft to about 22 miles per hour at splashdown. Left: The Apollo 9 astronauts, in white overalls, on the elevator deck of the U.S.S. Guadalcanal, with the Mobile Quarantine Facility (MQF) visible in the background. Middle: The Apollo 9 astronauts, wearing blue baseball caps, peer into the window of the MQF and greet the occupants. Right: Apollo 9 astronauts Russell L. Schweickart, left, David R. Scott, and James A. McDivitt prepare to cut the cake in their honor aboard the Guadalcanal. The Apollo 9 astronauts’ return trip from the U.S.S. Guadalcanal to Houston. Left: Carrying flowers after a stopover on Eleuthera in The Bahamas. Middle: A brief layover at NASA’s Kennedy Space Center in Florida. Right: Arriving at Ellington Air Force Base in Houston. The splashdown occurred in the Atlantic Ocean about 670 miles south-southwest of Bermuda, and about 3 miles from the prime recovery ship the U.S.S. Guadalcanal (LPH-7). McDivitt, Scott, and Schweickart had spent 241 hours and 54 seconds in space. Forty-nine minutes after splashdown, recovery teams had the crew aboard the recovery ship. The next day, a helicopter flew them to Eleuthera in the Bahamas, where they boarded a plane to KSC for a brief ceremony, and then back to Houston for a large welcome home reception and a reunion with their families at Ellington Air Force Base. The successful Apollo 9 mission, the most complex crewed space mission flown to that time, brought the Moon landing one step closer. Left: In Washington, D.C., Vice President Spiro T. Agnew, second from left, accepts a framed American flag flown in space by Apollo 9 astronauts Russell L. Schweickart, left, David R. Scott, and James A. McDivitt. Right: In front of the Apollo 8 Command Module at the 1969 Paris Air Show, astronauts meet cosmonauts – Scott, Vladimir A. Shatalov, McDivitt, Aleksei S. Yeliseyev, and Schweickart. Following postflight debriefs, McDivitt, Scott, and Schweickart traveled to Washington, D.C., where on March 26, Vice President Agnew presented them with Distinguished Service Medals for their execution of the historic Apollo 9 mission. They in turn presented the Vice President with a framed American flag they had taken to space. Among other postflight events and celebrations, the trio attended the Paris Air Show and on May 29 met Soviet cosmonauts Vladimir A. Shatalov and Aleksei S. Yeliseyev who had flown as part of the Soyuz 4 and 5 docking and spacewalk crew exchange mission in January 1969. Left: Workers at Norfolk Naval Air Station in Virginia offload the Apollo 9 Command Module Gumdrop from the U.S.S. Guadalcanal for its cross country trip to California. Middle: Gumdrop on display at the Michigan Space and Science Center in Jackson. Image credit: courtesy Atlas Obscura. Right: Gumdrop on display at the San Diego Air & Space Museum. Workers offloaded Gumdrop from the Guadalcanal in Norfolk, Virginia, for transport aboard a U.S. Air Force cargo jet to Long Beach, California, from where they trucked it to the North American Rockwell plant in Downey for postflight inspection. NASA transferred Gumdrop to the Smithsonian Institution in 1973. In 1977, it went on display at the Michigan Space and Science Center in Jackson, Michigan, McDivitt’s hometown. When that facility closed in 2004, Gumdrop transferred to the San Diego Air & Space Museum, where visitors can view it today. Apollo 10 Left: The Apollo 10 Saturn V leaves the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida. Middle: The Apollo 10 Saturn V has reached Launch Pad 39B. Right: Apollo 10 astronauts John W. Young, left, Eugene A. Cernan, and Thomas P. Stafford pose before their Saturn V rocket. On March 11, as the Apollo 9 astronauts neared the end of their mission, workers at KSC rolled the Apollo 10 Saturn V vehicle from the Vehicle Assembly Building (VAB) to its launch pad. Apollo 10’s assembly marked the first use of the VAB’s High Bay 2, requiring the stack to exit the VAB’s rear and make a sweeping loop around the building to reach the crawlerway to the launch pads. Apollo 10 also marked the first use of Pad 39B. On March 17, NASA managers formally set Apollo 10’s launch date as May 18. Apollo 10 astronauts Thomas P. Stafford, John W. Young, and Eugene A. Cernan and their backups L. Gordon Cooper, Donn F. Eisele, and Edgar D. Mitchell continued training in spacecraft simulators and testing their spacesuits in vacuum chambers. On March 27, the prime crew conducted a walk-through of Pad 39B and trained on emergency escape procedures. The next day, the backup crew practiced water egress training in the Water Immersion Facility in MSC’s Building 260, and repeated the training in the Gulf of Mexico the following week. Apollo 11 Left: Apollo 11 astronauts Neil A. Armstrong, left, Edwin E. “Buzz” Aldrin, and Michael Collins, not visible, prepare for an altitude chamber test of their Command Module at NASA’s Kennedy Space Center (KSC) in Florida. Middle: Apollo 11 backup crew members James A. Lovell and Frew W. Haise have entered the chamber for a Lunar Module altitude test. Right: In KSC’s Vehicle Assembly Building, workers lower the S-IVB third stage onto the Apollo 11 Saturn V rocket. Workers in the VAB’s High Bay 3 stacked the Apollo 11 Saturn V’s S-IC first stage on Feb. 21. They added the S-II second stage and S-IVB third stage on March 4 and 5, respectively. The spacecraft for Apollo 11 continued testing in KSC’s Manned Spacecraft Operations Building (MSOB). With their historic mission only five months away, the Apollo 11 prime crew of Neil A. Armstrong, Michael Collins, and Edwin E. “Buzz” Aldrin and their backups James A. Lovell, William A. Anders, and Fred W. Haise busied themselves training for the Moon landing, spending time in spacecraft simulators. The prime and backup crews participated in altitude chamber tests of both their CM and LM. Mobile Quarantine Facility, Lunar Receiving Laboratory, and Lunar Module Drop Tests Left: Flight surgeon Dr. William R. Carpentier, left, and the three astronaut surrogates wearing Biological Isolation Garments, prepare to enter the Mobile Quarantine Facility (MQF) aboard the U.S.S. Guadalcanal. Middle: Dr. Carpentier, left, astronaut surrogates Paul H. Kruppenbacher, Arthur E. Lizza, and Michael T. “Tex” Ward, and engineer John K. Hirasake inside the MQF aboard the Guadalcanal. Right: Workers at Norfolk Naval Air Station in Virginia lift the MQF off the Guadalcanal onto a truck for its return to Houston. Preparations for ground support facilities for the first lunar landing mission continued. In conjunction with the Apollo 9 splashdown and recovery operations aboard the Guadalcanal, NASA conducted a simulation of recovery operations of astronauts returning from a lunar mission. NASA Flight Surgeon Dr. William R. Carpentier, project engineer John K. Hirasaki, and three astronaut stand-ins, Paul H. Kruppenbacher, Michael T. “Tex” Ward, and Arthur E. Lizza, spent 10 days inside a Mobile Quarantine Facility (MQF), a modified Airstream trailer designed to temporarily house astronauts returning from the Moon. The three astronaut surrogates began the simulation by entering a mockup CM that sailors placed in the ocean and recovered as if returning from a space mission. The trio donned Biological Isolation Garments (BIG), meant to prevent contamination of Earth by any possible lunar organisms. Once on board the Guadalcanal, the three accompanied by Carpentier and Hirasaki entered the MQF for four days, where the just-recovered Apollo 9 crew visited them through the window of the trailer. The five stayed inside the MQF except for the short time it was transferred from the Guadalcanal to a waiting transport aircraft at Norfolk Naval Air Station and flown back to Houston. After offloading, the MQF and its five inhabitants transferred to the Lunar Receiving Laboratory (LRL) in MSC’s Building 37 to begin a simulated quarantine. Overall, the exercise tested the procedures for the activities after the first lunar landing mission, with many lessons learned. Left: During a simulation, workers line up in the kitchen of the Crew Reception Area of the Lunar Receiving Laboratory at the Manned Spacecraft Center (MSC), now NASA’s Johnson Space Center in Houston. Middle: The Vibration and Acoustics Test Facility (VATF) at MSC. Right: The Lunar Module during drop testing in the VATF. Managers, scientists, technicians, and engineers conducted a 30-day simulation in the LRL, the most complex test of the facility to verify that all its components would be ready to support crewmembers and their samples returning from the Moon, possibly by July 1969. A separate seven-day simulation of the astronaut quarantine capabilities in the LRL’s Crew Reception Area began on March 25. Fifteen NASA and contractor employees, most of whom would participate in the activities following the actual lunar landing mission, demonstrated the logistics of maintaining astronauts and support staff in isolation. All biological barriers operated during the simulation, and the only contact test personnel had with the outside world was via telephone or through glass walls. The first part of the test included the simulated arrival of lunar materials and film, followed the next day by the arrival of the stand-in crew. The last part of the test included the process for releasing the crew and personnel from quarantine. The Structures and Mechanics Division at MSC conducted a series of drop tests in the Vibration and Acoustic Test Facility (VATF) to verify that the LM’s systems would operate following a lunar landing. The LM’s manufacturer, the Grumman Aircraft Engineering Corporation, located in Bethpage, New York, provided technical support for the tests using LM-2, a flight qualified vehicle with all subsystems installed. To simulate the LM’s configuration at landing, workers filled the tanks in the ascent stage with inert fluid to mimic a full load of fuel, while keeping the descent stage tanks mostly empty as they would be following the powered descent from orbit. The series of five tests began on March 21, 1969, and finished on May 7. Engineers dropped LM-2 from heights ranging from eight to 24 inches onto artificial slopes and obstructions to simulate landings on rough lunar terrain. Successful completion of the drop tests removed a constraint from carrying out the first lunar landing. Visitors can view LM-2 on display at the Smithsonian Institution’s National Air and Space Museum in Washington, D.C. Apollo 12 Left: The S-IVB third stage for the Apollo 12 Saturn V arrives at NASA’s Kennedy Space Center (KSC) in Florida. Middle: The Apollo 12 Lunar Module arrives at KSC. Right: In KSC’s Manned Spacecraft Operations Building, workers uncrate the Apollo 12 Command and Service Modules, foreground, as they continue work on the Apollo 11 spacecraft. In case Apollo 11 could not achieve the Moon landing in July, NASA planned to try again with Apollo 12 in September. To protect for that launch date, components of the rocket and spacecraft began arriving at KSC. The Saturn V’s S-IVB third stage arrived on March 10 and workers placed it in storage in the VAB until the other two stages arrived in April and May. The Apollo 12 LM’s two stages arrived on March 24, and workers transported them to the MSOB. The CM and SM arrived four days later, and they shared space in the MSOB with the Apollo 11 spacecraft undergoing testing. To be continued … News from around the world in March 1969: March 2 – First test flight of the Anglo-French Concorde supersonic jet transport in Toulouse. March 3 – The U.S. Navy established the Navy Fighter Weapons School, better known as Top Gun, at Naval Air Station Miramar in California. March 16 – Historical musical “1776” opens, runs for 1,217 performances, and wins three Tony Awards March 17 – Golda Meir becomes Israel’s fourth and first, and so far only, woman prime minister. March 26 – “Marcus Welby, M.D.” debuts as a TV movie on ABC, then becomes a series. March 27 – Mariner 7 joins Mariner 6 on a journey to fly by Mars. March 28 – Dwight D. Eisenhower, 34th president of the U.S., died at age 78. March 31 – Kurt Vonnegut’s novel “Slaughterhouse-Five” was published. Share Details Last Updated Mar 20, 2024 Related TermsNASA HistoryApollo Explore More 11 min read 20 Years Ago: First Image of Earth from Mars and Other Postcards of Home Article 2 weeks ago 4 min read More Planets than Stars: Kepler’s Legacy Article 2 weeks ago 4 min read 65 Years Ago: Pioneer 4 Reaches for the Moon Article 2 weeks ago View the full article
-
Astronauts will test drive NASA’s Orion spacecraft for the first time during the agency’s Artemis II test flight next year. While many of the spacecraft’s maneuvers like big propulsive burns are automated, a key test called the proximity operations demonstration will evaluate the manual handling qualities of Orion. During the approximately 70-minute demonstration set to begin about three hours into the mission, the crew will command Orion through a series of moves using the detached upper stage of the SLS (Space Launch System) rocket as a mark. The in-space propulsion stage, called the ICPS (interim cryogenic propulsion stage), includes an approximately two-foot target that will be used to evaluate how Orion flies with astronauts at the controls. “There are always differences between a ground simulation and what an actual spacecraft will fly like in space,” said Brian Anderson, Orion rendezvous, proximity operations, and docking manager within the Orion Program at NASA’s Johnson Space Center in Houston. “The demonstration is a flight test objective that helps us reduce risk for future missions that involve rendezvous and docking with other spacecraft.” After NASA’s Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen are safely in space, the Moon rocket’s upper stage will fire twice to put Orion on a high Earth orbit trajectory. Then, the spacecraft will automatically separate from the rocket stage, firing several separation bolts before springs push Orion a safe distance away. As the spacecraft and its crew move away, Orion will perform an automated backflip to turn around and face the stage. At approximately 300 feet away, Orion will stop its relative motion. The crew will take control and use the translational and rotational hand controllers and display system to make very small movements to ensure Orion is responding as expected. Next, the crew will very slowly pilot Orion to within approximately 30 feet of the stage. A two-foot auxiliary target mounted inside the top of the stage, similar to the docking target used by spacecraft visiting the International Space Station, will guide their aim. “The crew will view the target by using a docking camera mounted inside the docking hatch window on the top of the crew module to see how well aligned they are with the docking target mounted to the ICPS,” Anderson said. “It’s a good stand in for what crews will see when they dock with Starship on Artemis III and to the Gateway on future missions.” About 30 feet from the stage, Orion will stop and the crew will checkout the spacecraft’s fine handling qualities to evaluate how it performs in close proximity to another spacecraft. Small maneuvers performed very close to the ICPS will be done using the reaction control system thrusters on Orion’s European Service Module. Orion will then back away and allow the stage to turn to protect its thermal properties. The crew will follow the stage, initiate a second round of manual maneuvers using another target mounted on the side of the stage, approach within approximately 30 feet, perform another fine handling quality check out, then back away. At the end of the demonstration, Orion will perform an automated departure burn to move away from the ICPS before the stage then fires to re-enter Earth’s atmosphere over a remote location in the Pacific Ocean. During Orion’s departure burn, engineers will use the spacecraft’s docking camera to gather precise positioning measurements, which will help inform navigation during rendezvous activities on future missions in the lunar environment, where there is no GPS system. Because the Artemis II Orion is not docking with another spacecraft, it is not equipped with a docking module containing lights and therefore is reliant on the ICPS to be lit enough by the Sun to allow the crew to see the targets. “As with many of our tests, it’s possible the proximity operations demonstration won’t go exactly as expected,” said Anderson. “Even if we don’t accomplish every part of the demonstration, we’ll continue on with the test flight as planned to accomplish our primary objectives, including evaluating Orion’s systems with crew aboard in the deep space environment and keeping the crew safe during the mission.” The approximately 10-day Artemis II flight will test NASA’s foundational human deep space exploration capabilities, the SLS rocket and Orion spacecraft, for the first time with astronauts and will pave the way for lunar surface missions, including landing the first woman, first person of color, and first international partner astronaut on the Moon. View the full article
-
A NASA-funded commercial space station, Blue Origin’s Orbital Reef, recently completed testing milestones for its critical life support system as part of the agency’s efforts for new destinations in low Earth orbit. The four milestones are part of a NASA Space Act Agreement originally awarded to Blue Origin in 2021 and focused on the materials and designs for systems to clean, reclaim, and store the air and water critical for human spaceflight. NASA is working closely with commercial companies to develop new space stations capable of providing services to NASA and others, which will ensure that the U.S. maintains a continuous human presence in low Earth orbit and provides direct benefits for people on Earth. “These milestones are critical to ensuring that a commercial destination can support human life so NASA astronauts can continue to have access to low Earth orbit to conduct important scientific research in the unique microgravity environment,” said Angela Hart, manager of NASA’s Commercial Low Earth Orbit Development Program. “Additionally, each milestone that is completed allows NASA to gain insight into our partner’s progress on station design and development.” Humans living and working in space do so in a closed environment that must be monitored and controlled. On the International Space Station, components for the environmental control and life support system maintain clean air and water for astronauts. The regenerative system recycles and reclaims most of the water and oxygen produced by normal human activities. This significantly reduces the amount of mass that would have to be launched to the orbiting laboratory for these functions. Orbital Reef will have a similar system in place. All four milestones tested different parts of the system, including a trace contaminant control test, water contaminant oxidation test, urine water recovery test, and water tank test. The trace contaminant control test screened materials to remove harmful impurities from the air. The water containment oxidation test, urine water recovery test, and water tank test all focused on potential cleaning, reclaiming, and storing technologies. NASA is supporting the design and development of multiple commercial space stations, including Blue Origin’s Orbital Reef, through funded and unfunded agreements. The current design and development phase will be followed by the procurement of services from one or more companies, where NASA aims to be one of many customers for low Earth orbit destinations. NASA’s commercial strategy for low Earth orbit will provide the government with reliable and safe services at a lower cost and enable the agency to focus on Artemis missions to the Moon in preparation for Mars, while also continuing to use low Earth orbit as a training and proving ground for those deep space missions. For more information about NASA’s commercial space strategy, visit: https://www.nasa.gov/humans-in-space/commercial-space/ View the full article
-
4 min read NASA Radar Finds Ice Deposits at Moon’s North Pole Additional evidence of water activity on moon Using data from a NASA radar that flew aboard India’s Chandrayaan-1 spacecraft, scientists have detected ice deposits near the moon’s north pole. NASA’s Mini-SAR instrument, a lightweight, synthetic aperture radar, found more than 40 small craters with water ice. The craters range in size from 1 to 9 miles (2 to15 km) in diameter. Although the total amount of ice depends on its thickness in each crater, it’s estimated there could be at least 1.3 trillion pounds (600 million metric tons) of water ice. Mini-SAR map of the Circular Polarization Ratio (CPR) of the north pole of the Moon. Fresh, “normal” craters (red circles) show high values of CPR inside and outside their rims. This is consistent with the distribution of rocks and ejected blocks around fresh impact features, indicating that the high CPR here is surface scattering. The “anomalous” craters (green circles) have high CPR within, but not outside their rims. Their interiors are also in permanent sun shadow. These relations are consistent with the high CPR in this case being caused by water ice, which is only stable in the polar dark cold traps. We estimate over 600 million cubic meters (1 cubic meter = 1 metric ton) of water in these features. The Mini-SAR has imaged many of the permanently shadowed regions that exist at both poles of the Moons. These dark areas are extremely cold and it has been hypothesized that volatile material, including water ice, could be present in quantity here. The main science object of the Mini-SAR experiment is to map and characterize any deposits that exist. Mini-SAR is a lightweight (less than 10 kg) imaging radar. It uses the polarization properties of reflected radio waves to characterize surface properties. Mini-SAR sends pulses of radar that are left-circular polarized. Typical planetary surfaces reverse the polarization during the reflection of radio waves, so that normal echoes from Mini-SAR are right circular polarized. The ratio of received power in the same sense transmitted (left circular) to the opposite sense (right circular) is called the circular polarization ratio (CPR). Most of the Moon has low CPR, meaning that the reversal of polarization is the norm, but some targets have high CPR. These include very rough, fresh surfaces (such as a young, fresh crater) and ice, which is transparent to radio energy and multiply scatters the pulses, leading to an enhancement in same sense reflections and hence, high CPR. CPR is not uniquely diagnostic of either roughness or ice; the science team must take into account the environment of the occurrences of high CPR signal to interpret its cause. The fresh impact crater Main L (14 km diameter, 81.4° N, 22° E ), which shows high CPR inside and outside its rim. SC is the “same sense, circular” polarization; CPR is “circular polarization ratio.” The histograms at right show that the high CPR values within (red line) and outside the crater rim (green line) are nearly identical. Numerous craters near the poles of the Moon have interiors that are in permanent sun shadow. These areas are very cold and water ice is stable there essentially indefinitely. Fresh craters show high degrees of surface roughness (high CPR) both inside and outside the crater rim, caused by sharp rocks and block fields that are distributed over the entire crater area. However, Mini-SAR has found craters near the north pole that have high CPR inside, but not outside their rims. This relation suggests that the high CPR is not caused by roughness, but by some material that is restricted within the interiors of these craters. We interpret this relation as consistent with water ice present in these craters. The ice must be relatively pure and at least a couple of meters thick to give this signature. An “anomalous” crater on the floor of Rozhdestvensky (9 km Diameter, 84.3° N, 157° W), near the north pole of the Moon. This feature shows high CPR within the crater rim, but low CPR outside, suggesting that roughness (which occurs throughout a fresh crater) is not the cause of the elevated CPR. This feature’s interior is in permanent sun shadow. SC stands for “same sense, circular”, OC stands for “opposite sense, circular” and CPR is the “circular polarization ratio.” The histogram of CPR values clearly shows that interior points (red line) have higher CPR values than those outside the crater rim (green line). The estimated amount of water ice potentially present is comparable to the quantity estimated solely from the previous mission of Lunar Prospector’s neutron data (several hundred million metric tons.) The variation in the estimates between Mini-SAR and the Lunar Prospector’s neutron spectrometer is due to the fact that it only measures to depths of about one-half meter, so it would underestimate the total quantity of water ice present. At least some of the polar ice is mixed with lunar soil and thus, invisible to our radar. “The emerging picture from the multiple measurements and resulting data of the instruments on lunar missions indicates that water creation, migration, deposition and retention are occurring on the moon,” said Paul Spudis, principal investigator of the Mini-SAR experiment at the Lunar and Planetary Institute in Houston. “The new discoveries show the moon is an even more interesting and attractive scientific, exploration and operational destination than people had previously thought.” “After analyzing the data, our science team determined a strong indication of water ice, a finding which will give future missions a new target to further explore and exploit,” said Jason Crusan, program executive for the Mini-RF Program for NASA’s Space Operations Mission Directorate in Washington. The Mini-SAR’s findings are being published in the journal Geophysical Research Letters. The results are consistent with recent findings of other NASA instruments and add to the growing scientific understanding of the multiple forms of water found on the moon. The agency’s Moon Mineralogy Mapper discovered water molecules in the moon’s polar regions, while water vapor was detected by NASA’s Lunar Crater Observation and Sensing Satellite, or LCROSS. Mini-SAR and Moon Mineralogy Mapper are two of 11 instruments on the Indian Space Research Organization’s Chandrayaan-1. The Applied Physics Laboratory in Laurel, Md., performed the final integration and testing on Mini-SAR. It was developed and built by the Naval Air Warfare Center in China Lake, Calif., and several other commercial and government contributors. Get more information about Chandrayaan-1 March 2, 2010 View the full article
-
Artist’s concept of a Lunar Terrain Vehicle on the surface of the Moon. Credits: NASA NASA will host a news conference to announce the company, or companies, selected to move forward in developing the LTV (Lunar Terrain Vehicle), which will help Artemis astronauts explore more of the Moon’s surface on future missions. The televised event will take place at 4 p.m. EDT (3 p.m. CDT), Wednesday, April 3, at the agency’s Johnson Space Center in Houston. The news conference will air live on NASA+, NASA Television, the NASA app, and the agency’s website. Learn how to stream NASA TV through a variety of platforms including social media. Event participants will include: Vanessa Wyche, director, NASA Johnson Jacob Bleacher, chief exploration scientist, NASA Headquarters Lara Kearney, manager, Extravehicular Activity and Human Surface Mobility Program, NASA Johnson International media interested in participating in person must request credentials by 6 p.m. Thursday, March 21. U.S. media interested in attending in person must request credentials by 6 p.m. Wednesday, March 27. All media interested in participating by phone must request details by 2 p.m., April 3. To participate, contact the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. NASA’s media accreditation policy is online. Through Artemis, NASA will land the first woman, first person of color, and its first international partner astronaut on the surface of the Moon to explore for scientific discovery, economic benefits, and to build the foundation for crewed missions to Mars. Learn more about NASA’s Artemis campaign at: https://www.nasa.gov/artemis -end- Kathryn Hambleton Headquarters, Washington 202-358-1100 kathryn.a.hambleton@nasa.gov Victoria Ugalde / Nilufar Ramji Johnson Space Center, Houston 281-483-5111 victoria.d.ugalde@nasa.gov / nilufar.ramji@nasa.gov Share Details Last Updated Mar 19, 2024 LocationNASA Headquarters Related TermsArtemisJohnson Space Center View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA engineers will test a suite of new laser technologies from an aircraft this summer for Earth science remote sensing. Called lidar, the instruments could also be used to improve models of the Moon’s shape and aid the search for Artemis landing sites. Similar to sonar, but using light instead of sound, lidars calculate distances by timing how long a laser beam takes to reflect off a surface and return to an instrument. Multiple pings from the laser can provide the relative speed and even 3D image of a target. They increasingly help NASA scientists and explorers navigate, map, and collect scientific data. Engineers and scientists at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, continue to refine lidars into smaller, lighter, more versatile tools for science and exploration, with help from hardware provided by small business and academic partners. “Existing 3D-imaging lidars struggle to provide the 2-inch resolution needed by guidance, navigation and control technologies to ensure precise and safe landings essential for future robotic and human exploration missions,” team engineer Jeffrey Chen said. “Such a system requires 3D hazard-detection lidar and a navigation doppler lidar, and no existing system can perform both functions.” Engineer Jeffrey Chen tests a CASALS lidar prototype on the roof of Goddard’s Building 33.NASA Enter CASALS, the Concurrent Artificially intelligent Spectrometry and Adaptive Lidar System. Developed through Goddard’s IRAD, Internal Research and Development program, CASALS shines a tunable laser through a prism-like grating to spread the beam based on its changing wavelengths. Traditional lidars pulse a fixed-wavelength laser which is split into multiple beams by bulky mirrors and lenses to split it into multiple beams. One CASALS instrument could cover more of a planet’s surface in each pass than lidars used for decades to measure Earth, the Moon, and Mars. CASALS’s smaller size, weight, and lower power requirements enable small satellite applications as well as handheld or portable lidars for use on the Moon’s surface, Goddard engineer and CASALS development lead Guangning Yang said. The CASALS team received funding from NASA’s Earth Science Technology Office to test their improvements by airplane in 2024, bringing their system closer to spaceflight readiness. What Color is Your Lidar? As lidars become more specialized, CASALS can incorporate different wavelengths, or colors of laser light for applications like Earth science, exploring other planets and objects in space, and navigation and rendezvous operations. The CASALS Team used Goddard IRAD and NASA SBIR (Small Business Innovation Research Program) funding along with commercial partners Axsun Technologies and Freedom Photonics to develop new fast-tuning lasers in the 1-micron portion of the infrared spectrum for Earth science and planetary exploration. By comparison, commonly available lidars used for self-driving vehicle development typically use 1.5-micron lasers for range and speed calculations. On Earth, wavelengths near 1 micron pass readily through the atmosphere and are good at differentiating vegetation from bare ground, said Ian Adams, Goddard’s chief technologist for Earth sciences. Wavelengths near 0.97 and 1.45 microns offer valuable information about water vapor in Earth’s atmosphere but do not travel as efficiently to the surface. In a related project, the team partnered with Left Hand Design Corporation to develop a steering mirror to extend CASALS’s 3D-imaging coverage and improve resolution. He said the lidar’s higher pulse rate can build up signal sensitivity to provide range and velocity measurements at up to 60 miles. Artemis-related missions seeking to land near the Moon’s South Pole could also use CASALS’s sharper imaging to help assess the safety of potential landing sites. Bringing the Moon into Focus More detailed 3D models of the Moon drove Goddard planetary scientist Erwan Mazarico’s IRAD effort to refine CASALS’s ability to measure surface details smaller than 3 feet. He said this will help understand the Moon’s sub-surface structures and changes over time. Every month, Earth’s path across the lunar sky moves within 10 or 20 degrees of the center of the side facing Earth. “We’ve predicted based on our understanding of its inner structure that Earth’s shifting pull could change the tidal bulge or shape of the Moon,” Mazarico said. “High-resolution measurements of that deformation could tell us more about potential variations within the Moon. Is it responding like a fully uniform body in the interior?” Lunar Reconnaissance Orbiter’s Lunar Orbiting Laser Altimeter has produced detailed maps of the Lunar South Pole, including where water ice appears to fill the bottoms of permanently shadowed craters.NASA / LRO NASA’s Lunar Reconnaissance Orbiter (LRO) has measured Earth’s natural satellite since 2009, modeling the Moon’s terrain and providing a wealth of discoveries with the help of LOLA, its Lunar Orbiting Lidar Altimeter. LOLA fires 28 laser pulses per second, split into five beams touching the surface 65 feet to 100 feet apart. Scientists use LRO images to estimate smaller surface features between laser measurements. CASALS’s laser, however, allows the equivalent of several hundred thousand pulses per second, reducing the distance between surface measurements. “A denser and more accurate data set would allow us to study much smaller features,” Mazarico said, including those from impacts, volcanic activity, and tectonics. “We’re talking orders of magnitude more measurements. That could be quite a big game changer in terms of the type of data we get from lidar.” Read More Share Details Last Updated Mar 19, 2024 EditorKarl B. Hille Related TermsTechnology Explore More 2 min read Tech Today: NASA Helps Find Where the Wildfires Are Article 3 hours ago 4 min read NASA Announces Semifinalists of Power to Explore Challenge NASA selected 45 student essays as semifinalists of its 2024 Power to Explore Challenge, a… Article 4 days ago 2 min read Tech Today: Suspended Solar Panels See the Light Article 1 week ago View the full article
-
5 min read Sketch the Shape of the Sun for Science During the Solar Eclipse Calling all eclipse admirers! The SunSketcher team is looking for one million volunteers to capture photos on their cell phones during the April 8 total solar eclipse. These images will help scientists learn about the size, shape, and inner structure of the Sun. This NASA-funded citizen science project invites anyone who will be within the path of totality in the U.S. to take photos of the Baily’s Beads effect, which occurs when little points of sunlight pass through the valleys in between the mountains on the edge of the Moon. It’s the last piece of the Sun seen before totality and the first to appear after totality. For a few seconds, these glimmers of light look like beads along the Moon’s edge. The Baily’s Beads effect is seen as the Moon makes its final move over the Sun during the total solar eclipse on Aug. 21, 2017, above Madras, Oregon. This effect occurs when gaps in the Moon’s rugged terrain allow sunlight to pass through in some places just before the total phase of the eclipse. NASA/Aubrey Gemignani The SunSketcher app will use smartphones to automatically take a sequence of images as Baily’s Beads appear. Volunteers will simply download a free app, activate it just before totality, set the phone down with the rear camera pointed at the Sun, and leave it alone. The app will use the phone’s GPS location to calculate when Baily’s Beads will be visible. “All you need is a cell phone,” says Gordon Emslie, SunSketcher’s project lead and professor of physics and astronomy at Western Kentucky University. “How many science projects can you do with the equipment you already have in your pocket?” Emslie says the cell phone images of Baily’s Beads will look fairly simple, but the tiny dots of light will provide crucial data about our star. “It’s the precise timing of when these flashes appear and disappear that can tell you how big the Sun is and what shape it is,” Emslie says. Citizen scientists will activate the Sunsketcher app before the eclipse and then prop their phone against a steady surface with the rear (back-facing) camera pointed at the Sun. The app will automatically take images of Baily’s Beads at the correct times. SunSketcher/Tabby Cline The SunSketcher team will merge the images collected from various viewpoints on the eclipse path to create an evolving pattern of beads. This pattern will be compared with 3D maps that show the exact locations and distances between lunar craters, mountains, and valleys on the surface of the Moon from NASA’s Lunar Reconnaissance Orbiter. The combined measurements will allow researchers to calculate the precise size and shape of the Sun based on the timing of the images captured over 90 minutes of eclipse observations. “The fascinating thing about this is you can really only do this by having observers stretched over the whole eclipse path,” Emslie explains. “No one observer can monitor an eclipse for more than about four or five minutes.” The Sun is round but not a perfect sphere. It bulges out slightly along the equator with a diameter of about 865,000 miles. Scientists suspect the shape of the Sun changes slightly as it goes through 11-year cycles of fluctuating solar activity. The Sun is a rotating ball of gas and plasma with complicated internal flows of material, energy, and magnetic fields beneath the surface that vary over that cycle and impact its overall shape. “All of these flows connect to the surface somehow, and so the shape of the surface is determined by the details of the flows,” Emslie says. “If we can understand the subsurface flows, we can better understand the Sun’s internal structure.” The Sun’s shape also determines its gravitational field, which affects the motions of the planets, so measuring the Sun’s precise shape will help scientists test theories of gravity. This map shows the path of totality and partial contours crossing the U.S. for the 2024 total solar eclipse occurring on April 8, 2024. NASA/Scientific Visualization Studio/Michala Garrison; Eclipse Calculations By Ernie Wright, NASA Goddard Space Flight Center Participants in the SunSketcher project can be located anywhere in the eclipse’s path of totality in the U.S., which stretches from Texas to Maine, on April 8. Emslie says the more people involved, the more worthwhile the project will be. “Literally, we’re looking for a million people to play.” For more info on SunSketcher, visit: https://sunsketcher.org/ How to Become a SunSketcher and Be a Part of History This animated tutorial from the SunSketcher team explains how volunteers can capture images during the total solar eclipse using a free cell phone app to help learn about the size, shape, and inner structure of the Sun. Animation credit: SunSketcher/Tabby Cline Before the Eclipse Download the free app from your phone’s app store (available now on iOS and coming soon on Android). Initiate the app around five minutes before totality. No internet connection is required. If possible, turn on “Do Not Disturb” in your phone’s settings to prevent vibrations that could disturb the image sequence. Prop the phone against a steady surface (such as a rock, book, phone stand, or tripod) with the rear (back-facing) camera pointed at the Sun. Let it be! The app will automatically take images of Baily’s Beads at the correct times. Enjoy the eclipse! Remember to use specialized eye protection for solar viewing except during the brief total phase of a total solar eclipse, when the Moon completely blocks the Sun. After the Eclipse The app will show a directory of images taken and will request user permission to share them. Only time and location data will be recorded with the images. No personally identifiable or private information will be collected. Once an internet connection is established, the images will be automatically uploaded to a central server and a screen will appear with a thank-you message. By Rose Brunning Communications Lead, NASA Heliophysics Digital Resource Library (HDRL) Share Details Last Updated Mar 19, 2024 Related Terms 2024 Solar Eclipse Citizen Science Eclipses Skywatching Solar Eclipses The Sun Explore More 2 min read NASA Volunteers Find Fifteen Rare “Active Asteroids” Article 4 days ago 3 min read GLOBE Eclipse Challenge: Clouds and Our Solar-Powered Earth Article 4 days ago 2 min read Partner with Local NASA Volunteers Partner with NASA’s Solar System Ambassadors and Night Sky Network and help bring the wonders… Article 4 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
Lunar scientist Casey Honniball conducts lunar observations and field work near volcanoes to investigate how astronauts could use instruments during moonwalks. Name: Casey Honniball Title: Lunar scientist Organization: Planetary Geology, Geophysics, and Geochemistry Laboratory, Science Directorate (Code 698) Casey Honniball is a lunar scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Courtesy of Casey Honniball What do you do and what is most interesting about your role here at Goddard? How do you help support Goddard’s mission? I study the Moon using Earth-based telescopes to understand the lunar volatile cycle. I also conduct field work at volcanic sites to investigate how astronauts can utilize instruments during moonwalks. Why did you want to be a lunar scientist? When I was 6 years old and in first grade, I was diagnosed with dyslexia. I was tutored and had help with homework and tests, which continued until I was a junior in high school. At that point, I learned to manage my dyslexia. Because I was not good at reading and writing, I turned to more physical things such as things I could touch and build. I discovered physics in high school, which turned me on to other sciences. I went to college for physics, but learned that I preferred astronomy. In graduate school I realized I wanted to be a lunar scientist. I have a B.S. in astronomy from the University of Arizona, a master’s in geology and geophysics from the University of Hawaiʻi at Manoa, and a Ph.D. in Earth and planetary science also from the University of Hawaiʻi at Manoa. While doing my master’s, one of my advisers introduced me to Earth-based lunar observation to look at hydration on the surface of the Moon. I found that I really liked the Moon and found my place in science. What brought you to Goddard? During graduate school, I worked with Goddard’s Dr. Kelsey Young on a field deployment testing instruments for astronauts. In 2020, I became a post-doctoral fellow for her at Goddard. In January 2023, I became a visiting assistant research scientist in the Planetary Geology, Geophysics, and Geochemistry Laboratory through CRESSTII, and Kelsey is still my mentor. As your mentor, what is the most important advice Kelsey Young has given you? Kelsey helps me stay passionate about the work I am doing. She does this by providing new and exciting opportunities and being supportive about work-life balance. I admire Kelsey’s spirit of adventure and her passion for field work. I appreciate all she has done for me and am grateful for the opportunities she and our lab have provided. Using Earth-based telescopes, Casey studies the Moon to understand the lunar volatile cycle. “While doing my master’s, one of my advisers introduced me to Earth-based lunar observation to look at hydration on the surface of the Moon,” said Casey. “I found that I really liked the Moon and found my place in science.”Courtesy of Casey Honniball What sorts of instruments do you test for use on the Moon? I test the use of mid- to long-wave infrared instruments for reconnaissance of a location prior to astronauts setting foot outside a vehicle. For example, an instrument on a rover can scan the area to characterize the minerology and volatiles including water, carbon dioxide, sulfur, methane, and similar chemicals. This then allows astronauts and scientists to select locations to collect samples. I test this procedure on Earth by doing field work. What is the most exciting field work you have done to test those instruments? In 2015, I went to the Atacama Desert in Chile to install a radio camera on an existing telescope. I spent about a month installing the camera and observing on the telescope. There were only about 15 people I interacted with during that time. The area is very Martian-like; it is very red, dry, and barren, although we saw wild donkeys. During Christmas of 2015 and again in 2016, one month each time, I went to Antarctica to launch a high-altitude balloon radio telescope. I lived at McMurdo Station and worked at their balloon facility near the airstrip. Antarctica is a completely different experience than you could imagine. You are so cut off from civilization. You have only the people who are there, although, I was there during Antarctica’s summer when McMurdo had many people. You are in a completely barren landscape that is so magnificently beautiful. In 2018, I deployed an instrument I built to the Kīlauea Lava Lake on the Big Island of Hawaii. This is a National Park with thousands of visitors yearly. The lava lake was active at the time. We could see lava spewing out at different vent locations in the lake. It was very exciting and kind of scary. We had special permits allowing us into restricted areas closer to the lake. We were told not to get any closer to the cliff edge of the lake than our height so that if we tripped, we would not fall into the active lava. I’d love to do field work in Iceland. Iceland is a great location for planetary field analog research as it has a similar landscape and geologic context to the Moon and Mars. Casey conducts field work at volcanic sites to investigate how astronauts can utilize instruments during moonwalks.Courtesy of Casey Honniball What outreach do you do that inspires others with dyslexia? I like to talk to elementary through high school students about life as a scientist and how I got to where I am. I like to tell my story about learning to manage dyslexia to hopefully inspire others. What do you do for fun? I am a deep-sea scuba certified diver. I mainly dove in Hawaii because I was living there. I also enjoy working out, hiking, baking sourdough bread, and being with my family. Where do you see yourself in five years? I hope to be supporting Artemis science operations on the surface of Moon and continuing to studying the Moon’s surface remotely and conducting research through field deployments. What is your “six-word memoir”? A six-word memoir describes something in just six words. Fear is a state of mind. NASA’s SOFIA Discovers Water on Sunlit Surface of Moon Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Share Details Last Updated Mar 19, 2024 EditorMadison OlsonContactElizabeth M. JarrellLocationGoddard Space Flight Center Related TermsPeople of GoddardEarth's MoonPeople of NASAPlanetary Science View the full article
-
Credit: NASA NASA released Tuesday the first episode of a new six-part podcast series for first-time space explorers to learn about the Sun. Ahead of the total solar eclipse in April, NASA’s Sun + Eclipse Series will focus on the sphere full of swirling magnetic fields and explosions of hot gases. New episodes will post every Tuesday through April 23. The first episode is available at: Sun Series: The Sun, Our Star – NASA On April 8, 2024, a total solar eclipse will cross North America, passing over Mexico, the United States, and Canada. More than 32 million people will have the chance to witness, and a phenomenon the contiguous U.S. will not see again for 20 years. The series will delve into the cultural connections and historical significance of solar studies. Listeners can prepare firsthand for the solar eclipse with insight from NASA experts along the path of totality. The series offers insight into research from NASA scientists, firsthand accounts from “eclipse chasers”, and how the agency protects astronauts and spacecraft during solar activity. The series is part of NASA’s Curious Universe podcast. In each episode, hosts Padi Boyd and Jacob Pinter, bring listeners on science and space adventures. Explore the cosmos alongside astronauts, scientists, engineers, and other NASA experts in science, space exploration, and aeronautics. NASA’s Sun + Eclipse Series is now available on Spotify, Apple Podcasts, Google Podcasts, and Soundcloud. Curious Universe is written and produced by a team at the agency’s Goddard Space Flight Center in Greenbelt, Maryland. Discover more original NASA shows at: https://www.nasa.gov/podcasts -end- Melissa Howell Headquarters, Washington 202-961-6602 melissa.e.howell@nasa.gov Share Details Last Updated Mar 19, 2024 LocationNASA Headquarters Related TermsPodcastsEclipsesGoddard Space Flight CenterNASA Headquarters View the full article