Members Can Post Anonymously On This Site
-
Posts
4,764 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Science Instruments Science Highlights News and Features Multimedia Curiosity Raw Images Mars Resources Mars Exploration All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read Sols 4207-4208: A Taste of Rocky Road NASA’s Mars rover Curiosity acquired this image using its Mars Hand Lens Imager (MAHLI), located on the turret at the end of the rover’s robotic arm, on June 4, 2024, Sol 4205 of the Mars Science Laboratory Mission, at 22:09:26 UTC. NASA/JPL-Caltech/MSSS Earth planning date: Wednesday June 5, 2024 Curiosity was still at the ice cream shop for planning today, with the delicious feast of rock flavours still at arm’s reach and begging to be sampled. In the previous plan, one such flavour, captured in today’s blog image and perhaps most analogous to Rocky Road (not only given that Curiosity drove over this rock causing it to fracture, but also arguably the appearance as well), caught the eye of the operations team. There was desire to place APXS on this target, “Convict Lake,” in the previous plan but the team ultimately did not have the image data available that would permit Curiosity to safely do so at a suitably close distance for APXS. Not to be discouraged, Monday’s operations team pivoted and utilized part of the plan to acquire images of Convict Lake that would enable better APXS placement in today’s plan. The required images for targeting Convict Lake (aka Rocky Road, just with a chocolate to marshmallow ratio that would leave chocolate lovers heartbroken) with APXS arrived just in time for planning today. These images made it possible to focus on the central task of today’s two-sol plan: place APXS close to Rocky Road and target two areas that are specifically more “marshmallow” and less on “chocolate” (sorry chocolate fans). In addition to APXS on Convict Lake, ChemCam also targeted Convict Lake using its laser and imaging capabilities. MAHLI returned for seconds (and thirds!), only this time pairing yet more daytime images with others taken at night while utilizing its illumination capabilities. ChemCam and Mastcam also imaged “Petes Col” and “Buckeye Ridge,” with Mastcam additionally imaging “Camp Four,” as well as “Ten Lakes” and “Walker Lake” a number of times over the course of the two-sol plan. I for one am very excited about the particular offerings at his specific shop and what we may ultimately learn from our sampling. I, like APXS, may just have two scoops of ice cream tonight myself, perhaps even following in MAHLI’s footsteps by doing so after the sun has set when nobody else is watching (we’ve all done it, let’s be honest). Unfortunately, I do not have Rocky Road, and I think I missed my chance to have watermelon (don’t knock it until you try it!). Written by Scott VanBommel, Planetary Scientist at Washington University Share Details Last Updated Jun 06, 2024 Related Terms Blogs Explore More 2 min read Carving Into Carbonates at Old Faithful Geyser Article 1 day ago 3 min read Sols 4205-4206: Curiosity Would Like One of Each, Please! Article 1 day ago 2 min read Sols 4202-4204: Sticking Around Article 1 day ago Keep Exploring Discover More Topics From NASA Mars Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars… All Mars Resources Rover Basics Mars Exploration Science Goals View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Satellites continuously peer down from orbit to take measurements of Earth, and this week a group of scientists set sail to verify some of those data points. On June 2, the SCOAPE (Satellite Coastal and Oceanic Atmospheric Pollution Experiment) research team, in partnership with the U.S. Interior Department’s Bureau of Ocean Energy Management, took to the seas in the Gulf of Mexico for its second campaign to make surface-based measurements of air pollutants. The NASA/GSFC SCOAPE team launches an ozonesonde weather balloon from the stern of the research vessel Point Sur during the May 2019 cruise. Ryan Stauffer (NASA/GSFC) The primary pollutant scientists are measuring is nitrogen dioxide (NO2), the compound that reacts with sunlight to make ground-level ozone, said Anne Thompson, senior scientist emeritus for atmospheric chemistry at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and senior researcher at the University of Maryland, Baltimore County. The Gulf of Mexico is highly concentrated with oil and natural gas drilling platforms, which are sources of NO2. By taking measurements of these emissions from the sea surface nearby, scientists can help validate measurements taken from a much different vantage point. The research vessel the scientists are using, Point Sur, is owned by the University of Southern Mississippi and operated by the Louisiana Universities Marine Consortium. The Petronius deepwater oil platform flaring during the May 2019 SCOAPE cruise. The helicopter in the foreground is used as a means of transporting personnel to and from the platform. Ryan Stauffer (NASA/GSFC) “We’re the eyes on the surface to understand how well the eyes in the sky are working,” said Ryan Stauffer, research scientist for the atmospheric chemistry and dynamics laboratory at Goddard. Stauffer is also the principal investigator for the SCOAPE II project. For the first iteration of the project in 2019, ship-based measurements were compared to data gathered by the Ozone Monitoring Instrument aboard NASA’s Aura satellite and the Tropospheric Monitoring Instrument aboard ESA’s (European Space Agency) Sentinel-5 Precursor satellite. Both instruments fly on polar orbiting satellites, which pass over every part of the globe once per day. They capture snapshots at the same time each day, but cannot capture the short-lived NO2 emissions that come and go at different times. In 2024, the research team is working to validate the measurements taken by TEMPO (the Tropospheric Emissions: Monitoring of Pollution instrument), which was launched on a commercial satellite in April 2023. The TEMPO instrument provides a different perspective to the NO2 measurements due to its geostationary orbit — it focuses solely on North America and has a constant view of the Gulf of Mexico region. This allows scientists to better quantify emissions and make comparisons across all daylight hours. From space, satellites collect measurements of the “total column” of air, which means they measure the concentrations of NO2 from the land or ocean surface all the way up to the top of the atmosphere. With SCOAPE, scientists are taking measurements from the ship, about 33 feet above sea level, to focus measurements on the air that people breathe. The SCOAPE Pandora spectrometer instrument, which were used to gather the air quality near the operation sites, during sunset with a shallow water gas platform on the horizon.Ryan Stauffer (NASA/GSFC) Learning more about how those surface measurements compare to what satellites see in the total column can help scientists figure out how to use satellite data most effectively. Measuring NO2 from space over the past two decades has helped scientists understand how the compound affects air quality, and has helped to inform policies to reduce emissions of the pollutant. During SCOAPE’s 2019 campaign, researchers detected concentrations of methane – a significant greenhouse gas – near the Gulf Coast. This time around, the scientists are looking to accurately measure these concentrations from the surface as well. They will mount the NASA Airborne Visible and InfraRed Imaging Spectrometer–3 imaging spectrometer instrument on a Dynamic Aviation B-200 plane to collect methane measurements above the Gulf, which will add an extra layer to understanding emissions of this potent greenhouse gas from Gulf of Mexico oil and gas operations. It has historically been difficult to measure methane from space, but scientists are working to build those capabilities. As with NO2, taking surface measurements helps scientists better understand the measurements taken from space. By Erica McNamee NASA’s Goddard Space Flight Center, Greenbelt, Md. Share Details Last Updated Jun 06, 2024 EditorKate D. RamsayerContactErica McNameeerica.s.mcnamee@nasa.govLocationGoddard Space Flight Center Related TermsEarthGoddard Space Flight CenterTropospheric Emissions: Monitoring of Pollution (TEMPO) Explore More 4 min read NASA Releases New High-Quality, Near Real-Time Air Quality Data Article 7 days ago 10 min read A Tale of Three Pollutants Freight, smoke, and ozone impact the health of both Chicago residents and communities downwind. A… Article 8 months ago 4 min read Study Identifies Methane ‘Super-Emitters’ in Largest US Oilfield Article 3 years ago View the full article
-
6 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. The red giant is a large sphere in shades of red, orange, and white, with the side facing the white dwarf the lightest shades. The white dwarf is hidden in a bright glow of white and yellows, which represent an accretion disk around the star. A stream of material, shown as a diffuse cloud of red, flows from the red giant to the white dwarf. When the red giant moves behind the white dwarf, a nova explosion on the white dwarf ignites, creating a ball of ejected nova material shown in pale orange. After the fog of material clears, a small white spot remains, indicating that the white dwarf has survived the explosion.NASA/Goddard Space Flight Center Around the world this summer, professional and amateur astronomers alike will be fixed on one small constellation deep in the night sky. But it’s not the seven stars of Corona Borealis, the “Northern Crown,” that have sparked such fascination. It’s a dark spot among them where an impending nova event – so bright it will be visible on Earth with the naked eye – is poised to occur. “It’s a once-in-a-lifetime event that will create a lot of new astronomers out there, giving young people a cosmic event they can observe for themselves, ask their own questions, and collect their own data,” said Dr. Rebekah Hounsell, an assistant research scientist specializing in nova events at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It’ll fuel the next generation of scientists.” T Coronae Borealis, dubbed the “Blaze Star” and known to astronomers simply as “T CrB,” is a binary system nestled in the Northern Crown some 3,000 light-years from Earth. The system is comprised of a white dwarf – an Earth-sized remnant of a dead star with a mass comparable to that of our Sun – and an ancient red giant slowly being stripped of hydrogen by the relentless gravitational pull of its hungry neighbor. The hydrogen from the red giant accretes on the surface of the white dwarf, causing a buildup of pressure and heat. Eventually, it triggers a thermonuclear explosion big enough to blast away that accreted material. For T CrB, that event appears to reoccur, on average, every 80 years. Don’t confuse a nova with a supernova, a final, titanic explosion that destroys some dying stars, Hounsell said. In a nova event, the dwarf star remains intact, sending the accumulated material hurtling into space in a blinding flash. The cycle typically repeats itself over time, a process which can carry on for tens or hundreds of thousands of years. “There are a few recurrent novae with very short cycles, but typically, we don’t often see a repeated outburst in a human lifetime, and rarely one so relatively close to our own system,” Hounsell said. “It’s incredibly exciting to have this front-row seat.” Finding T Coronae Borealis A conceptual image of how to find Hercules and the “Northern Crown” in the night sky, created using planetarium software. Look up after sunset during summer months to find Hercules, then scan between Vega and Arcturus, where the distinct pattern of Corona Borealis may be identified. NASA The first recorded sighting of the T CrB nova was more than 800 years ago, in autumn 1217, when a man named Burchard, abbot of Ursberg, Germany, noted his observance of “a faint star that for a time shone with great light.” The T CrB nova was last seen from Earth in 1946. Its behavior over the past decade appears strikingly similar to observed behavior in a similar timeframe leading up to the 1946 eruption. If the pattern continues, some researchers say, the nova event could occur by September 2024. What should stargazers look for? The Northern Crown is a horseshoe-shaped curve of stars west of the Hercules constellation, ideally spotted on clear nights. It can be identified by locating the two brightest stars in the Northern Hemisphere – Arcturus and Vega – and tracking a straight line from one to the other, which will lead skywatchers to Hercules and the Corona Borealis. The outburst will be brief. Once it erupts, it will be visible to the naked eye for a little less than a week – but Hounsell is confident it will be quite a sight to see. A coordinated scientific approach To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video Watch V407 Cyg go nova! In this animation, gamma rays (magenta) arise when accelerated particles in the explosion's shock wave crash into the red giant's stellar wind.NASA/Conceptual Image Lab/Goddard Space Flight Center Dr. Elizabeth Hays, chief of the Astroparticle Physics Laboratory at NASA Goddard, agreed. She said part of the fun in preparing to observe the event is seeing the enthusiasm among amateur stargazers, whose passion for extreme space phenomena has helped sustain a long and mutually rewarding partnership with NASA. “Citizen scientists and space enthusiasts are always looking for those strong, bright signals that identify nova events and other phenomena,” Hays said. “Using social media and email, they’ll send out instant alerts, and the flag goes up. We’re counting on that global community interaction again with T CrB.” Hays is the project scientist for NASA’s Fermi Gamma-ray Space Telescope, which has made gamma-ray observations from low Earth orbit since 2008. Fermi is poised to observe T CrB when the nova eruption is detected, along with other space-based missions including NASA’s James Webb Space Telescope, Neil Gehrels Swift Observatory, IXPE (Imaging X-ray Polarimetry Explorer), NuSTAR (Nuclear Spectroscopic Telescope Array), NICER (Neutron star Interior Composition Explorer), and the European Space Agency’s INTEGRAL (Extreme Universe Surveyor). Numerous ground-based radio telescopes and optical imagers, including the National Radio Astronomy Observatory’s Very Large Array in Mexico, also will take part. Collectively, the various telescopes and instruments will capture data across the visible and non-visible light spectrum. “We’ll observe the nova event at its peak and through its decline, as the visible energy of the outburst fades,” Hounsell said. “But it’s equally critical to obtain data during the early rise to eruption – so the data collected by those avid citizen scientists on the lookout now for the nova will contribute dramatically to our findings.” For astrophysics researchers, that promises a rare opportunity to shed new light on the structure and dynamics of recurring stellar explosions like this one. “Typically, nova events are so faint and far away that it’s hard to clearly identify where the erupting energy is concentrated,” Hays said. “This one will be really close, with a lot of eyes on it, studying the various wavelengths and hopefully giving us data to start unlocking the structure and specific processes involved. We can’t wait to get the full picture of what’s going on.” Some of those eyes will be very new. Gamma-ray imagers didn’t exist the last time T CrB erupted in 1946, and IXPE’s polarization capability – which identifies the organization and alignment of electromagnetic waves to determine the structure and internal processes of high-energy phenomena – is also a brand-new tool in X-ray astronomy. Combining their data could offer unprecedented insight into the lifecycles of binary systems and the waning but powerful stellar processes that fuel them. Is there a chance September will come and go without the anticipated nova outburst from T CrB? Experts agree there are no guarantees – but hope abides. “Recurrent novae are unpredictable and contrarian,” said Dr. Koji Mukai, a fellow astrophysics researcher at NASA Goddard. “When you think there can’t possibly be a reason they follow a certain set pattern, they do – and as soon as you start to rely on them repeating the same pattern, they deviate from it completely. We’ll see how T CrB behaves.” Learn more about NASA astrophysics at: https://science.nasa.gov/astrophysics Jonathan Deal Marshall Space Flight Center, Huntsville, Ala. 256-544-0034 jonathan.e.deal@nasa.gov Share Details Last Updated Jun 06, 2024 Related TermsMarshall Space Flight CenterGeneralGoddard Space Flight Center Explore More 5 min read NASA Marshall Engineer Receives AIAA Honors Award Article 2 hours ago 5 min read Meet the Simunauts: Ohio State Students to Test Space Food Solutions for NASA Article 19 hours ago 26 min read The Marshall Star for June 5, 2024 Article 19 hours ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
The First Responder UAS Wireless Data Gatherer Challenge (UAS 6.0) seeks innovators with applicable expertise across and beyond the UAS ecosystem. For public safety and the greater good, contribute invaluable knowledge and ingenuity in artificial intelligence (AI), radio communications and mapping, Internet of Things (IoT), cybersecurity, and more. Challenge results will support the public safety community and its partners to improve real-time situational awareness and save lives while operating in potentially dangerous radio-complex outdoor environments without fixed communications infrastructure or satellite communications. You can make a difference! Government Agency: National Institute of Standards and Technology Open Date: May 2024 Close Date: July 2024 For more information, visit: https://firstresponderuas.org/ View the full article
-
The 2024 Federal Aviation Administration (FAA) Data Challenge ushers in a groundbreaking opportunity for university students to identify challenges and present solutions toward the evolution of the National Airspace System (NAS) into a more information-centric entity. By harnessing the power of artificial intelligence and advanced analytics, participants are invited to tackle pressing challenges within aviation safety, operational efficiency, sustainable aviation, and the exploration of novel NAS applications. This challenge not only highlights the FAA’s commitment to innovation and safety but also opens the door for the next generation of data scientists and engineers to contribute meaningful solutions that could shape the future of aviation. Government Agency: Federal Aviation Administration Award: $100,000 in total prizes Open Date: Phase 1: February 2024; Phase 2: September 2024 Close Date: Phase 1: August 2024; Phase 2: March 2025 For more information, visit: https://www.herox.com/FAADataChallenge2024 View the full article
-
Gene editing holds the promise to treat genetic diseases at the source by correcting the faulty genetic patterns within our cells. The National Institutes of Health (NIH) has launched the TARGETED (Targeted Genome Editor Delivery) Challenge to advance genome editing technology by sourcing innovative solutions for delivering genome editors to somatic cells. The Challenge is open to qualified groups or teams from organizations or institutions, particularly those in the genome editing or vehicle delivery fields, and will take place in three phases: Proposal, Preliminary Data, and Final Data, Independent Testing, and Validation. Government Agency: National Institutes of Health Award: $6,000,000 in total prizes Open Date: Phase 1: May 2023; Phase 2: December 2023; Phase 3: April 2025 Close Date: Phase 1: October 2023; Phase 2: January 2025; Phase 3: TBD For more information, visit: https://www.freelancer.com/nih/targeted-challenge View the full article
-
Accurate seasonal water supply forecasts are crucial for effective water resources management. Help the Bureau of Reclamation develop models to forecast the cumulative streamflow volume for sites across the Western United States. Government Agency: Bureau of Reclamation Award: $500,000 Open Date: October 2023 Close Date: July 2024 For more information, visit: https://www.drivendata.org/competitions/group/reclamation-water-supply-forecast/ View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) AIAA Executive Director Daniel Dumbacher, left, and AIAA President Laura McGill, right, present NASA Space Nuclear Propulsion Chief Engineer Kurt Polzin with the Engineer of the Year Award at the AIAA Awards Gala on May 15 at the John F. Kennedy Center for Performing Arts in Washington, D.C.Courtesy of AIAA By Daniel Boyette Advanced space nuclear propulsion systems are critical to NASA’s Moon to Mars vision. On May 15, one of the individuals at the forefront of those future exploration efforts was honored for his contributions. Kurt Polzin, chief engineer for the Space Nuclear Propulsion Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, received the American Institute of Aeronautics and Astronautics (AIAA) Engineer of the Year award during its awards gala at the John F. Kennedy Center for Performing Arts in Washington. “The use of nuclear technologies will become increasingly important as the nation returns humans to the Moon and then goes onward to Mars, and realizing these benefits will take not just a NASA effort, but a national effort,” Polzin told the audience. “It’s a privilege to work with and lead some of the best people in government, industry, and academia, bringing the nation closer to a future where nuclear power and propulsion technologies in space become common. What we do today will enable science missions and human exploration beyond anything humans have ever achieved for current and future generations of scientists and explorers.” Since 2021, Polzin has overseen NASA’s nuclear propulsion technology development and maturation efforts. He’s also the chief engineer for the agency’s partnership with the Defense Advanced Research Projects Agency (DARPA) on the Demonstration Rocket for Agile Cislunar Operations (DRACO) program, which aims to demonstrate a nuclear thermal propulsion system in space as soon as 2027. “To live and work on the Moon, we’ll need a power and transportation infrastructure, and nuclear space systems offer key capability benefits over current state-of-art,” said Anthony Calomino, NASA’s Space Nuclear Technologies portfolio manager under the agency’s Space Technology Mission Directorate. “Kurt’s leadership in this journey to mature our space nuclear propulsion technology is what will get us there. We are proud to see him recognized as AIAA’s Engineer of the Year.” Q&A with Kurt Polzin Q: What were your emotions when you went to accept the award? Polzin: The list of those who have previously received this award is long and illustrious, so it is an honor to be nominated for it. Being selected by my peers as the recipient was a very thrilling and humbling experience. Receiving it at the Kennedy Center, in the presence of many aerospace leaders and my wife in the audience, made it a truly unique and memorable experience. Q: You’ve previously stated that individual awards are really team awards. How has being a member of a team helped you to be successful? Polzin: Realizing big ideas requires the contributions and expertise of many people across a range of skills and disciplines, and using nuclear technologies in space is about the most significant idea there is. The team we assembled and continue to grow consists of true experts in their disciplines. I constantly rely on them to ensure we are asking the right questions and making investments to advance our capabilities and position the nation for success. Q: What excites you most about the future of space exploration? Polzin: In my lifetime, we have never been closer to fully realizing the benefits of nuclear power and propulsion in space. We now have the potential to cross the threshold and open a new era where nuclear technologies will bring about truly transformational change in how we approach all aspects of space exploration. Polzin delivers his acceptance speech.Courtesy of AIAA Before his current role, Polzin was the Space Systems Team lead in Marshall’s Advanced Concepts Office. He joined NASA in 2004 as a propulsion research engineer. Polzin has a doctorate and a master’s in Mechanical and Aerospace Engineering from Princeton University in New Jersey and a bachelor’s in Aeronautical and Astronautical Engineering from Ohio State University in Columbus. He authored or co-authored over 140 publications, including a recently published monograph, and he holds six U.S. patents. He has also been an adjunct professor at the University of Alabama in Huntsville for many years, teaching graduate-level courses in physics and engineering. Polzin’s other honors include the AIAA Sustained Service Award, the AIAA Greater Huntsville Section’s Martin Schilling Outstanding Service and Earl Pearce Professional of the Year, and multiple NASA Patent, Special Service, and Group Achievement awards. He is an associate fellow of AIAA and a senior member of the Institute of Electrical and Electronics Engineers. NASA’s Space Technology Mission Directorate funds the SNP Office. With nearly 30,000 individual members from 91 countries and 95 corporate members, AIAA is the world’s largest technical society dedicated to the global aerospace profession. For more on Space Nuclear Propulsion, visit: https://www.nasa.gov/tdm/space-nuclear-propulsion/ For more on Marshall Space Flight Center, visit: https://www.nasa.gov/marshall/ Ramon J. Osorio Marshall Space Flight Center, Huntsville, Alabama 256-544-0034 ramon.j.osorio@nasa.gov Share Details Last Updated Jun 05, 2024 Related TermsSpace Nuclear Propulsion (SNP)Marshall Space Flight CenterTechnology Demonstration Missions Program Explore More 5 min read Meet the Simunauts: Ohio State Students to Test Space Food Solutions for NASA Article 17 hours ago 26 min read The Marshall Star for June 5, 2024 Article 17 hours ago 4 min read NASA Astronauts Practice Next Giant Leap for Artemis Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
The National Institute on Aging (NIA), a component of the National Institutes of Health (NIH) seeks to stimulate the use of data resources with appropriate sample diversity, including data relevant to under-resourced, underserved communities disproportionately burdened by AD/ADRD. For example, for Asian, Black, or Hispanic older adults, the protein amyloid – which has long been considered a biomarker for AD – might have a smaller role in determining cognitive impairment than other factors such as co-occurring chronic medical conditions (hypertension, diabetes) and sociodemographic and systemic factors, each of which has been found to contribute to racial and ethnic disparities in dementia diagnoses (below; Wilkins et al., 2022). This highlights the importance of also identifying novel (non-amyloid, non-tau) biomarkers and non-biological (e.g., social determinants of health) predictors in adults from underrepresented racial and ethnic groups (Dark and Walker, 2022). The goal is to inform novel approaches to early detection that might ultimately lead to more accurate tests, tools, and methodologies for clinical and research purposes. Government Agency: National Institutes of Health Award: Phase 1: $200,000; Phase 2: $250,000; Phase 3: $200,000 Open Date: Phase 1: September 2023; Phase 2: September 2024; Phase 3: September 2025 Close date: Phase 1: January 2024; Phase 2: TBD; Phase 3: TBD For more information, visit: https://www.drivendata.org/competitions/group/nih-nia-alzheimers-adrd-competition/ View the full article
-
NASA’s Boeing Crew Flight Test Rendezvous and Docking
-
5 Min Read Meet the Simunauts: Ohio State Students to Test Space Food Solutions for NASA Ohio State University has hired four student “Simunauts” (simulated analog astronauts) to test NASA’s Deep Space Food Challenge technologies at the Wilbur A. Gould Food Industries Center's Food Processing Pilot Plant this summer. From left to right: Charlie Frick, Fuanyi Fobellah, Sakura Sugiyama, and Mehr Un Nisa. Credits: Ohio State University By Savannah Bullard NASA’s Deep Space Food Challenge kicks off its final eight-week demonstration this month, and a new crew is running the show. NASA’s partner for the Deep Space Food Challenge, the Methuselah Foundation, has teamed up with Ohio State University in Columbus to facilitate the challenge’s third and final phase. The university is employing current and former students to serve on a “Simunaut” crew to maintain and operate the food production technologies during the demonstration period. The Deep Space Food Challenge creates novel food production systems that offer safe, nutritious, and delicious food for long-duration human exploration missions while conscious of waste, resources, and labor. The challenge could also benefit humanity by helping address Earth’s food scarcity problems. In this challenge phase, NASA will offer a $1.5 million prize purse to winning U.S. teams after demonstrations are completed during an awards ceremony on August 16. “It’s easy for a team with intimate knowledge of their food systems to operate them. This will not be the case for astronauts who potentially use these solutions on deep-space missions,” said Angela Herblet, Program Analyst for NASA’s Centennial Challenges and Challenge Manager for the Deep Space Food Challenge. “Incorporating the Simunauts will add a unique flair that will test the acceptability and ease of use of these systems.” The demonstrations will occur inside Ohio State’s Wilbur A. Gould Food Industries Center’s Food Processing Pilot Plant until Wednesday, July 31. Meet the students behind the demonstrations: Fuanyi Fobellah Fuanyi Fobellah. Ohio State University Fuanyi Fobellah was a picky eater as a child. But, when he began wrestling in school, food became an essential part of his life. Now a senior majoring in food business management at Ohio State, Fobellah combines his love for space exploration with his food, nutrition, business, and innovation knowledge. Q: How does the work you’re doing this summer fit into the overall NASA mission, and how do your contributions fit into that mission? A: Food can easily become an overlooked aspect of space travel, but humans can only live and travel to different planets with sustainable food systems. That’s why a challenge focused on developing food systems for space travel is so vital to NASA’s mission. Sakura Sugiyama Sakura Sugiyama Ohio State University Sakura Sugiyama’s childhood hobbies were cooking and baking, and with two scientists as parents, the Deep Space Food Challenge piqued the interest of the recent Ohio State graduate. Sugiyama obtained her bachelor’s degree from Ohio State’s Department of Food Science and Technology and plans to work in research and development in the food industry. Q: Why do you think this work is important for the future of civilization? A: Food variety, sustainability, energy efficiency—all of those are issues we face here on Earth due to climate change, increasing populations, and food insecurity. I hope that solving those issues in space will also help solve those problems on Earth. Charlie Frick Charlie FrickOhio State University A fifth-year student studying animal sciences, Charlie Frick, found his passion while growing up on his family’s farm. While finishing his degree, he hopes the Deep Space Food Challenge will allow him to use his agriculture and animal science knowledge to support space technology, nutrition, and food regeneration. Q: Now that you’re familiar with NASA’s public prize competitions, how do you think they benefit the future of human space exploration? A: These challenges help a lot because sometimes you need that third person who doesn’t have that background but can come up with something to help. These challenges are critical in helping bring about technologies that otherwise would never exist. Mehir Un Nisa Mehr Un NisaOhio State University Mehir Un Nisa is a graduate student in Ohio State’s Department of Food Science and Technology. As a kid who dreamed about working at NASA, Un Nisa is using her expertise in food science to make that dream a reality and get a foot in the door of the agency’s food and nutrition programs. Q: How does it feel to work alongside NASA on a project like this? A: Working with NASA empowers me as a researcher, and it makes me feel good that food science has a part in that big name. It’s a dream come true for me. The Deep Space Food Challenge, a NASA Centennial Challenge, is a coordinated effort between NASA and CSA (Canadian Space Agency). Subject matter experts at Johnson Space Center in Houston, Texas, and Kennedy Space Center in Merritt Island, Florida, support the competition. NASA’s Centennial Challenges are part of the Prizes, Challenges, and Crowdsourcing program within NASA’s Space Technology Mission Directorate and managed at Marshall Space Flight Center in Huntsville, Alabama. The Methuselah Foundation, in partnership with NASA, oversees the United States and international competitors. For more information on the Deep Space Food Challenge, visit: nasa.gov/spacefoodchallenge Jonathan Deal Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 jonathan.e.deal@nasa.gov Share Details Last Updated Jun 05, 2024 LocationMarshall Space Flight Center Related TermsCentennial ChallengesCentennial Challenges NewsMarshall Space Flight Center Explore More 5 min read NASA Begins Final Phase of $3 Million Deep Space Food Challenge Article 9 months ago 3 min read Deep Space Food Challenge Phase 2 Article 1 year ago 5 min read The Menu for Mars: Designing a Deep Space Food System Article 3 years ago Keep Exploring Discover More Topics From NASA Deep Space Food Challenge NASA Prizes, Challenges, and Crowdsourcing Space Technology Mission Directorate Centennial Challenges News View the full article
-
26 Min Read The Marshall Star for June 5, 2024 LIFTOFF! NASA Astronauts Pilot First Starliner Crewed Test to Station NASA astronauts Butch Wilmore and Suni Williams are safely in orbit on the first crewed flight test aboard Boeing’s Starliner spacecraft bound for the International Space Station. As part of NASA’s Boeing Crew Flight Test, the astronauts lifted off at 9:52 a.m. CDT June 5 on a ULA (United Launch Alliance) Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station on an end-to-end test of the Starliner system. A United Launch Alliance Atlas V rocket with Boeing’s Starliner spacecraft aboard launches from Space Launch Complex 41 at Cape Canaveral Space Force Station on June 5. NASA’s Boeing Crew Flight Test is the first launch with astronauts of the Boeing spacecraft and United Launch Alliance Atlas V rocket to the International Space Station as part of the agency’s Commercial Crew Program.NASA/Joel Kowsky “Two bold NASA astronauts are well on their way on this historic first test flight of a brand-new spacecraft,” said NASA Administrator Bill Nelson. “Boeing’s Starliner marks a new chapter of American exploration. Human spaceflight is a daring task – but that’s why it’s worth doing. It’s an exciting time for NASA, our commercial partners, and the future of exploration. Go Starliner, Go Butch and Suni!” As part of NASA’s Commercial Crew Program, the flight test will help validate the transportation system, launch pad, rocket, spacecraft, in-orbit operations capabilities, and return to Earth with astronauts aboard as the agency prepares to certify Starliner for rotational missions to the space station. Starliner previously flew two uncrewed orbital flights, including a test to and from the space station, along with a pad abort demonstration. “With Starliner’s launch, separation from the rocket, and arrival on orbit, Boeing’s Crew Flight Test is right on track,” said Mark Nappi, vice president and program manager of Boeing’s Commercial Crew Program. “Everyone is focused on giving Suni and Butch a safe, comfortable, ride and performing a successful test mission from start to finish.” During Starliner’s flight, Boeing will monitor a series of automatic spacecraft maneuvers from its mission control center in Houston. NASA teams will monitor space station operations throughout the flight from the Mission Control Center at the agency’s Johnson Space Center. “Flying crew on Starliner represents over a decade of work by the Commercial Crew Program and our partners at Boeing and ULA,” said Steve Stich, manager, Commercial Crew Program, at NASA’s Johnson Space Center. “For many of us, this is a career-defining moment bringing on a new crew transportation capability for our agency and our nation. We are going to take it one step at a time, putting Starliner through its paces, and remaining vigilant until Butch and Suni safely touch down back on Earth at the conclusion of this test flight.” Starliner will autonomously dock to the forward-facing port of the station’s Harmony module at approximately 11:15 a.m. June 6, and remain at the orbital laboratory for about a week. Wilmore and Williams will help verify the spacecraft is performing as intended by testing the environmental control system, the displays and control system, and by maneuvering the thrusters, among other tests during flight. After a safe arrival at the space station, Wilmore and Williams will join the Expedition 71 crew of NASA astronauts Michael Barratt, Matt Dominick, Tracy C. Dyson, and Jeanette Epps, and Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko. Mission coverage will continue on NASA Television channels throughout Starliner’s flight and resume on NASA+ prior to docking. Follow mission updates here. The Huntsville Operations Support Center (HOSC) at NASA’s Marshall Space Flight Center provides engineering and mission operations support for the space station, the Commercial Crew Program, and Artemis missions, as well as science and technology demonstration missions. The Payload Operations Integration Center within HOSC operates, plans, and coordinates the science experiments onboard the space station 365 days a year, 24 hours a day. The Commercial Crew Program support team at Marshall provides crucial programmatic, engineering, and safety and mission assurance expertise for launch vehicles, spacecraft propulsion, and integrated vehicle performance. A flag-raising ceremony was held May 2 outside the HOSC for Marshall’s support of the mission. The ceremony was a joint effort between the Payload and Mission Operations Division and Commercial Crew Program team. › Back to Top Center Director Joseph Pelfrey Outlines Marshall’s Future at 29th Tennessee Valley Corridor Summit By Rick Smith Joseph Pelfrey, director of NASA’s Marshall Space Flight Center, was a key presenter at the 29th annual Tennessee Valley Corridor National Summit, hosted by Vanderbilt University in Nashville on May 29 and 30. The event drew some 300 attendees, including government representatives, members of the public, and industry and academic stakeholders from across the corridor’s five-state region, which includes Alabama, Kentucky, North Carolina, Tennessee, and Virginia. NASA Marshall Space Flight Center Director Joseph Pelfrey, left, addresses an audience of academic and industry stakeholders at the 29th annual Tennessee Valley Corridor National Summit in Nashville on May 30.NASA/Chris Blair Pelfrey addressed summit attendees May 30 as part of a session on “Exploring and Discovering Through Science, Research, and Space.” He noted that Marshall will embrace a transformative shift, including a transition toward small- and medium-sized programs enabled by strategic partnerships, helping NASA prepare for a future in which astronauts live and work on the Moon and prepare for crewed missions to Mars. That paradigm shift will rely heavily on “the talent, innovation, and infrastructure available in the Tennessee Valley, (enabling) us to accelerate progress in space exploration, scientific research, and technology development,” Pelfrey added. He also emphasized that there is much more to come for Marshall, with the center continuing to serve as a trusted technical solutions provider for NASA and its partners. Pelfrey highlighted how harnessing the center’s deep technical expertise for future missions will help drive innovation, reduce costs, and accelerate shared goals for advanced space exploration. Pelfrey offered a detailed look at NASA’s successful Artemis I launch in 2022 and the upcoming Artemis II mission, which will send the first woman and first person of color to deep space to conduct a lunar fly-by – the final checkout before Artemis III lands Americans on the lunar surface for the first time since 1972. Pelfrey also discussed Marshall’s role in managing NASA’s SLS (Space Launch System) rocket, the backbone of the agency’s Artemis-era endeavors, and identified new and upcoming programs and efforts geared to expand the center’s role in deep-space science and exploration. He noted that much of that work has had a direct effect on the state of Tennessee and on industry and academia across the corridor. Trey Cate, right, SLS strategic communications manager at Marshall, talks with TVC National Summit attendees about the Space Launch System and NASA’s Artemis Program during a break between panel sessions at the May 29-30 event, hosted by Vanderbilt University in Nashville. NASA/Chris Blair In fiscal year 2021 alone, NASA’s economic impact supported more than 1,600 jobs and generated more than $340 million in Tennessee alone, including $119 million in labor income. More broadly, since 2015, NASA has enacted 97 Cooperative Agreements with partners across the five-state corridor. Eighty-two of those were with universities, including six minority-serving institutions. Of the 15 industry agreements, 11 created partnerships with small businesses. “This is truly an exciting time to live and work in the Tennessee Valley,” Pelfrey said, “and to be part of the space community.” Other summit speakers included Senators Marsha Blackburn and Bill Hagerty of Tennessee, Rep. Chuck Fleischmann of Tennessee’s 3rd district, and Rep. Mark Green of Tennessee’s 7th district; Corey Hinderstein, deputy administrator of the National Nuclear Security Administration; Dr. Steven Streiffer, director of Oak Ridge National Laboratory; and Dr. Robert Lindquist, vice president for research and economic development at the University of Alabama in Huntsville. Panels and seminars included discussion of American security, global economic leadership, new energy solutions, workforce development, and the emergence of AI technology. More than 20 businesses and academic institutions – including representatives from SLS, the Human Landing Systems Program Office, the Space Nuclear Propulsion Project Office, and other Marshall organizations – engaged with summit participants and promoted current and future NASA endeavors at a trade-show expo in the Vanderbilt Student Life Center. The Tennessee Valley Corridor was founded in 1995 to foster collaboration between government, academia, and industry, to champion regional economic leadership, and to promote partnerships in national security, science, space, transportation, environment, energy, education, and workforce development. Its 2023 national summit was held in Huntsville. Smith, an Aeyon/MTS employee, supports the Marshall Office of Communications. › Back to Top Davey Jones Named Marshall’s Center Strategy Lead Davey Jones has been named center strategy lead at NASA’s Marshall Space Flight Center, following the reassignment of Jeramie Broadway, effective June 2. As center strategy lead for the Office of the Center Director, Jones will lead and implement the director’s strategic vision, leveraging and integrating Marshall’s strategic business units, in coordination and collaboration with all center organizations, and to ensure alignment with the agency’s strategic priorities. Davey Jones has been named center strategy lead at NASA’s Marshall Space Flight Center.NASA/Danielle Burleson He moves into his new role after being the manager of the Program Planning & Control Office within the HLS (Human Landing Systems) Program at Marshall since 2020. In that capacity, Jones’ primary role was managing the program’s budget, schedule, risk, and other programmatic functions. He has worked in multiple roles throughout his career, focused on the formulation of key programs and projects for Marshall, including development of technology upgrades for life support systems on the International Space Station, formulation of the SLS (Space Launch System) Block 1B vehicle and exploration upper stage, and leading various human exploration architecture studies for the Moon and Mars. From 2017 to 2020, he was the Environmental Control and Life Support System Integration and Development manager for the International Space Station Projects Office in the Human Exploration Development and Operations Office. Jones was senior technical assistant to Marshall’s associate director, technical, from 2016-2017. Prior to that, he was SLS stages alternate lead systems engineer from 2014-2016. A U.S. Navy veteran, he began his NASA career in 2008 in the Advanced Concepts Office. Jones’ honors include a NASA Early Career Achievement Medal, Marshall Engineering Director’s Award, and a Human Exploration Framework Team Group Achievement Award. A native of Lakeland, Florida, he earned a bachelor’s degree in mechanical engineering from the University of Alabama in Huntsville. › Back to Top Lucy Images Reveal Asteroid Dinkinesh to be Surprisingly Complex Images from the November 2023 flyby of asteroid Dinkinesh by NASA’s Lucy spacecraft show a trough on Dinkinesh where a large piece – about a quarter of the asteroid – suddenly shifted, a ridge, and a separate contact binary satellite (now known as Selam). Scientists say this complicated structure shows that Dinkinesh and Selam have significant internal strength and a complex, dynamic history. Panels a, b, and c each show stereographic image pairs of the asteroid Dinkinesh taken by the NASA Lucy Spacecraft’s L’LORRI Instrument in the minutes around closest approach on Nov. 1, 2023. The yellow and rose dots indicate the trough and ridge features, respectively. These images have been sharpened and processed to enhance contrast. Panel d shows a side view of Dinkinesh and its satellite Selam taken a few minutes after closest approach.NASA/GSFC/SwRI/Johns Hopkins APL/NOIRLab “We want to understand the strengths of small bodies in our solar system because that’s critical for understanding how planets like Earth got here,” said Hal Levison, Lucy principal investigator at the Boulder, Colorado, branch of the Southwest Research Institute in San Antonio, Texas. “Basically, the planets formed when zillions of smaller objects orbiting the Sun, like asteroids, ran into each other. How objects behave when they hit each other, whether they break apart or stick together, has a lot to do with their strength and internal structure.” Levison is lead author of a paper on these observations published May 29 in Nature. Researchers think that Dinkinesh is revealing its internal structure by how it has responded to stress. Over millions of years rotating in the sunlight, the tiny forces coming from the thermal radiation emitted from the asteroid’s warm surface generated a small torque that caused Dinkinesh to gradually rotate faster, building up centrifugal stresses until part of the asteroid shifted into a more elongated shape. This event likely caused debris to enter into a close orbit, which became the raw material that produced the ridge and satellite. If Dinkinesh were much weaker, more like a fluid pile of sand, its particles would have gradually moved toward the equator and flown off into orbit as it spun faster. However, the images suggest that it was able to hold together longer, more like a rock, with more strength than a fluid, eventually giving way under stress and fragmenting into large pieces. (Although the amount of strength needed to fragment a small asteroid like Dinkinesh is miniscule compared to most rocks on Earth.) “The trough suggests an abrupt failure, more an earthquake with a gradual buildup of stress and then a sudden release, instead of a slow process like a sand dune forming,” said Keith Noll of NASA’s Goddard Space Flight Center, project scientist for Lucy and a co-author of the paper. On Nov. 1, 2023, NASA’s Lucy spacecraft flew by the main-belt asteroid Dinkinesh. Now, the mission has released pictures from Lucy’s Long Range Reconnaissance Imager taken over a roughly three-hour period, providing the best views of the asteroid to date. During the flyby, Lucy discovered that Dinkinesh has a small moon, which the mission named “Selam,” a greeting in the Amharic language meaning “peace.” Lucy is the first mission designed to visit the Jupiter Trojans, two swarms of asteroids trapped in Jupiter’s orbit that may be “fossils” from the era of planet formation. (NASA’s Goddard Space Flight Center) “These features tell us that Dinkinesh has some strength, and they let us do a little historical reconstruction to see how this asteroid evolved,” Levison said. “It broke, things moved apart and formed a disk of material during that failure, some of which rained back onto the surface to make the ridge.” The researchers think some of the material in the disk formed the moon Selam, which is actually two objects touching each other, a configuration called a contact binary. Details of how this unusual moon formed remain mysterious. Dinkinesh and its satellite are the first two of 11 asteroids that Lucy’s team plans to explore over its 12-year journey. After skimming the inner edge of the main asteroid belt, Lucy is now heading back toward Earth for a gravity assist in December 2024. That close flyby will propel the spacecraft back through the main asteroid belt, where it will observe asteroid Donaldjohanson in 2025, and then on to the first of the encounters with the Trojan asteroids that lead and trail Jupiter in its orbit of the Sun beginning in 2027. Lucy’s principal investigator is based out of the Boulder, Colorado, branch of Southwest Research Institute, headquartered in San Antonio. NASA’s Goddard Space Flight Center provides overall mission management, systems engineering, and safety and mission assurance. Lockheed Martin Space in Littleton, Colorado, built and operates the spacecraft. Lucy is the 13th mission in NASA’s Discovery Program. NASA’s Marshall Space Flight Center manages the Discovery Program for the Science Mission Directorate at NASA Headquarters. › Back to Top NASA’s Europa Clipper Unpacks in Florida Crews rotated to vertical then lifted NASA’s Europa Clipper spacecraft from its protective shipping container after it arrived at the Payload Hazardous Servicing Facility at the agency’s Kennedy Space Center on May 28. Technicians inside the Payload Hazardous Servicing Facility at NASA’s Kennedy Space Center prepare to rotate the agency’s largest planetary mission spacecraft, Europa Clipper, to a vertical position May 28 as part of prelaunch processing.NASA/Kim Shiflett The spacecraft, which will collect data to help scientists determine if Jupiter’s icy moon Europa could support life, arrived in a United States Air Force C-17 Globemaster III cargo plane at Kennedy’s Launch and Landing Facility on May 23. The hardware traveled more than 2,500 miles from NASA’s Jet Propulsion Lab in Southern California where it was assembled. The team transported Europa Clipper to the facility and will perform a number of activities to prepare it for launch, including attaching the high gain antenna, affixing solar arrays to power the spacecraft, and loading propellants that will help guide the spacecraft to its destination. On board are nine science instruments to gather detailed measurements while Europa Clipper performs approximately 50 close flybys of the Jovian moon. Research suggests an ocean twice the volume of all the Earth’s oceans exists under Europa’s icy crust. The Europa Clipper spacecraft will launch on a SpaceX Falcon Heavy rocket from NASA Kennedy’s Launch Complex 39A. The launch period opens Oct. 10. Managed by Caltech in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with the Johns Hopkins Applied Physics Laboratory (APL) in Laurel, Maryland, for NASA’s Science Mission Directorate. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center executes program management of the Europa Clipper mission. › Back to Top Travel Through Data from Space in New 3D Instagram Experiences A new project provides special 3D “experiences” on Instagram using data from NASA’s Chandra X-ray Observatory and other telescopes through augmented reality (AR), allowing users to travel virtually through objects in space. These new experiences of astronomical objects – including the debris fields of exploded stars – are being released to help celebrate the 25th anniversary of operations from Chandra, NASA’s flagship X-ray telescope. These four images showcase the 2D captured views of the cosmic objects included in the new augmented reality 3D release. Presenting multiwavelength images of the Vela Pulsar, Tycho’s Supernova Remnant, Helix Nebula, and Cat’s Eye Nebula that include Chandra X-ray data as well as optical data in each, and for the Helix, additional infrared and ultraviolet data.Vela Pulsar: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image processing: NASA/CXC/SAO/J. Schmidt, K. Arcand; Tycho’s Supernova Remnant: X-ray: NASA/CXC/SAO; Optical: DSS; Image Processing: NASA/CXC/SAO/N. Wolk; Helix Nebula: X-ray: NASA/CXC/SAO; UV: NASA/JPL-Caltech/SSC; Optical: NASA/ STScI/M. Meixner, ESA/NRAO/T.A. Rector; Infrared:NASA/JPL-Caltech/K. Su; Image Processing: NASA/CXC/SAO/N. Wolk and K. Arcand; Cat’s Eye Nebula: X-ray: NASA/CXC/SAO; Optical: NASA/ESA/STScI; Image Processing: NASA/CXC/SAO/J. Major, L. Frattare, K. Arcand) In recent years, Instagram experiences (previously referred to as filters) of NASA mission control, the International Space Station, and the Perseverance Rover on Mars have allowed participants to virtually explore what NASA does. This new set of Chandra Instagram filters joins this space-themed collection. “We are excited to bring data from the universe down to earth in this way,” said Kimberly Arcand, visualization and emerging technology scientist at the Chandra X-ray Center. “By enabling people to access cosmic data on their phones and through AR, it brings Chandra’s amazing discoveries literally right to your fingertips.” The new Instagram experiences are created from 3D models based on data collected by Chandra and other telescopes along with mathematical models. Traditionally, it has been very difficult to gather 3D data of objects in our galaxy due to their two-dimensional projection on the sky. New instruments and techniques, however, have helped allowed astronomers in recent years to construct more data-driven models of what these distant objects look like in three dimensions. These advancements in astronomy have paralleled the explosion of opportunities in virtual, extended, and augmented reality. Such technologies provide virtual digital experiences, which now extend beyond Earth and into the cosmos. This new set of Chandra Instagram experiences was made possible by a collaboration including NASA, the Smithsonian Institution, and students and researchers at Brown University. These Instagram experiences also include data sonifications of the celestial objects. Sonification is the process of translating data into sounds and notes so users can hear representations of the data, an accessibility project the Chandra team has led for the past four years. “These Chandra Instagram experiences are another way to share these cosmic data with the public,” Arcand said. “We are hoping this helps reach new audiences, especially those who like to get their information through social media.” The objects in the new Chandra Instagram experience collection include the Tycho supernova remnant, the Vela Pulsar, the Helix Nebula, the Cat’s Eye Nebula, and the Chandra spacecraft. The 3D models of the first three objects were done in conjunction with Sal Orlando, an astrophysicist at Italy’s National Institute for Astrophysics (INAF) in Palmero. The Cat’s Eye Nebula was created with data from Ryan Clairmont, physics researcher and undergraduate at Stanford University. Arcand worked with Brown’s Tom Sgouros and his team, research assistant Alexander Dupuis and undergraduate Healey Koch, on the Chandra Instagram filters. The experiences include text that explains what users are looking at. The effects are free and available on Instagram on mobile devices for at least six months, and some will remain viewable in perpetuity on the Smithsonian’s Voyager 3D website. “There is a lot of rich and beautiful data associated with these models that Healey and I looked to bring in, which we did by creating the textures on the models as well as programming visual effects for displaying them in AR,” Dupuis said. NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. The Chandra X-ray Center is headquartered at the Smithsonian Astrophysical Observatory, which is part of the Center for Astrophysics | Harvard & Smithsonian. Read more from NASA’s Chandra X-ray Observatory. › Back to Top Agency to Measure Moonquakes with Help from InSight Mars Mission The most sensitive instrument ever built to measure quakes and meteor strikes on other worlds is getting closer to its journey to the mysterious far side of the Moon. It’s one of two seismometers adapted for the lunar surface from instruments originally designed for NASA’s InSight Mars lander, which recorded more than 1,300 marsquakes before the mission’s conclusion in 2022. JPL engineers and technicians prepare NASA’s Farside Seismic Suite for testing in simulated lunar gravity, which is about one-sixth of Earth’s. The payload will gather the agency’s first seismic data from the Moon in nearly 50 years and take the first-ever seismic measurements from the far side.NASA/JPL-Caltech Part of a payload called Farside Seismic Suite (FSS) that was recently assembled at NASA’s Jet Propulsion Laboratory, the two seismometers are expected to arrive in 2026 at Schrödinger basin, a wide impact crater about 300 miles from the Moon’s South Pole. The self-sufficient, solar-powered suite has its own computer and communications equipment, plus the ability to protect itself from the extreme heat of lunar daytime and the frigid conditions of night. After being delivered to the surface by a lunar lander under NASA’s CLPS (Commercial Lunar Payload Services) initiative, the suite will return the agency’s first seismic data from the Moon since the last Apollo program seismometers were in operation nearly 50 years ago. Not only that, but it will also provide the first-ever seismic measurements from the Moon’s far side. Up to 30 times more sensitive than its Apollo predecessors, the suite will record the Moon’s seismic “background” vibration, which is driven by micrometeorites the size of small pebbles that pelt the surface. This will help NASA better understand the current impact environment as the agency prepares to send Artemis astronauts to explore the lunar surface. Planetary scientists are eager to see what FSS tells them about the Moon’s internal activity and structure. What they learn will offer insights into how the Moon – as well as rocky planets like Mars and Earth – formed and evolved. It will also answer a lingering question about moonquakes: Why did the Apollo instruments on the lunar near side detect little far-side seismic activity? One possible explanation is that something in the Moon’s deep structure essentially absorbs far-side quakes, making them harder for Apollo’s seismometers to have sensed. Another is that there are fewer quakes on the far side, which on the surface looks very different from the side that faces Earth. “FSS will offer answers to questions we’ve been asking about the Moon for decades,” said Mark Panning, the FSS principal investigator at JPL and project scientist for InSight. “We cannot wait to start getting this data back.” Farside Seismic Suite’s two complementary instruments were adapted from InSight designs to perform in lunar gravity – less than half that of Mars, which, in turn, is about a third of Earth’s. They’re packaged together with a battery, the computer, and electronics inside a cube structure that’s surrounded by insulation and an outer protective cube. Perched atop the lander, the suite will gather data continuously for at least 4½ months, operating through the long, cold lunar nights. The Seismic Experiment for Interior Structure instrument (SEIS) aboard NASA’s Mars InSight is within the copper-colored hexagonal enclosure in this photo taken by a camera on the lander’s robotic arm on Dec. 4, 2018. The SEIS technology is being used on Farside Seismic Suite, bound for the Moon.NASA/JPL-Caltech The Very Broadband seismometer, or VBB, is the most sensitive seismometer ever built for use in space exploration: It can detect ground motions smaller than the size of a single hydrogen atom. A fat cylinder about 5 inches in diameter, it measures up-and-down movement using a pendulum held in place by a spring. It was originally constructed as an emergency replacement instrument (a “flight spare”) for InSight by the French space agency, CNES (Centre National d’Études Spatiales). Philippe Lognonné of Institut de Physique du Globe de Paris, the principal investigator for InSight’s seismometer, is an FSS co-investigator and VBB instrument lead. “We learned so much about Mars from this instrument, and now we are thrilled with the opportunity to turn that experience toward the mysteries of the Moon,” he said. The suite’s smaller seismometer, called the Short Period sensor, or SP, was built by Kinemetrics in Pasadena, California, in collaboration with the University of Oxford and Imperial College, London. The puck-shaped device measures motion in three directions using sensors etched into a trio of square silicon chips each about 1 inch wide. The FSS payload came together at JPL over the last year. In recent weeks, it survived rigorous environmental testing in vacuum and extreme temperatures that simulate space, along with severe shaking that mimics the rocket’s motion during launch. “The JPL team has been excited from the beginning that we’re going to the Moon with our French colleagues,” said JPL’s Ed Miller, FSS project manager and, like Panning and Lognonné, a veteran of the InSight mission. “We went to Mars together, and now we’ll be able to look up at the Moon and know we built something up there. It’ll make us so proud.” A division of Caltech in Pasadena, California, JPL manages, designed, assembled, and tested Farside Seismic Suite. The French space agency, CNES (Centre National d’Études Spatiales), and IPGP (Institut de Physique du Globe de Paris) provided the suite’s Very Broadband seismometer with support from Université Paris Cité and the CNRS (Centre National de la Recherche Scientifique). Imperial College, London and the University of Oxford collaborated to provide the Short Period sensor, managed by Kinemetrics in Pasadena. The University of Michigan provided the flight computer, power electronics, and associated software. A selection of NASA’s PRISM (Payloads and Research Investigations on the Surface of the Moon), FSS is funded by the Exploration Science Strategy and Integration Office within the agency’s Science Mission Directorate. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center provides program management. FSS will land on the Moon as part of an upcoming lunar delivery under NASA’s CLPS (Commercial Lunar Payload Services) initiative. › Back to Top NASA Astronauts Practice Next Giant Leap for Artemis The physics remain the same, but the rockets, spacecraft, landers, and spacesuits are new as NASA and its industry partners prepare for Artemis astronauts to walk on the Moon for the first time since 1972. NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson put on spacesuits, developed by Axiom Space, to interact with and evaluate full-scale developmental hardware of SpaceX’s Starship HLS (Human Landing System) that will be used for landing humans on the Moon under Artemis. The test, conducted April 30, marked the first time astronauts in pressurized spacesuits interacted with a test version of Starship HLS hardware. NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson prepare for a test of full-scale mockups of spacesuits developed by Axiom Space and SpaceX’s Starship human landing system developed for NASA’s Artemis missions to the Moon.SpaceX “With Artemis, NASA is going to the Moon in a whole new way, with international partners and industry partners like Axiom Space and SpaceX. These partners are contributing their expertise and providing integral parts of the deep space architecture that they develop with NASA’s insight and oversight,” said Amit Kshatriya, NASA’s Moon to Mars program manager. “Integrated tests like this one, with key programs and partners working together, are crucial to ensure systems operate smoothly and are safe and effective for astronauts before they take the next steps on the Moon.” The day-long test, conducted at SpaceX headquarters in Hawthorne, California, provided NASA and its partners with valuable feedback on the layout, physical design, mechanical assemblies, and clearances inside the Starship HLS, as well as the flexibility and agility of the suits, known as the AxEMU (Axiom Extravehicular Mobility Unit). To begin the test, Wheelock and Whitson put on the spacesuits in the full-scale airlock that sits on Starship’s airlock deck. Suits were then pressurized using a system immediately outside the HLS airlock that provided air, electrical power, cooling, and communications to the astronauts. Each AxEMU also included a full-scale model of the Portable Life Support System, or “backpack,” on the back of the suits. For Artemis moonwalks, each crew member will put on a spacesuit with minimal assistance, so the team was eager to evaluate how easily the suits can be put on, taken off, and stowed in the airlock. During the test, NASA and SpaceX engineers were also able to evaluate placement of mobility aids, such as handrails, for traversing the hatch. Another set of mobility aids, straps hanging from the ceiling in the airlock, assisted the astronauts when entering and removing the AxEMU suits. The astronauts also practiced interacting with a control panel in the airlock, ensuring controls could be reached and activated while the astronauts were wearing gloves. Astronauts were fully suited while conducting mission-like maneuvers in the full-scale build of the Starship human landing system’s airlock which will be located inside Starship under the crew cabin.SpaceX “Overall, I was pleased with the astronauts’ operation of the control panel and with their ability to perform the difficult tasks they will have to do before stepping onto the Moon,” said Logan Kennedy, lead for surface activities in NASA’s HLS Program. “The test also confirmed that the amount of space available in the airlock, on the deck, and in the elevator, are sufficient for the work our astronauts plan to do.” The suited astronauts also walked the from Starship’s airlock deck to the elevator built for testing. During Artemis missions, the elevator will take NASA astronauts and their equipment from the deck to the lunar surface for a moonwalk and then back again. Whitson and Wheelock practiced opening a gate to enter the elevator while evaluating the dexterity of the AxEMU suit gloves, and practiced lowering the ramp that astronauts will use to take the next steps on the Moon. The steps the astronauts took in the spacesuits through full-scale builds of the Starship hatch, airlock, airlock deck, and elevator may have been small, but they marked an important step toward preparing for a new generation of moonwalks as part of Artemis. For the Artemis III mission, SpaceX will provide the Starship HLS that will dock with Orion in lunar orbit and take two astronauts to and from the surface of the Moon. Axiom Space is providing a new generation of spacesuits for moonwalks that are designed to fit a wider range of astronauts. With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration. Learn more about Artemis. › Back to Top View the full article
-
NASA/Joel Kowsky A United Launch Alliance Atlas V rocket with Boeing’s CST-100 Starliner spacecraft aboard launches from Cape Canaveral Space Force Station in Florida, in this image from June 5, 2024. As part of NASA’s Commercial Crew Program, the flight test will help validate the transportation system, launch pad, rocket, spacecraft, in-orbit operations capabilities, and return to Earth with NASA astronauts Butch Wilmore and Suni Williams aboard. Read more about the mission, including coverage of Starliner’s docking to the International Space Station. Image Credit: NASA/Joel Kowsky View the full article
-
1 min read Mountain Rain or Snow Volunteers Broke Records This Winter The Mountain Rain or Snow project asks volunteers to track rain, snow, and mixed precipitation all winter long—and this was a winter like no other! This season, 1,684 people submitted precipitation observations—that’s about a third more than last season. These volunteers submitted over 32,110 observations, breaking last year’s record by over 10,000. Some observers excelled by sending in hundreds of observations—Patrick Thorson submitted 676! Nayoung Hur’s observations spanned the largest elevational range, and Lauren H’s came from the highest peak at 11, 993 feet. Congratulations to Patrick Thorson, Chris Gotschalk, SV, Karen O, Marley Jennings, Mariah Blackhorse, Robert R., Randall Bursk, Bill Locke, Erin Grogan, Lauren H., Craig Hall, and Nayoung Hur for their remarkable contributions. Thank you to all Mountain Rain or Snow observers for keeping your eyes on the sky with us this winter! The Mountain Rain or Snow project still needs more data to improve weather and water sources forecasting.If you are in the U.S.A. and you are on or near a mountain, visit www.rainorsnow.org/signup on your phone and select your region to join the project! Mountain Rain or Snow’s 2023-2024 winter season at a glance. Image Credit: Sonia Tonino Download infographic Share Details Last Updated Jun 05, 2024 Related Terms Citizen Science Earth Science Explore More 8 min read The Moon and Amaey Shah Article 6 days ago 2 min read Arizona Students Go on an Exoplanet Watch Article 1 week ago 4 min read Discovery Alert: Mini-Neptune in Double Star System is a Planetary Puzzle Article 2 weeks ago View the full article
-
A United Launch Alliance Atlas V rocket with Boeing’s Starliner spacecraft aboard launches from Space Launch Complex 41 at Cape Canaveral Space Force Station, Wednesday, June 5, 2024, in Florida. NASA’s Boeing Crew Flight Test is the first launch with astronauts of the Boeing spacecraft and United Launch Alliance Atlas V rocket to the International Space Station as part of the agency’s Commercial Crew Program.Credits: NASA/Joel Kowsky NASA astronauts Butch Wilmore and Suni Williams are safely in orbit on the first crewed flight test aboard Boeing’s Starliner spacecraft bound for the International Space Station. As part of NASA’s Boeing Crew Flight Test, the astronauts lifted off at 10:52 a.m. EDT Wednesday on a ULA (United Launch Alliance) Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on an end-to-end test of the Starliner system. “Two bold NASA astronauts are well on their way on this historic first test flight of a brand-new spacecraft,” said NASA Administrator Bill Nelson. “Boeing’s Starliner marks a new chapter of American exploration. Human spaceflight is a daring task – but that’s why it’s worth doing. It’s an exciting time for NASA, our commercial partners, and the future of exploration. Go Starliner, Go Butch and Suni!” As part of NASA’s Commercial Crew Program, the flight test will help validate the transportation system, launch pad, rocket, spacecraft, in-orbit operations capabilities, and return to Earth with astronauts aboard as the agency prepares to certify Starliner for rotational missions to the space station. Starliner previously flew two uncrewed orbital flights, including a test to and from the space station, along with a pad abort demonstration. “With Starliner’s launch, separation from the rocket, and arrival on orbit, Boeing’s Crew Flight Test is right on track,” said Mark Nappi, vice president and program manager of Boeing’s Commercial Crew Program. “Everyone is focused on giving Suni and Butch a safe, comfortable, ride and performing a successful test mission from start to finish.” During Starliner’s flight, Boeing will monitor a series of automatic spacecraft maneuvers from its mission control center in Houston. NASA teams will monitor space station operations throughout the flight from the Mission Control Center at the agency’s Johnson Space Center in Houston. “Flying crew on Starliner represents over a decade of work by the Commercial Crew Program and our partners at Boeing and ULA,” said Steve Stich, manager, Commercial Crew Program, at NASA’s Johnson Space Center in Houston. “For many of us, this is a career-defining moment bringing on a new crew transportation capability for our agency and our nation. We are going to take it one step at a time, putting Starliner through its paces, and remaining vigilant until Butch and Suni safely touch down back on Earth at the conclusion of this test flight.” Starliner will autonomously dock to the forward-facing port of the station’s Harmony module at approximately 12:15 p.m. Thursday, June 6, and remain at the orbital laboratory for about a week. Wilmore and Williams will help verify the spacecraft is performing as intended by testing the environmental control system, the displays and control system, and by maneuvering the thrusters, among other tests during flight. After a safe arrival at the space station, Wilmore and Williams will join the Expedition 71 crew of NASA astronauts Michael Barratt, Matt Dominick, Tracy C. Dyson, and Jeanette Epps, and Roscosmos cosmonauts Nikolai Chub, Alexander Grebenkin, and Oleg Kononenko. NASA’s arrival and in-flight event coverage is as follows (all times Eastern and subject to change based on real-time operations): Mission coverage will continue on NASA Television channels throughout Starliner’s flight and resume on NASA+ prior to docking. Thursday, June 6 9:30 a.m. – Arrival coverage begins on NASA+, the NASA app, and YouTube, and continues on NASA Television and the agency’s website. 12:15 p.m. – Targeted docking 2 p.m. – Hatch opening 2:20 p.m. – Welcome remarks 3:30 p.m. – Post-docking news conference at NASA Johnson with the following participants: NASA Associate Administrator Jim Free Steve Stich, manager, NASA’s Commercial Crew Program Jeff Arend, manager for systems engineering and integration, NASA’s International Space Station Office Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Coverage of the post-docking news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. 5:50 p.m. – NASA Administrator Bill Nelson, Deputy Administrator Pam Melroy, Associate Administrator Jim Free, Associate Administrator for Space Operations Ken Bowersox, and Johnson Space Center Director Vanessa Wyche will speak with Wilmore and Williams about their launch aboard the Starliner spacecraft. Coverage of the Earth to space call will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Saturday, June 8 8:50 a.m. – NASA astronauts Wilmore and Williams will provide a tour of Starliner. Coverage of the in-orbit event will stream live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Monday, June 10 11 a.m. – Williams will speak to students from Sunita L. Williams Elementary School in Needham, Massachusetts, in an event aboard the space station. Coverage of the Earth to space call will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Tuesday, June 11 3:15 p.m. – Wilmore will speak to students from Tennessee Tech University in an event aboard the space station. Coverage of the Earth to space call will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website. Meet NASA’s Crew Wilmore is the commander for the mission. A veteran of two spaceflights, Wilmore has 178 days in space under his belt. In 2009, he served as a pilot aboard space shuttle Atlantis for the STS-129 mission. Additionally, Wilmore served as a flight engineer for Expedition 41 until November 2014, when he assumed command of the space station after arrival of the Expedition 42 crew. He returned to Earth the following March. Prior to his selection by NASA in 2000, the father of two obtained both his bachelor’s degree and master’s degree in Electrical Engineering from Tennessee Technological University, Cookeville, before graduating with another master’s degree in Aviation Systems from the University of Tennessee, Knoxville. He is also a graduate of the United States Naval Test Pilot School, Patuxent River, Maryland, and has completed four operational deployments during his tenure as a fleet naval officer and aviator. Williams is the spacecraft pilot for the flight test. Williams has spent 322 days in space across two missions: Expedition 14/15 in 2006 through 2007, and Expedition 32/33 in 2012. The Massachusetts native also conducted seven spacewalks, totaling 50 hours and 40 minutes. Before her career began with NASA in 1998, Williams graduated with her bachelor’s degree in Physical Science from the U.S. Naval Academy, Annapolis, Maryland, before obtaining her master’s degree in Engineering Management from the Florida Institute of Technology, Melbourne. In total, she has logged more than 3,000 flight hours in over 30 different aircraft. NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low Earth orbit and the space station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon under Artemis and, eventually, Mars. Learn more about NASA’s Commercial Crew program at: https://www.nasa.gov/commercialcrew -end- Josh Finch / Jimi Russell / Claire O’Shea Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / james.j.russell@nasa.gov / claire.a.o’shea@nasa.gov Steven Siceloff / Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov Leah Cheshier Johnson Space Center, Houston 281-483-5111 leah.d.cheshier@nasa.gov Share Details Last Updated Jun 05, 2024 LocationNASA Headquarters Related TermsCommercial CrewCommercial SpaceHumans in SpaceInternational Space Station (ISS)ISS ResearchSpace Operations Mission Directorate View the full article
-
Perseverance Perseverance Mission Overview Rover Components Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Science Objectives Science Instruments Science Highlights News and Features Multimedia Perseverance Raw Images Mars Resources Mars Exploration All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read Carving Into Carbonates at Old Faithful Geyser Abrading Old Faithful Geyser: On Sol 1151 (May 16, 2024), Perseverance abraded a carbonate-bearing rock called Old Faithful Geyser in the Western Margin Unit. This activity was captures by the rover’s Left Hazard Avoidance Camera (HAZCAM). NASA/JPL-Caltech This past week on Mars, Perseverance made a pit stop near Overlook Mountain to abrade a rock called Old Faithful Geyser. This target is situated within the Western side of the Margin Unit, an area around the upper edge of Jezero Crater that is astrobiologically-interesting due to its abundant carbonate. Carbonate-bearing rocks have been a major scientific focus throughout this campaign, which began with Perseverance entering the Eastern side of the Margin Unit on Sol 915 of the mission (1 sol = 1 day on Mars) in September of 2023, about 240 sols ago, then roving steadily Westward. So far, Perseverance has collected 3 cores from this Unit, including Pelican Point on Sol 923, Lefroy Bay on Sol 942, and Comet Geyser on Sol 1088. Proximity and remote science observations associated with each of these targets have all confirmed the presence of carbonate, but the grains and mineral assemblages in each rock are unique, which may indicate that carbonates in the Eastern and Western parts of the Margin have experienced different formation mechanisms and/or alteration histories. In particular, the team is interested in understanding whether the carbonate-bearing rocks in the West formed through sedimentary, igneous, or volcaniclastic processes. To investigate the origin of Western Margin Unit carbonates, the team decided to stop off at Old Faithful Geyser to conduct an opportunistic abrasion on Sol 1151, then measure the rock with the Planetary Instrument for X-ray Lithochemistry (PIXL), a proximity science instrument carried on the rover’s arm. PIXL maps elemental distributions across fine scales (each PIXL map is a few square millimeters), and the Wide Angle Topographic Sensor for Operations and eNgineering (WATSON) camera takes complementary images of rocks from a similar close-up scale to record rock textures, grain boundaries, and color distributions. PIXL and WATSON will assess differences or similarities in composition in the Old Faithful Geyser abrasion, as compared to other targets across the Margin Unit, in hopes of better understanding how carbonates from East to West formed and transformed through time. In addition to helping the team unravel the history of Jezero Crater’s carbonates that record changes along the Margin, the observations at Old Faithful Geyser would provide additional context for the three collected Margin Unit core samples if they are brought back to Earth by Mars Sample Return (MSR) in the future! Written by Denise Buckner, Student Collaborator at University of Florida Share Details Last Updated Jun 05, 2024 Related Terms Blogs Explore More 3 min read Sols 4205-4206: Curiosity Would Like One of Each, Please! Article 1 hour ago 2 min read Sols 4202-4204: Sticking Around Article 1 hour ago 2 min read Sols 4199-4201: Driving Through a Puzzle Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars… All Mars Resources Rover Basics Mars Exploration Science Goals View the full article
-
Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Science Instruments Science Highlights News and Features Multimedia Curiosity Raw Images Mars Resources Mars Exploration All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 3 min read Sols 4205-4206: Curiosity Would Like One of Each, Please! This image was taken by Right Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4202 (2024-06-01 19:34:11 UTC). NASA/JPL-Caltech Earth planning date: Monday, June 3, 2024 You know that feeling at the ice cream shop when you’re presented with so many tantalizing options and you have to narrow it down to just a few to taste test, and then you have to strategize how to fit all the best flavors in your bowl? That’s what the past few planning shifts have felt like on Mars. There are just too many cool rocks to choose from! Curiosity is currently investigating “Whitebark Pass” (which sounds like it should be an ice cream flavor, right?) with a variety of rock textures and colors in our workspace. We spent the weekend at this location, investigating some of the light-toned, pitted clasts and the gray crumbly material that lines the slab. Then there’s the slab itself, and some bright white clasts that we crushed with the rover wheel which caught our eye. The Navcam image above shows the rover arm going in for a close inspection of the slab. Today’s 2-sol plan includes another helping of contact science and a lot of targeted remote sensing. Essentially the team asked to try a scoop of the tan stuff, some gray stuff on the side, and add in the crumbly white bits while you’re at it. This translated to the team planning DRT, MAHLI, and APXS on “Gem Lakes” to investigate the top of this slab, MAHLI and APXS hovering over “Convict Lake” to assess a white rock that was crushed by the rover wheel, and a MAHLI dogs eye mosaic on “Starr Minaret” to get a detailed view of the textures in the gray material. Then we sprinkled in a number of ChemCam and Mastcam activities in the targeted remote sensing blocks. The team planned ChemCam LIBS on some different textures at “Cold Springs” and “Fishgut Lake” (umm, maybe I’ll skip that flavor…) and a ChemCam passive observation on “Quarry Peak” to assess a nearby light-toned slab. The team also planned a long distance ChemCam RMI to investigate the distribution of light-toned clasts at “Camp Four.” Multiple Mastcam mosaics are planned to document the ChemCam targets, monitor areas for change detection, characterize the diversity of textures, and assess stratigraphic relationships. And for good measure we also planned environmental monitoring activities including a Navcam line of sight observation, Mastcam tau, Navcam deck monitoring and dust devil survey, in addition to standard DAN and REMS observations. You’d think we’d be stuffed by now, but the team is already strategizing what else we can get in the next plan before driving away. A sure sign of a delicious workspace. Written by Lauren Edgar, Planetary Geologist at USGS Astrogeology Science Center Share Details Last Updated Jun 05, 2024 Related Terms Blogs Explore More 2 min read Sols 4202-4204: Sticking Around Article 14 mins ago 2 min read Sols 4199-4201: Driving Through a Puzzle Article 7 days ago 2 min read Sols 4195-4198: Feels Like Summer Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars… All Mars Resources Rover Basics Mars Exploration Science Goals View the full article
-
Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Science Instruments Science Highlights News and Features Multimedia Curiosity Raw Images Mars Resources Mars Exploration All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read Sols 4202-4204: Sticking Around This image was taken by Left Navigation Camera onboard NASA’s Mars rover Curiosity on Sol 4200 (2024-05-30 13:21:00 UTC). NASA/JPL-Caltech Earth planning date: Friday, May 31, 2024 Our most recent drive delivered us, as planned, right alongside ‘Whitebark Pass.’ This last drive was only about 9 metres, but Curiosity has been doing a lot of travelling lately and this weekend we’re giving the rover a well-deserved break from driving – but not a break from science! There’s a lot to see at our current location, so we made the decision to stick around a while to take it all in. The lighter-toned rocks like those of Whitebark pass, which you can see above, are scattered all throughout our workspace and are getting the majority of our attention. The advantage of a nice long weekend plan with no driving is that we have plenty of time to get in contact science, with MAHLI and APXS getting up close with two targets called ‘Gray Peak’ and ‘Snow Lakes.’ ChemCam is joining in with three LIBS targets, ‘Beck Lakes,’ ‘Ten Lakes,’ and ‘Pohono Bridge.’ Mastcam is also taking two large mosaics of Whitebark Pass, looking more at the general topography and texture of the feature as a whole. There’s more than light-toned rocks in this area though – Mastcam will also be taking a look at some nearby bedrock along the channel wall. Rocks aren’t the only features of interest here. The drive also put us right next to a rippled sand patch, which we’re taking a look at with both Mastcam and Navcam. Aside from that, the Environmental theme group is taking advantage of staying put this weekend with some of our regular activities, including a number of tau and line of sight observations to look at dust in the atmosphere, a dust devil survey to scan for dust lifting, and several cloud movies. We also have our bi-weekly ChemCam passive sky observation, which gives us an idea of the abundances of oxygen and water vapour in the atmosphere. Written by Alex Innanen, Atmospheric Scientist at York University Share Details Last Updated Jun 05, 2024 Related Terms Blogs Explore More 3 min read Sols 4205-4206: Curiosity Would Like One of Each, Please! Article 7 mins ago 2 min read Sols 4199-4201: Driving Through a Puzzle Article 7 days ago 2 min read Sols 4195-4198: Feels Like Summer Article 1 week ago Keep Exploring Discover More Topics From NASA Mars Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars… All Mars Resources Rover Basics Mars Exploration Science Goals View the full article
-
Rocket Lab’s Electron rocket lifted off from Launch Complex 1 at Māhia, New Zealand at 11:15 p.m. NZST June 5, 2024, carrying a small satellite for NASA’s PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) mission. RocketLab The second of NASA’s PREFIRE (Polar Radiant Energy in the Far-InfraRed Experiment) two satellites is communicating with ground controllers after launching at 3:15 p.m. NZST, Wednesday (11:15 p.m. EDT, June 4). Data from these two shoebox-size cube satellites, or CubeSats, will better predict how Earth’s ice, seas, and weather will change in a warming world — providing information to help humanity thrive on our changing planet. The CubeSat launched on top Rocket Lab’s Electron rocket from the company’s Launch Complex 1 in Māhia, New Zealand, and follows the May 25 launch of the first PREFIRE CubeSat. After a 30-day checkout period, when engineers and scientists confirm both CubeSats are operating normally, the mission is expected to operate for 10 months. “By helping to clarify the role that Earth’s polar regions play in regulating our planet’s energy budget, the PREFIRE mission will ultimately help improve climate and ice models,” said Amanda Whitehurst, PREFIRE program executive, at NASA Headquarters in Washington. “Improved models will benefit humanity by giving us a better idea of how our climate and weather patterns will change in the coming years.” Capitalizing on NASA’s unique vantage point in space, PREFIRE will help understand the balance between incoming heat energy from the Sun and the outgoing heat given off at Earth’s poles. The Arctic and Antarctica act something like the radiator in a car’s engine shedding much of the heat initially absorbed at the tropics back into space. The majority of that heat is emitted as far-infrared radiation. The water vapor content of the atmosphere, along with the presence, structure, and composition of clouds, influences the amount of radiation that escapes into space from the poles. The PREFIRE mission will give researchers information on where and when far-infrared energy radiates from the Arctic and Antarctic environments into space. The mission also will use its two CubeSats in asynchronous, near-polar orbits to study how relatively short-lived phenomena like cloud formation, moisture changes, and ice sheet melt affect far-infrared emissions over time. The two satellites pass over the same part of Earth at different times of day, giving researchers information on changing conditions. “Climate change is reshaping our environment and atmosphere in ways that we need to prepare for,” said Brian Drouin, PREFIRE’s deputy principal investigator at NASA’s Jet Propulsion Laboratory in Southern California. “This mission will give us new measurements of the far-infrared wavelengths being emitted from Earth’s poles, which we can use to improve climate and weather models and help people around the world deal with the consequences of climate change.” Each CubeSat carries an instrument called a thermal infrared spectrometer, which uses specially shaped mirrors and sensors to measure infrared wavelengths. Miniaturizing the instruments to fit on CubeSats required downsizing some parts while scaling up other components. “Equipped with advanced infrared sensors that are more sensitive than any similar instrument, the PREFIRE CubeSats will help us better understand Earth’s polar regions and improve our climate models,” said Laurie Leshin, director at NASA JPL. “Their observations will lead to more accurate predictions about sea level rise, weather patterns, and changes in snow and ice cover, which will help us navigate the challenges of a warming world.” NASA’s Launch Services Program, based out of the agency’s Kennedy Space Center in Florida, in partnership with NASA’s Earth System Science Pathfinder Program, is providing the launch service as part of the agency’s Venture-class Acquisition of Dedicated and Rideshare (VADR) launch services contract. The PREFIRE mission was jointly developed by NASA and the University of Wisconsin-Madison. NASA JPL manages the mission for the agency’s Science Mission Directorate and provided the spectrometers. Blue Canyon Technologies built the CubeSats and the University of Wisconsin-Madison will process the data the instruments collect. The launch services provider is Rocket Lab USA Inc. of Long Beach, California. To learn more about PREFIRE, visit: https://science.nasa.gov/mission/prefire/ -end- Karen Fox / Elizabeth Vlock Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / elizabeth.a.vlock@nasa.gov Jane J. Lee / Andrew Wang Jet Propulsion Laboratory, Pasadena, Calif. 818-354-0307 / 626-379-6874 jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov View the full article
-
It is impossible to pinpoint a single, static definition of what makes a “Digital Transformer.” Although Matt Dosberg’s official title is Digital Transformation and IT Innovation Lead for Goddard Space Flight Center (GSFC), his full contributions to NASA require a lengthier description. He is the nexus for everything under the Digital Transformation (DT) umbrella at GSFC, including digital engineering, AI, data-driven programmatics, data strategy, and more. He serves as liaison to the agency-level DT team and other centers, coordinating across directorates to drive cultural change within the organization, and has sponsored multiple DT events at GSFC, including the center’s first AI Symposium. He strategizes on rolling out proof of concepts and pilots, working toward solutions that address agency-wide barriers to technology readiness and adoption. Dosberg doesn’t just do transformative work—he embodies transformation in an ever-adaptive role. In his three and a half years at NASA, Dosberg has impacted the agency beyond quantitative measures. Of course, his formal accomplishments are extensive, including co-leadership positions for the Goddard AI strategy and Goddard Data Strategy Working Group. He works with the GSFC Chief Technologist to co-fund various initiatives for weaving digital technology into next-generation, mission-enabling solutions. However, his commitment to qualitative, ground-level change, impacting the agency through its culture and people, is demonstrated by how he measures success. “You could look at community adoption and engagement,” he says, highlighting his team’s efforts in hosting events and building community around Digital Transformation. “I’m trying to enable teams and empower people to really achieve the best that they can achieve and help transform how we work here at Goddard.” Dosberg attributes his team-building skills and service-oriented approach to his experience working at the Department of Homeland Security in US Citizenship and Immigration Services. As a program manager, he led the Digital Innovation & Development team, which worked to transform the asylum and refugee program from paper-based to fully digital processing. “I think that really set me up for success here,” says Dosberg. “That technology background and the experience of going through a successful digital transformation, and the cultural change aspect…all those things are kind of principles and success factors that I brought over to Goddard to lead the DT efforts here.” Although Dosberg does not come from explicitly scientific background—he received an undergraduate degree in economics, master’s degree in finance, and MBA—he has always been deeply interested in and curious about technology. In his daily work, he leverages the collaborative capabilities of tools like Microsoft Teams and Mural to aid in brainstorming and soliciting input. When reflecting on the technology he uses to drive transformation within the agency, he highlights his work on DT Catalyst Projects, particularly those aimed at establishing interoperable architecture for managing data. Dosberg sees data as a foundational layer to his work; by developing common tools for accessing, aggregating, and sharing data across the agency, he hopes to strengthen inclusive teaming at an organizational level. Dosberg’s dedication is apparent in how thoughtfully he reflects on his past and present experiences as a Digital Transformer. However, his passion truly shines through when he considers the future of Digital Transformation. “There’s real opportunity to transform and change the way that we are working…Jill [Marlowe] and the DT team have done an incredible job on building momentum, getting folks excited, bringing centers together.” Although it is difficult to distill the many reasons why Dosberg was selected as the first featured Digital Transformer of the Month, this may be a good place to start: “At the end of the day, I’m just super passionate about the work that NASA does,” he says. “The portfolio is truly inspiring and I’m excited to help position the center to take on new projects, be more efficient, and enable the workforce. That motivates me each day.” View the full article
-
3 min read NASA to Change How It Points Hubble Space Telescope This image of NASA’s Hubble Space Telescope was taken on May 19, 2009 after deployment during Servicing Mission 4. NASA After completing a series of tests and carefully considering the options, NASA announced Tuesday work is underway to transition its Hubble Space Telescope to operate using only one gyroscope (gyro). While the telescope went into safe mode May 24, where it now remains until work is complete, this change will enable Hubble to continue exploring the secrets of the universe through this decade and into the next, with the majority of its observations unaffected. Of the six gyros currently on the spacecraft, three remain active. They measure the telescope’s slew rates and are part of the system that determines and controls the direction the telescope is pointed. Over the past six months, one particular gyro has increasingly returned faulty readings, causing the spacecraft to enter safe mode multiple times and suspending science observations while the telescope awaits new instructions from the ground. This one gyro is experiencing “saturation,” where it indicates the maximum slew rate value possible regardless of how quickly the spacecraft is slewing. Although the team has repeatedly been able to reset the gyro’s electronics to return normal readings, the results have only been temporary before the problem reappears as it did again in late May. To return to consistent science operations, NASA is transitioning the spacecraft to a new operational mode it had long considered: Hubble will operate with only one gyro, while keeping another gyro available for future use. The spacecraft had six new gyros installed during the fifth and final space shuttle servicing mission in 2009. To date, three of those gyros remain operational, including the gyro currently experiencing problems, which the team will continue to monitor. Hubble uses three gyros to maximize efficiency but can continue to make science observations with only one gyro. NASA first developed this plan more than 20 years ago, as the best operational mode to prolong Hubble’s life and allow it to successfully provide consistent science with fewer than three working gyros. Hubble previously operated in two-gyro mode, which is negligibly different from one-gyro mode, from 2005-2009. One-gyro operations were demonstrated in 2008 for a short time with no impact to science observation quality. While continuing to make science observations in one-gyro mode, there are some expected minor limitations. The observatory will need more time to slew and lock onto a science target and won’t have as much flexibility as to where it can observe at any given time. It also will not be able to track moving objects closer than Mars, though these are rare targets for Hubble. The transition involves reconfiguring the spacecraft and ground system as well as assessing the impact to future planned observations. The team expects to resume science operations again by mid-June. Once in one-gyro mode, NASA anticipates Hubble will continue making new cosmic discoveries alongside other observatories, such as the agency’s James Webb Space Telescope and future Nancy Grace Roman Space Telescope, for years to come. Launched in 1990, Hubble has more than doubled its expected design lifetime, and has been observing the universe for more than three decades, recently celebrating its 34th anniversary. Read more about some of Hubble’s greatest scientific discoveries. Learn more about NASA’s Hubble Space Telescope on the agency’s website: https://www.nasa.gov/hubble Resources Download the image above Hubble Pointing and Control Operating Hubble with Only One Gyroscope Hubble Science Highlights Hubble Images Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Jun 04, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Missions Keep Exploring Discover More Topics From NASA Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Galaxies Stories Stars Stories James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… View the full article
-
The physics remain the same, but the rockets, spacecraft, landers, and spacesuits are new as NASA and its industry partners prepare for Artemis astronauts to walk on the Moon for the first time since 1972. NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson put on spacesuits, developed by Axiom Space, to interact with and evaluate full-scale developmental hardware of SpaceX’s Starship HLS (Human Landing System) that will be used for landing humans on the Moon under Artemis. The test, conducted April 30, marked the first time astronauts in pressurized spacesuits interacted with a test version of Starship HLS hardware. “With Artemis, NASA is going to the Moon in a whole new way, with international partners and industry partners like Axiom Space and SpaceX. These partners are contributing their expertise and providing integral parts of the deep space architecture that they develop with NASA’s insight and oversight,” said Amit Kshatriya, NASA’s Moon to Mars program manager. “Integrated tests like this one, with key programs and partners working together, are crucial to ensure systems operate smoothly and are safe and effective for astronauts before they take the next steps on the Moon.” NASA astronaut Doug “Wheels” Wheelock and Axiom Space astronaut Peggy Whitson prepare for a test of full-scale mockups of spacesuits developed by Axiom Space and SpaceX’s Starship human landing system developed for NASA’s Artemis missions to the Moon.SpaceX The day-long test, conducted at SpaceX headquarters in Hawthorne, California, provided NASA and its partners with valuable feedback on the layout, physical design, mechanical assemblies, and clearances inside the Starship HLS, as well as the flexibility and agility of the suits, known as the AxEMU (Axiom Extravehicular Mobility Unit). To begin the test, Wheelock and Whitson put on the spacesuits in the full-scale airlock that sits on Starship’s airlock deck. Suits were then pressurized using a system immediately outside the HLS airlock that provided air, electrical power, cooling, and communications to the astronauts. Each AxEMU also included a full-scale model of the Portable Life Support System, or “backpack,” on the back of the suits. For Artemis moonwalks, each crew member will put on a spacesuit with minimal assistance, so the team was eager to evaluate how easily the suits can be put on, taken off, and stowed in the airlock. Astronauts were fully suited while conducting mission-like maneuvers in the full-scale build of the Starship human landing system’s airlock which will be located inside Starship under the crew cabin. SpaceX During the test, NASA and SpaceX engineers were also able to evaluate placement of mobility aids, such as handrails, for traversing the hatch. Another set of mobility aids, straps hanging from the ceiling in the airlock, assisted the astronauts when entering and removing the AxEMU suits. The astronauts also practiced interacting with a control panel in the airlock, ensuring controls could be reached and activated while the astronauts were wearing gloves. “Overall, I was pleased with the astronauts’ operation of the control panel and with their ability to perform the difficult tasks they will have to do before stepping onto the Moon,” said Logan Kennedy, lead for surface activities in NASA’s HLS Program. “The test also confirmed that the amount of space available in the airlock, on the deck, and in the elevator, are sufficient for the work our astronauts plan to do.” The suited astronauts also walked the from Starship’s airlock deck to the elevator built for testing. During Artemis missions, the elevator will take NASA astronauts and their equipment from the deck to the lunar surface for a moonwalk and then back again. Whitson and Wheelock practiced opening a gate to enter the elevator while evaluating the dexterity of the AxEMU suit gloves, and practiced lowering the ramp that astronauts will use to take the next steps on the Moon. Wheelock and Whitson were able to test the agility of the spacesuits by conducting movements and tasks similar to those necessary during lunar surface exploration on Artemis missions, such as operating Starship’s elevator gate. SpaceX The steps the astronauts took in the spacesuits through full-scale builds of the Starship hatch, airlock, airlock deck, and elevator may have been small, but they marked an important step toward preparing for a new generation of moonwalks as part of Artemis. For the Artemis III mission, SpaceX will provide the Starship HLS that will dock with Orion in lunar orbit and take two astronauts to and from the surface of the Moon. Axiom Space is providing a new generation of spacesuits for moonwalks that are designed to fit a wider range of astronauts. With Artemis, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future human exploration of the Red Planet. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with the human landing system, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration. For more information about Artemis, visit: https://www.nasa.gov/artemis View the full article
-
Artemis II commander and NASA astronaut Reid Wiseman provides remarks at a Moon tree dedication ceremony on Tuesday, June 4, 2024, at the United States Capitol in Washington. The American Sweetgum tree planted on the southwestern side of the Capitol was grown from a seed that was flown around the Moon during the Artemis I mission. NASA/Aubrey Gemignani NASA astronaut and Artemis II Commander Reid Wiseman provides remarks at a Moon Tree dedication ceremony Tuesday, June 4, at the U.S. Capitol in Washington. The American Sweetgum tree was grown from a seed that few around the Moon during the agency’s Artemis I mission in 2022. In April, NASA announced the agency selected organizations from across the country to receive ‘Moon Tree’ seedlings to plant in their communities. Since returning to Earth, the tree seeds have been germinating under the care of the United States Department of Agriculture Forest Service. Artemis II is the first crewed test flight on NASA’s path to establishing a long-term presence at the Moon for exploration and scientific discovery. View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s Aquarius instrument aboard the joint U.S. and Argentinian Satélite de Aplicaciones Científicas mapped the surface salinity of Earth’s oceans between 2011 and 2014. To calibrate the instrument, a team from NASA’s Jet Propulsion Laboratory, including project scientist Yi Chao, had to distribute robotic floats across oceans. The experience helped inspire Chao’s invention of an inexhaustible power source for ocean floats and sensors.Credit: NASA No one has mapped more territory than NASA. The agency not only charts stars and other planets but also maps Earth from orbit. Now a NASA invention could let robots map our planet’s entire seafloor, helping to unlock resources while protecting habitats. The sonar devices for such an operation are not new, but they’re hampered by battery limitations. As an engineer at NASA’s Jet Propulsion Laboratory in Southern California, Yi Chao learned about those limitations firsthand. He worked on studying the ocean from space and was the project scientist for the Aquarius satellite mission measuring ocean salinity. The satellite’s instruments were calibrated with sensors that had to be distributed across the oceans. He found that a major constraint to monitoring oceans is the battery life of subsurface sensors, which can’t rely on solar energy. When their batteries die, they’re either left dead in the water or recharged by ship at great expense. Two of Seatrec’s SL1 modules are attached to a robotic float. The modules generate power from changes in volume undergone by phase-change materials as the float rises from colder deep water to warmer surface water. By adding a second module, the operator doubles the available energy.Credit: Seatrec With two JPL colleagues, Chao set out to design a solution. The power modules they developed are based on what’s known as a phase-change material, in this case a paraffin-family substance with a melting point about 50°F – between typical deep-ocean and surface temperatures. As a device rises to the surface to transmit data, the material melts and expands, turning a motor that charges the battery. It’s the same concept as a steam engine, but changing from solid to liquid brings about a 10% expansion, so the trick was to make the device efficient enough to operate on that tiny bit of energy. Chao then licensed the invention and founded Seatrec Inc. of Vista, California. The company sells its SL1 power module to research labs, universities, government researchers, and the military. Chao noted that many entities, including offshore drillers, wind farm developers, the military, and environmentalists, are interested in mapping the 80% of the seafloor that remains uncharted. Read More Share Details Last Updated Jun 04, 2024 Related TermsTechnology Transfer & SpinoffsJet Propulsion LaboratorySpinoffsTechnology Transfer Explore More 5 min read Twin NASA Satellites Ready to Help Gauge Earth’s Energy Balance Article 5 days ago 2 min read Tech Today: Measuring the Buzz, Hum, and Rattle NASA-supported wireless microphone array quickly, cheaply, and accurately maps noise from aircraft, animals, and more. Article 6 days ago 6 min read NASA to Measure Moonquakes With Help From InSight Mars Mission Article 6 days ago Keep Exploring Discover Related Topics Technology Transfer & Spinoffs Earth Science Stories Oceanography Looking at our Earth from space, it is obvious that we live on a water planet. Ocean covers over 70%… Robotics View the full article