Members Can Post Anonymously On This Site
-
Posts
5,745 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
On flight day 13, Orion reached its maximum distance from Earth during the Artemis I mission when it was 268,563 miles away from our home planet. Orion has now traveled farther than any other spacecraft built for humans.Credit: NASA NASA’s Orion spacecraft is designed to keep astronauts safe in deep space, protecting them from the unforgiving environment far from Earth. During the uncrewed Artemis I mission, researchers from NASA, along with several collaborators, flew payloads onboard Orion to measure potential radiation exposure to astronauts. Radiation measurements were taken inside Orion by 5,600 passive sensors and 34 active radiation detectors during its 25.5-day mission around the Moon and back, which provided important data on exposure within the Earth’s Van Allen radiation belt. These detailed findings were published in a recent scientific article through a collaborative effort by NASA’s Space Radiation Analysis Group, the DLR (German Space Center), and ESA (European Space Agency). The measurements show that while radiation exposure can vary depending on location within Orion, the spacecraft can protect its crew from potentially hazardous radiation levels during lunar missions. Space radiation could pose major risks to long-duration human space flights, and the findings from the Artemis I mission represent a crucial step toward future human exploration beyond low Earth orbit, to the Moon, and eventually to Mars. NASA’s HERA (Hybrid Electronic Radiation Assessor) and Crew Active Dosimeter, which were tested previously on the International Space Station, and ESA’s Active Dosimeter, were among the instruments used to measure radiation inside Orion. HERA’s radiation sensor can warn crew members need to take shelter in the case of a radiation event, such as a solar flare. The Crew Active Dosimeter can collect real-time radiation dose data for astronauts and transmit it back to Earth for monitoring. Radiation measurements were conducted in various areas of the spacecraft, each offering different levels of shielding. This high-resolution image captures the inside of the Orion crew module on flight day one of the Artemis I mission. At left is Commander Moonikin Campos, a purposeful passenger equipped with sensors to collect data that will help scientists and engineers understand the deep-space environment for future Artemis missions. Credit: NASA In addition, the Matroshka AstroRad Radiation Experiment, a collaboration between NASA and DLR, involved radiation sensors placed on and inside two life-sized manikin torsos to simulate the impact of radiation on human tissue. These manikins enabled measurements of radiation doses on various body parts, providing valuable insight into how radiation may affect astronauts traveling to deep space. Two manikins are installed in the passenger seats inside the Artemis I Orion crew module atop the Space Launch System rocket in High Bay 3 of the Vehicle Assembly Building at NASA’s Kennedy Space Center in Florida on Aug. 8, 2022. As part of the Matroshka AstroRad Radiation Experiment (MARE) investigation, the two female manikins – Helga and Zohar – are equipped with radiation detectors, while Zohar also wears a radiation protection vest, to determine the radiation risk on its way to the Moon. Credit: NASA Researchers found that Orion’s design can protect its crew from potentially hazardous radiation levels during lunar missions. Though the spacecraft’s radiation shielding is effective, the range of exposure can greatly vary based on spacecraft orientation in specific environments. When Orion altered its orientation during an engine burn of the Interim Cryogenic Propulsion Stage, radiation levels dropped nearly in half due to the highly directional nature of the radiation in the Van Allen belt. “These radiation measurements show that we have an effective strategy for managing radiation risks in the Orion spacecraft. However, key challenges remain, especially for long-duration spaceflights and the protection of astronauts on spacewalks,” said Stuart George, NASA’s lead author on the paper. NASA’s long-term efforts and research in mitigating space radiation risks are ongoing, as radiation measurements on future missions will depend heavily on spacecraft shielding, trajectory, and solar activity. The same radiation measurement hardware flown on Artemis I will support the first crewed Artemis mission around the Moon, Artemis II, to better understand the radiation exposure seen inside Orion and ensure astronaut safety to the Moon and beyond. For more information on NASA’s Artemis campaign, visit: https://www.nasa.gov/artemis View the full article
-
Hubble Space Telescope Home NASA’s Hubble Watches… Missions Hubble Home Overview About Hubble The History of Hubble Hubble Timeline Why Have a Telescope in Space? Hubble by the Numbers At the Museum FAQs Impact & Benefits Hubble’s Impact & Benefits Science Impacts Cultural Impact Technology Benefits Impact on Human Spaceflight Astro Community Impacts Science Hubble Science Science Themes Science Highlights Science Behind Discoveries Hubble’s Partners in Science Universe Uncovered Explore the Night Sky Observatory Hubble Observatory Hubble Design Mission Operations Missions to Hubble Hubble vs Webb Team Hubble Team Career Aspirations Hubble Astronauts News Hubble News Hubble News Archive Social Media Media Resources Multimedia Multimedia Images Videos Sonifications Podcasts E-books Lithographs Fact Sheets Glossary Posters Hubble on the NASA App More Online Activities 4 Min Read NASA’s Hubble Watches Jupiter’s Great Red Spot Behave Like a Stress Ball Hubble Space Telescope data of Jupiter’s Great Red Spot spanning approximately 90 days. Credits: NASA, ESA, Amy Simon (NASA-GSFC); Image Processing: Joseph DePasquale (STScI) Astronomers have observed Jupiter’s legendary Great Red Spot (GRS), an anticyclone large enough to swallow Earth, for at least 150 years. But there are always new surprises – especially when NASA’s Hubble Space Telescope takes a close-up look at it. Hubble’s new observations of the famous red storm, collected 90 days between December 2023 to March 2024, reveal that the GRS is not as stable as it might look. The recent data show the GRS jiggling like a bowl of gelatin. The combined Hubble images allowed astronomers to assemble a time-lapse movie of the squiggly behavior of the GRS. To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video This time-lapse movie is assembled from Hubble Space Telescope observations spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter ranged from 391 million to 512 million miles from the Sun. Astronomers measured the Great Red Spot’s size, shape, brightness, color, and vorticity over a full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown. NASA, ESA, Amy Simon (NASA-GSFC); Video: Joseph DePasquale (STScI) Download this video “While we knew its motion varies slightly in its longitude, we didn’t expect to see the size oscillate. As far as we know, it’s not been identified before,” said Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, lead author of the science paper published in The Planetary Science Journal. “This is really the first time we’ve had the proper imaging cadence of the GRS. With Hubble’s high resolution we can say that the GRS is definitively squeezing in and out at the same time as it moves faster and slower. That was very unexpected, and at present there are no hydrodynamic explanations.” Hubble monitors Jupiter and the other outer solar system planets every year through the Outer Planet Atmospheres Legacy program (OPAL) led by Simon, but these observations were from a program dedicated to the GRS. Understanding the mechanisms of the largest storms in the solar system puts the theory of hurricanes on Earth into a broader cosmic context, which might be applied to better understanding the meteorology on planets around other stars. Using Hubble Space Telescope data spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter ranged from 391 million to 512 million miles from the Sun, astronomers measured the Great Red Spot’s size, shape, brightness, color, and vorticity over one full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown. NASA, ESA, Amy Simon (NASA-GSFC); Image Processing: Joseph DePasquale (STScI) Download this image Simon’s team used Hubble to zoom in on the GRS for a detailed look at its size, shape, and any subtle color changes. “When we look closely, we see a lot of things are changing from day to day,” said Simon. This includes ultraviolet-light observations showing that the distinct core of the storm gets brightest when the GRS is at its largest size in its oscillation cycle. This indicates less haze absorption in the upper atmosphere. “As it accelerates and decelerates, the GRS is pushing against the windy jet streams to the north and south of it,” said co-investigator Mike Wong of the University of California at Berkeley. “It’s similar to a sandwich where the slices of bread are forced to bulge out when there’s too much filling in the middle.” Wong contrasted this to Neptune, where dark spots can drift wildly in latitude without strong jet streams to hold them in place. Jupiter’s Great Red Spot has been held at a southern latitude, trapped between the jet streams, for the extent of Earth-bound telescopic observations. Using Hubble Space Telescope data spanning approximately 90 days (between December 2023 and March 2024) when the giant planet Jupiter ranged from 391 million to 512 million miles from the Sun, astronomers measured the Great Red Spot’s size, shape, brightness, color, and vorticity over a full oscillation cycle. The data reveal that the Great Red Spot is not as stable as it might look. It was observed going through an oscillation in its elliptical shape, jiggling like a bowl of gelatin. The cause of the 90-day oscillation is unknown. The observation is part of the observing programs led by Amy Simon of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. NASA, ESA, STScI, Amy Simon (NASA-GSFC); Image Processing: Joseph DePasquale (STScI) Download this image The team has continued watching the GRS shrink since the OPAL program began 10 years ago. They predict it will keep shrinking before taking on a stable, less-elongated, shape. “Right now it’s over-filling its latitude band relative to the wind field. Once it shrinks inside that band the winds will really be holding it in place,” said Simon. The team predicts that the GRS will probably stabilize in size, but for now Hubble only observed it for one oscillation cycle. The researchers hope that in the future other high-resolution images from Hubble might identify other Jovian parameters that indicate the underlying cause of the oscillation. The results are being presented at the 56th annual meeting of the American Astronomical Society Division for Planetary Sciences, in Boise, Idaho. Jupiter’s iconic Great Red Spot, a storm larger than Earth, has fascinated astronomers for over 150 years. But thanks to NASA’s Hubble Space Telescope, we’re now seeing this legendary storm in a whole new light. Recent observations show that the Great Red Spot is wobbling and fluctuating in size. NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris The Hubble Space Telescope has been operating for over three decades and continues to make ground-breaking discoveries that shape our fundamental understanding of the universe. Hubble is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope and mission operations. Lockheed Martin Space, based in Denver, Colorado, also supports mission operations at Goddard. The Space Telescope Science Institute in Baltimore, Maryland, which is operated by the Association of Universities for Research in Astronomy, conducts Hubble science operations for NASA. Learn More Hubble Shows Winds in Jupiter’s Great Red Spot Are Speeding Up Telescopes and Spacecraft Join Forces to Probe Deep into Jupiter’s Atmosphere Hubble’s Grand Tour of the Outer Solar System Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contacts: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Ray Villard Space Telescope Science Institute, Baltimore, MD Science Contacts: Amy Simon NASA Goddard Space Flight Center, Greenbelt, MD Michael H. Wong University of California, Berkeley, Berkeley, CA Share Details Last Updated Oct 09, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Division Goddard Space Flight Center Hubble Space Telescope Jupiter Missions Planetary Science Planets The Solar System Keep Exploring Discover More Topics From Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. Studying the Outer Planets and Moons Hubble Focus: Our Amazing Solar System Studying the cosmos for over a quarter century, the Hubble Space Telescope has made more than a million observations and… Hubble Posters View the full article
-
4 Min Read NASA Terminal Transmits First Laser Communications Uplink to Space NASA's LCOT (Low-Cost Optical Terminal) located at the agency's Goddard Space Flight Center in Greenbelt, Md. Credits: NASA NASA’s LCOT (Low-Cost Optical Terminal), a ground station made of modified commercial hardware, transmitted its first laser communications uplink to the TBIRD (TeraByte Infrared Delivery), a tissue box-sized payload formerly in low Earth orbit. During the first live sky test, NASA’s LCOT produced enough uplink intensity for the TBIRD payload to identify the laser beacon, connect, and maintain a connection to the ground station for over three minutes. This successful test marks an important achievement for laser communications: connecting LCOT’s laser beacon from Earth to TBIRD required one milliradian of pointing accuracy, the equivalent of hitting a three-foot target from over eight American football fields away. The test was one of many laser communications achievements TBIRD made possible during its successful, two-year mission. Prior to its mission completion on Sept. 15, 2024, the payload transmitted at a record-breaking 200 gigabits per second. In an actual use case, TBIRD’s three-minute connection time with LCOT would be sufficient to return over five terabytes of critical science data, the equivalent of over 2,500 hours of high-definition video in a single pass. As the LCOT sky test demonstrates, the ultra-high-speed capabilities of laser communications will allow science missions to maintain their connection to Earth as they travel farther than ever before. Measurement data of the power, or “fluency,” of the connection between NASA’s LCOT (Low-Cost Optical Terminal) laser beacon and TBIRD’s (TeraByte Infrared Delivery) receiver provided by Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL). LCOT and TBIRD maintained a sufficient connection for over three minutes — enough time for TBIRD to return over five terabytes of data. NASA/Dave Ryan NASA’s SCaN (Space Communications and Navigation) program office is implementing laser communications technology in various orbits, including the upcoming Artemis II mission, to demonstrate its potential impact in the agency’s mission to explore, innovate, and inspire discovery. “Optical, or laser, communications can transfer 10 to 100 times more data than radio frequency waves,” said Kevin Coggins, deputy associate administrator and SCaN program manager. “Literally, it’s the wave of the future, as it’ll enable scientists to realize an ever-increasing amount of data from their missions and will serve as our critical lifeline for astronauts traveling to and from Mars.” To view this video please enable JavaScript, and consider upgrading to a web browser that supports HTML5 video A recording of TBIRD’s (TeraByte Infrared Delivery) successful downlink from NASA’s LCOT (Low-Cost Optical Terminal) Wide Field Camera. The light saturation from the downlink caused a secondary reflection in the upper right of the video.NASA Historically, space missions have used radio frequencies to send data to and from space, but with science instruments capturing more data, communications assets must meet increasing demand. The infrared light used for laser communications transmits the data at a shorter wavelength than radio, meaning ground stations on Earth can send and receive more data per second. The LCOT team continues to refine pointing capabilities through additional tests with NASA’s LCRD (Laser Communications Relay Demonstration). As LCOT and the agency’s other laser communications missions continue to reach new milestones in connectivity and accessibility, they demonstrate laser communications’ potential to revolutionize scientists’ access to new data about Earth, our solar system, and beyond. “It’s a testament to the hard work and skill of the entire team,” said Dr. Haleh Safavi, project lead for LCOT. “We work with very complicated and sensitive transmission equipment that must be installed with incredible precision. These results required expeditious planning and execution at every level.” NASA’s LCOT (Low-Cost Optical Terminal) at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, uses slightly modified commercial hardware to reduce the expense of implementing laser communications technology. NASA Experiments like TBIRD and LCRD are only two of SCaN’s multiple in-space demonstrations of laser communications, but a robust laser communications network relies on easily reconfigurable ground stations on Earth. The LCOT ground station showcases how the government and aerospace industry can build and deploy flexible laser communications ground stations to meet the needs of a wide variety of NASA and commercial missions, and how these ground stations open new doors for communications technology and extremely high data volume transmission. NASA’s LCOT is developed by the agency’s Goddard Space Flight Center in Greenbelt, Maryland. TBIRD was developed in partnership with the Massachusetts Institute of Technology Lincoln Laboratory (MIT-LL) in Lexington. TBIRD was flown and operated as a collaborative effort among NASA Goddard; NASA’s Ames Research Center in California’s Silicon Valley; NASA’s Jet Propulsion Laboratory in Southern California; MIT-LL; and Terran Orbital Corporation in Irvine, California. Funding and oversight for LCOT and other laser communications demonstrations comes from the (SCaN) Space Communications and Navigation program office within the Space Operations Mission Directorate at NASA Headquarters in Washington. About the AuthorKorine PowersSenior Writer and Education LeadKorine Powers, Ph.D. is a writer for NASA's Space Communications and Navigation (SCaN) program office and covers emerging technologies, commercialization efforts, education and outreach, exploration activities, and more. Share Details Last Updated Oct 09, 2024 EditorKorine PowersContactKatherine Schauerkatherine.s.schauer@nasa.govLocationGoddard Space Flight Center Related TermsSpace Communications TechnologyCommunicating and Navigating with MissionsGoddard Space Flight CenterSpace Communications & Navigation ProgramSpace Operations Mission DirectorateTechnologyTechnology Demonstration View the full article
-
Learn Home How Do Astronauts Get in… Astronauts Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 2 min read How Do Astronauts Get in Shape? – New “Ask SME” from NASA eClips The NASA Science Activation program’s NASA eClips project, led by the National Institute of Aerospace (NIA), aims to increase Science, Technology, Engineering, & Mathematics (STEM) literacy and inspire the next generation of engineers and scientists by providing effective web-based, standards-aligned, in-school and out-of-school learning and teaching resources through the lens of NASA. As a part of this work, NASA eClips professionally produces the Ask SME: Close-up With a NASA Subject Matter Expert video series to capture a glimpse of NASA SME’s personal interests and career journeys. Each video can be used to spark student interest and broaden their ideas of who the Science, Technology, Engineering, and Mathematics (STEM) workforce might include (everyone!) and the kinds of work they do. On September 19, 2024, NASA eClips released the most recent video in the Ask SME series, featuring Corey Twine from NASA’s Johnson Space Center. Twine is an Astronaut Strength and Conditioning Specialist who works with astronauts to keep them physically fit for work on Earth and while they are in space. He shares insights about how he helps the astronauts and what inspired him to pursue this career. Watch the Video NASA eClips is supported by NASA under cooperative agreement award number NNX16AB91A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn SME Corey Twine, Astronaut Strength & Conditioning Specialist Share Details Last Updated Oct 09, 2024 Editor NASA Science Editorial Team Location Johnson Space Center Related Terms Astronauts For Educators People of Johnson Science Activation Explore More 3 min read Connected Learning Ecosystems: Educators Learning and Growing Together Article 23 hours ago 3 min read GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration Article 2 days ago 5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute Article 5 days ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A recent NASA-funded study quantified higher levels of fine particulate air pollution near Southern California warehouses, a result of emissions from diesel trucks that transport goods to and from such facilities. Inhalation of these tiny particles can cause serious health problems.Adobe Stock/Matt Gush Satellite-based data offers a broad view of particulate air pollution patterns across a major West Coast e-commerce hub. As goods of all shapes and sizes journey from factory to doorstep, chances are they’ve stopped at a warehouse along the way — likely several of them. The sprawling structures are waypoints in the logistics networks that make e-commerce possible. Yet the convenience comes with tradeoffs, as illustrated in a recent NASA-funded study. Published in the journal GeoHealth, the research analyzes patterns of particulate pollution in Southern California and found that ZIP codes with more or larger warehouses had higher levels of contaminants over time than those with fewer or smaller warehouses. Researchers focused on particulate pollution, choosing Southern California because it is a major distribution hub for goods: Its ports handle 40% of cargo containers entering the country. The buildings themselves are not the major particulate sources. Rather, it’s the diesel trucks that pick up and drop off goods, emitting exhaust containing toxic particles called PM2.5. At 2.5 micrometers or less, these pollutants can be inhaled into the lungs and absorbed into the bloodstream. Although atmospheric concentrations are typically so small they’re measured in millionths of a gram per cubic meter, the authors caution that there’s no safe exposure level for PM2.5. “Any increase in concentration causes some health damage,” said co-author Yang Liu, an environmental health researcher at Emory University in Atlanta. “But if you can curb pollution, there will be a measurable health benefit.” A data visualization shows the average concentration of PM2.5 particulate pollution in the Los Angeles region from 2000 to 2018, along with the locations of nearly 11,000 warehouses. Darker red indicates higher concentration of these toxic particles; small black circles represent warehouse locations.NASA Earth Observatory Growing Air Quality Research Particulate pollution has been linked to respiratory and cardiovascular diseases, some cancers, and adverse birth outcomes, including premature birth and low infant birth weight. The new study is part of a broader effort funded by the NASA Health and Air Quality Applied Sciences Team to use satellite data to understand how air pollution disproportionately affects underserved communities. As the e-commerce boom of recent decades has spurred warehouse construction, pollution in nearby neighborhoods has become a growing area for research. New structures have often sprouted on relatively inexpensive land, which tends to be home to low-income or minority populations who bear the brunt of the poor air quality, Liu said. Another recent NASA-funded study analyzed satellite-derived nitrogen dioxide (NO2) measurements around 150,000 United States warehouses. It found that concentrations of the gas, which is a diesel byproduct and respiratory irritant, were about 20% higher near warehouses. Distribution Hub For the GeoHealth paper, scientists drew on previously generated datasets of PM2.5 from 2000 to 2018 and elemental carbon, a type of PM2.5 in diesel emissions, from 2000 to 2019. The data came from models based on satellite observations, including some from NASA’s MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) instruments. The researchers also mined a real estate database for the square footage as well as the number of loading docks and parking spaces at nearly 11,000 warehouses across portions of Los Angeles, Riverside, and San Bernardino counties, and all of Orange County. They found that warehouse capacity correlated with pollution. ZIP codes in the 75th percentile of warehouse square footage had 0.16 micrograms per cubic meter more PM2.5 and 0.021 micrograms per cubic meter more elemental carbon than those in the 25th percentile. Similarly, ZIP codes in the 75th percentile of number of loading docks had 0.10 micrograms per cubic meter more PM2.5 and 0.014 micrograms per cubic meter more elemental carbon than those in the 25th percentile. And ZIP codes in the 75th percentile of truck parking spaces had 0.21 micrograms per cubic meter more PM2.5 and 0.021 micrograms per cubic meter more elemental carbon than those in the 25th percentile. “We found that warehouses are associated with PM2.5 and elemental carbon,” said lead author Binyu Yang, an Emory environmental health doctoral student. Although particulate pollution fell from 2000 to 2019 due to stricter emissions standards, the concentrations in ZIP codes with warehouses remained consistently higher than for other areas. Researchers also found that the gaps widened in the holiday shopping season, up to 4 micrograms per cubic meter — “a significant difference,” Liu said. Satellites Provide Big Picture Satellite observations, the researchers said, were essential because they provided a continuous map of pollution, including pockets not covered by ground-based instruments. It’s the same motivation behind NASA’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission, which launched in April 2023 and measures air pollution hourly during daylight over North America. The release of TEMPO’s first maps showed higher concentrations of NO2 around cities and highways. Meanwhile, NASA and the Italian Space Agency are collaborating to launch the MAIA (Multi-Angle Imager for Aerosols) in 2026. It will be the first NASA satellite mission whose primary goal is to study health effects of particulate pollution while distinguishing between PM2.5 types. “This mission will help air quality managers and policymakers conceive more targeted pollution strategies,” said Sina Hasheminassab, a co-author and science systems engineer at NASA’s Jet Propulsion Laboratory in Southern California. Hasheminassab, like Liu, is a member of the MAIA science team. News Media Contacts Andrew Wang / Jane J. Lee Jet Propulsion Laboratory, Pasadena, Calif. 626-379-6874 / 818-354-0307 andrew.wang@jpl.nasa.gov / jane.j.lee@jpl.nasa.gov 2024-134 Share Details Last Updated Oct 09, 2024 Related TermsEarthEarth ScienceEarth Science DivisionJet Propulsion LaboratoryMAIA (Multi-Angle Imager for Aerosols) Explore More 3 min read Connected Learning Ecosystems: Educators Learning and Growing Together On August 19-20, 53 educators from a diverse set of learning contexts (libraries, K-12 classrooms,… Article 23 hours ago 9 min read Systems Engineer Noosha Haghani Prepped PACE for Space Article 23 hours ago 3 min read GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration The Civil Air Patrol (CAP) is a volunteer organization that serves as the official civilian… Article 2 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
X-ray: NASA/CXC/Queen’s Univ. Belfast/M. Nicholl et al.; Optical/IR: PanSTARRS, NSF/Legacy Survey/SDSS; Illustration: Soheb Mandhai / The Astro Phoenix; Image Processing: NASA/CXC/SAO/N. Wolk NASA’s Chandra X-ray Observatory and other telescopes have identified a supermassive black hole that has torn apart one star and is now using that stellar wreckage to pummel another star or smaller black hole, as described in our latest press release. This research helps connect two cosmic mysteries and provides information about the environment around some of the bigger types of black holes. This artist’s illustration shows a disk of material (red, orange, and yellow) that was created after a supermassive black hole (depicted on the right) tore apart a star through intense tidal forces. Over the course of a few years, this disk expanded outward until it intersected with another object — either a star or a small black hole — that is also in orbit around the giant black hole. Each time this object crashes into the disk, it sends out a burst of X-rays detected by Chandra. The inset shows Chandra data (purple) and an optical image of the source from Pan-STARRS (red, green, and blue). In 2019, an optical telescope in California noticed a burst of light that astronomers later categorized as a “tidal disruption event”, or TDE. These are cases where black holes tear stars apart if they get too close through their powerful tidal forces. Astronomers gave this TDE the name of AT2019qiz. Meanwhile, scientists were also tracking instances of another type of cosmic phenomena occasionally observed across the Universe. These were brief and regular bursts of X-rays that were near supermassive black holes. Astronomers named these events “quasi-periodic eruptions,” or QPEs. This latest study gives scientists evidence that TDEs and QPEs are likely connected. The researchers think that QPEs arise when an object smashes into the disk left behind after the TDE. While there may be other explanations, the authors of the study propose this is the source of at least some QPEs. In 2023, astronomers used both Chandra and Hubble to simultaneously study the debris left behind after the tidal disruption had ended. The Chandra data were obtained during three different observations, each separated by about 4 to 5 hours. The total exposure of about 14 hours of Chandra time revealed only a weak signal in the first and last chunk, but a very strong signal in the middle observation. From there, the researchers used NASA’s Neutron Star Interior Composition Explorer (NICER) to look frequently at AT2019qiz for repeated X-ray bursts. The NICER data showed that AT2019qiz erupts roughly every 48 hours. Observations from NASA’s Neil Gehrels Swift Observatory and India’s AstroSat telescope cemented the finding. The ultraviolet data from Hubble, obtained at the same time as the Chandra observations, allowed the scientists to determine the size of the disk around the supermassive black hole. They found that the disk had become large enough that if any object was orbiting the black hole and took about a week or less to complete an orbit, it would collide with the disk and cause eruptions. This result has implications for searching for more quasi-periodic eruptions associated with tidal disruptions. Finding more of these would allow astronomers to measure the prevalence and distances of objects in close orbits around supermassive black holes. Some of these may be excellent targets for the planned future gravitational wave observatories. The paper describing these results appears in the October 9, 2024 issue of the journal Nature. The first author of the paper is Matt Nicholl (Queen’s University Belfast in Ireland) and the full list of authors can be found in the paper, which is available online at: https://arxiv.org/abs/2409.02181 NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science operations from Cambridge, Massachusetts, and flight operations from Burlington, Massachusetts. Read more from NASA’s Chandra X-ray Observatory. Learn more about the Chandra X-ray Observatory and its mission here: https://www.nasa.gov/chandra https://chandra.si.edu Visual Description This release features an artist’s rendering that illustrates the destructive power of a supermassive black hole. The digital image depicts a disk of stellar material surrounding one such black hole. At its outer edge a neighboring star is colliding with and flying through the disk. The black hole sits halfway down our right edge of the vertical image. It resembles a jet black semicircle with a domed cap of pale blue light. The bottom half of the circular black hole is hidden behind the disk of stellar material. In this illustration, the disk is viewed edge on. It resembles a band of swirling yellow, orange, and red gas, cutting diagonally from our middle right toward our lower left. Near our lower left, the outer edge of the stellar debris disk overlaps with a bright blue sphere surrounded by luminous white swirls. This sphere represents a neighboring star crashing through the disk. The stellar disk is the wreckage of a destroyed star. An electric blue and white wave shows the hottest gas in the disk. As the neighboring star crashes through the disk it leaves behind a trail of gas depicted as streaks of fine mist. Bursts of X-rays are released and are detected by Chandra. Superimposed in the upper left corner of the illustration is an inset box showing a close up image of the source in X-ray and optical light. X-ray light is shown as purple and optical light is white and beige. News Media Contact Megan Watzke Chandra X-ray Center Cambridge, Mass. 617-496-7998 Lane Figueroa Marshall Space Flight Center, Huntsville, Alabama 256-544-0034 lane.e.figueroa@nasa.gov View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This video shows IPEx in the digital simulation environment.Credit: Johns Hopkins APL/Steve Gribben/Beverly Jensen Space is hard, but it’s not all hardware. The new Lunar Autonomy Challenge invites teams of students from U.S. colleges and universities to test their software development skills. Working entirely in virtual simulations of the Moon’s surface, teams will develop an autonomous agent using software that can accomplish pre-defined tasks without help from humans. These agents will be used to navigate a digital twin of NASA’s ISRU Pilot Excavator (IPEx) and map specified locations in the digital environment. The IPEx is an autonomous mobility robot engineered to efficiently collect and transport lunar regolith, the loose rocky material on the Moon’s surface. Autonomous systems allow spacecraft, rovers, and robots to operate without relying on constant contact with astronauts or mission control. Before hardware is trusted to operate independently on location, which for Artemis missions includes the Moon, it must be tested virtually. High-fidelity virtual simulations allow NASA to anticipate and improve how systems, both software and hardware, will function in the physical world. Testing in virtual simulations also allows technologists to explore different mission scenarios, observe potential outcomes, and reduce risks. In the Lunar Autonomy Challenge, students will develop their knowledge of autonomous systems by working with the same simulation tools created in-house by Caterpillar Inc. of Irving, Texas, over decades of research and development. Teams will need to utilize the IPEx digital twin’s cameras and orientation sensors to accurately map surface elevation and identify obstacles. Like with real lunar missions, teams must also manage their energy usage and consider the Moon’s harsh terrain and low-light conditions. Through the competition, participants will learn more about autonomous robotic operation, surface mapping, localization, orientation, path planning, and hazard detection. Eligibility Teams must be comprised of at least four undergraduate and/or graduate students and a faculty advisor at a U.S. college or university. Challenge Timeline & Structure The challenge will take place between November 2024 and May 2025 and will include both a qualifying round and a final round. Interested teams must apply by Thursday, Nov. 7. Round 1: Selected teams will develop and train their agent using provided virtual environments. Teams will have three opportunities to submit their agent to run in a qualification environment. For each submission, their agent will be scored based on performance. The top scoring teams will be invited to continue. Round 2: Teams will work to further refine the agents. Teams will have multiple opportunities in total to submit their agents to the competition environment. The top three teams will be named challenge winners. Challenge Guidelines Interested teams should carefully review the Challenge Guidelines and the Lunar Autonomy Challenge site for more details, including proposal requirements, FAQs, and additional technical guidance. Prizes The top three highest-scoring teams on the leaderboard in the finals will be awarded cash prizes: First Place: $10,000 Second Place: $5,000 Third Place: $3,000 Application Submissions Applications must be submitted to NASA STEM Gateway by Nov. 7, 2024. Learn more about the challenge: https://lunar-autonomy-challenge.jhuapl.edu The Lunar Autonomy Challenge is a collaboration between NASA, The Johns Hopkins University (JHU) Applied Physics Laboratory (APL), Caterpillar Inc., and Embodied AI. APL is managing the challenge for NASA. NASA’s ISRU Pilot Excavator (IPEx) during a flight-like demonstration at NASA’s Kennedy Space Center’s Swamp Works testing facility. Credit: NASA Authored by: Stephanie Yeldell, Education Integration Lead Space Technology Mission Directorate NASA Headquarters, Washington, DC Keep Exploring Discover More Topics From NASA Space Technology Mission Directorate NASA’s Lunar Surface Innovation Initiative ISRU Pilot Excavator Get Involved View the full article
-
NASA astronaut Jessica Meir conducts cardiac research using tissue chip platforms in the Life Sciences Glovebox aboard space station in March of 2022.NASA The International Space Station offers a unique microgravity environment where cells outside the human body behave similarly to how they do inside the human body. Tissue chips are small devices containing living cells that mimic complex functions of specific human tissues and organs. Researchers can run experiments using tissue chips aboard space station to understand disease progression and provide faster and safer alternatives for preparing medicine for clinical trials. Researchers placed engineered heart tissues on tissue chips sent to study how microgravity impacts cardiac functions in space. Data collected by the chips showed these heart tissues experienced impaired contractions, subcellular structural changes, and increased stress, which can lead to tissue damage and disease. Previous studies conducted on human subjects have displayed similar outcomes. In the future, engineered heart tissues could accurately model the effects of spaceflight on cardiac function. Another investigation used muscle-on-a-chip technology to evaluate whether engineered muscle tissues can mimic the characteristics of reduced muscle regeneration in microgravity. Researchers found that engineered muscle-on-a-chip platforms are viable for studying muscle-related bioprocesses in space. In addition, samples treated with drugs known to stimulate muscle regeneration showed partial prevention of the effects of microgravity. These results demonstrate that muscle-on-chip can also be used to study and identify drugs that may prevent muscle decline in space and age-related muscle decline on Earth. NASA astronaut Megan McArthur works on the Cardinal Muscle investigation in the Life Sciences Glovebox aboard the space station in August of 2021.NASA Keep Exploring Discover More Topics From NASA Benefits to Humanity Humans In Space International Space Station Space Station Research and Technology View the full article
-
Engineered heart tissues in space showed impairments that led to increased arrhythmias and loss of muscle strength, changes similar to cardiac aging. This finding suggests that the engineered tissues, essentially an automated heart-on-a-chip platform, can be used to study cardiac issues in space and aging-related cardiovascular disease on Earth. Microgravity exposure is known to cause changes in cardiovascular function similar to those seen with aging on Earth. Engineered Heart Tissues assessed these changes using 3D cultured cardiac muscle tissue. The 3D cultures, grown with special scaffolds and derived from human cells, are better at reproducing the behavior of actual tissues than previous models. Results could support development of countermeasures for crew members on future long-duration space missions and development of drugs to treat cardiac diseases on Earth. A crew member conducts a media exchange in the tissue chambers for the Engineered Heart Tissue investigation.NASA A space-based and an airborne imaging spectrometer together make it possible to attribute the source of methane and carbon dioxide plumes to specific sectors, such as oil and gas or agriculture. Methane and carbon dioxide emissions are primary drivers of human-caused climate change. This finding could improve greenhouse gas budget and inform mitigation strategies. The space station’s Earth Surface Mineral Dust Source Investigation (EMIT) instrument was designed to determine the type and distribution of minerals in the dust of Earth’s arid regions, but researchers found that EMIT data also can identify specific sources of methane and carbon dioxide emissions. The space-based instrument can identify emissions over large areas and provide repeat observations that reduce uncertainty. The Airborne Visible/Infrared Imaging Spectrometer-3, a NASA Jet Propulsion Laboratory instrument, can quantify smaller emissions sources. Combining these observations provides more information on emission sources. A cluster of methane plumes detected by the Earth Surface Mineral Dust Source Investigation over approximately 150 square miles.NASA Even short periods of higher relative humidity can increase growth of fungi in spacecraft dust and change the diversity of species present. This finding suggests that moisture conditions can predict changes in fungal growth and composition in spacecraft and space habitats, helping to protect astronaut health and structure integrity. The space station contains a unique community of microbes, including many that reside in dust, much like in indoor environments on Earth. Aerosol Sampler collected airborne particles in the station’s cabin air, including dust, for examination on the ground. There are many potential sources of daily elevated moisture conditions on the space station and scientists need to understand how this affects the fungal and bacterial communities in spacecraft dust. The model described in the paper also could assess how other environmental factors such as microgravity and elevated carbon dioxide affect these microbes. An Aerosol Sampler collection device aboard the International Space Station. NASAView the full article
-
NASA/Bill Ingalls NASA Administrator Bill Nelson and Kirk Johnson, Sant Director of the Smithsonian’s National Museum of Natural History in Washington, preview the agency’s new Earth Information Center exhibit on Monday, Oct. 8, 2024. This new exhibit is the Earth Information Center’s second physical location. The exhibit at the Smithsonian includes a 32-foot-long, 12-foot-high video wall displaying Earth science data visualizations and videos, interpretive panels showing Earth’s connected systems, information on our changing world, and an overview of how NASA and the Smithsonian study our home planet. It opens to the public Tuesday, Oct. 8, and will remain on display through 2028. Image Credit: NASA/Bill Ingalls View the full article
-
Learn Home Connected Learning Ecosystems:… Earth Science Overview Learning Resources Science Activation Teams SME Map Opportunities More Science Activation Stories Citizen Science 3 min read Connected Learning Ecosystems: Educators Learning and Growing Together On August 19-20, 53 educators from a diverse set of learning contexts (libraries, K-12 classrooms, 4-H afterschool clubs, outdoor education centers, and more) gathered in Orono, Maine for the Learning Ecosystems Northeast (LENE) biannual Connect, Reflect, & Plan Connected Learning Ecosystems (CLEs) Gathering. These gatherings are meant to foster meaningful connections and collaborations and shared knowledge and confidence building amongst educators within the LENE network. NASA Science Activation’s Learning Ecosystems Northeast (LENE) is a network of education partners across the Northeastern United States, led by the Gulf of Maine Research Institute. These partners are dedicated to creating and linking communities of in and out of school educators, Connected Learning Ecosystems (CLEs), who are committed to empowering the next generation of climate stewards. The focus of this gathering was to provide educators the time, experiences, connections, and space to explore ways they can prepare the youth and communities they work with to build resilience in the face of climate change. Educators participated in sessions around local asset mapping, climate mental health, positive youth development, building STEM skills through games and fieldwork, and planning forward around coastal flooding and sea level rise. Each session was followed by time to debrief, reflect, and plan both in their regional CLEs as well as with statewide partners. The value of NASA assets and connection to local issues was woven throughout many experiences during this gathering. LENE’s CLE Resource Drive has a growing list of phenomena-based NASA assets that has been curated based on the interests of their network over time. The Global Learning and Observations to Benefit the Environment (GLOBE) program’s GLOBE Observer tree height app was part of the Ash Protection community science protocol and many NASA assets enhance the educator-guided planning forward experience guide that youth practice the difficult, real-life conversations about the consequences of sea level rise as they think about ways they can plan for a resilient future in the face of rising seas and coastal flooding. Sara King from the Rural Aspirations Project (Hancock/Midcoast CLE) had this to say: “Before I first joined the CLE, I viewed STEM professionals to be separate from myself for the most part because I did not feel very confident in my abilities in all parts of STEM. I feel more comfortable with data and technology, engineering, and science practices now.” One educator said that their highlight from the gathering was, “[o]pportunities to meet with other teachers and educators and librarians to share ideas about how we can pool our resources and reach more students.” These educators left with draft learning projects ready for refinement and review, renewed dedication and motivation for the school year, and new perspectives to lead them into continued conversations and partnership with their CLE peers as they meet throughout the year. Learn more about Learning Ecosystem Northeast’s efforts to empower the next generation of environmental stewards at https://www.learningecosystemsnortheast.org. The Learning Ecosystems Northeast project is supported by NASA under cooperative agreement award number NNX16AB94A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn The August 2024 Connect, Reflect & Plan Connected Learning Ecosystem Gathering crew (educators and project partners from across Maine and even one California partner). Share Details Last Updated Oct 08, 2024 Editor NASA Science Editorial Team Related Terms Earth Science Opportunities For Educators to Get Involved Science Activation Explore More 3 min read GLOBE Eclipse and Civil Air Patrol: An Astronomical Collaboration Article 1 day ago 5 min read Science Activation’s PLACES Team Facilitates Third Professional Learning Institute Article 4 days ago 2 min read Culturally Inclusive Planetary Engagement in Colorado Article 5 days ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
-
Throughout the life cycles of missions, Goddard engineer Noosha Haghani has championed problem-solving and decision-making to get to flight-ready projects. Name: Noosha Haghani Title: Plankton Aerosol Clouds and Ecosystem (PACE) Deputy Mission Systems Engineer Formal Job Classification: Electrical engineer Organization: Engineering and Technology Directorate, Mission Systems Engineering Branch (Code 599) Noosha Haghani is a systems engineer for the Plankton Aerosol Clouds and Ecosystem (PACE) mission at NASA’s Goddard Space Flight Center in Greenbelt, Md. Credit: NASA What do you do and what is most interesting about your role here at Goddard? As the PACE deputy mission systems engineer, we solve problems every day, all day long. An advantage I have is that I have been on this project from the beginning. Why did you become an engineer? What is your educational background? I was always very good at math and science. Both of my parents are engineers. I loved building with Legos and solving puzzles. Becoming an engineer was a natural progression for me. I have a BS in electrical engineering and a master’s in reliability engineering from the University of Maryland, College Park. I had completed all my course work for my Ph.D. as well but never finished due to family obligations. How did you come to Goddard? As a freshman in college, I interned at Goddard. After graduation, I worked in industry for a few years. In 2002, I returned to Goddard because I realized that what we do at Goddard is so much more unique and exciting to me. My mother also works at Goddard as a software engineer, so I am a second-generation Goddard employee. Early on in my career, my mother and I met for lunch occasionally. Now I am just too busy to even schedule lunch. Describe the advantages you have in understanding a system which you have worked on from the original design through build and testing? I came to the PACE project as the architect of an avionics system called MUSTANG, a set of hardware electronics that performs the function of the avionics of the mission including command and data handling, power, attitude control, and more. As the MUSTANG lead, I proposed an architecture for the PACE spacecraft which the PACE manager accepted, so MUSTANG is the core architecture for the PACE spacecraft. I led the team in building the initial hardware and then moved into my current systems engineering role. Knowing the history of a project is an advantage in that it teaches me how the system works. Understanding the rationale of the decision making we made over the years helps me to better appreciate why we built the system way we did. How would you describe your problem-solving techniques? A problem always manifests as some incorrect reading or some failure in a test, which I refer to as evidence of the problem. Problem solving is basically looking at the evidence and figuring out what is causing the problem. You go through certain paths to determine if your theory matches the evidence. It requires a certain level of understanding of the system we have built. There are many components to the observatory including hardware and software that could be implicated. We compartmentalize the problem and try to figure out the root cause systematically. Sometimes we must do more testing to get the problem to recreate itself and provide more evidence. As a team lead, how do you create and assign an investigation plan? As a leader, I divide up the responsibilities of the troubleshooting investigation. We are a very large team. Each individual has different roles and responsibilities. I am the second-highest ranking technical authority for the mission, so I can be leading several groups of people on any given day, depending on the issue. The evidence presented to us for the problem will usually implicate a few subsystems. We pull in the leads for these subsystems and associated personnel and we discuss the problem. We brainstorm. We decide on investigation and mitigation strategies. We then ask the Integration and Test team to help carry out our investigation plan. As a systems engineer, how do you lead individuals who do not report to you or through your chain of command? I am responsible for the technical integrity of the mission. As a systems engineer, these individuals do not work for me. They themselves answer to a line manager who is not in my chain of command. I lead them through influencing them. I use leadership personality and mutual respect to guide the team and convince them that the method we have chosen to solve the problem is the best method. Because I have a long history with the project, and was with this system from the drawing board, I generally understand how the system works. This helps me guide the team to finding the root cause of any problem. How do you lead your team to reach consensus? Everything is a team effort. We would be no where without the team. I want to give full credit to all the teams. You must respect members of your team, and each team member must respect you as a leader. I first try to gather and learn as much as possible about the work, what it takes to do the work, understanding the technical aspects of the work and basically understanding the technical requirements of the hardware. I know a little about all the subsystems, but I rely on my subsystem team leads who are the subject matter experts. The decision on how to build the system falls on the Systems Team. The subject matter experts provide several options and define risks associated with each. We then make a decision based on the best technical solution for the project that falls within the cost/schedule and risk posture. If my subject matter experts and I do not agree, we go back and forth and work together as a team to come to a consensus on how to proceed. Often we all ask many questions to help guide out path. The team is built on mutual respect and good communication. When we finally reach a decision, almost everyone agrees because of our collaboration, negotiation and sometimes compromise. What is your favorite saying? Better is the enemy of good enough. You must balance perfectionism with reality. How do you balance perfectionism with reality to make a decision? Goddard has a lot of perfectionists. I am not a perfectionist, but I have high expectations. Goddard has a lot of conservatism, but conservatism alone will not bring a project to fruition. There is a level of idealism in design that says that you can always improve on a design. Perfection is idealistic. You can analyze something on paper forever. Ultimately, even though I am responsible for the technical aspects only, we still as a mission must maintain cost and schedule. We could improve a design forever but that would take time and money away from other projects. We need to know when we have built something that is good enough, although maybe not perfect. In the end, something on paper is great, but building and testing hardware is fundamental in order to proceed. Occasionally the decisions we make take some calculated risk. We do not always have all the facts and furthermore we do not always have the time to wait for all the facts. We must at some point make a decision based on the data we have. Ultimately a team lead has to make a judgement call. The answer is not in doing bare minimum or cutting corners to get the job done, but rather realizing what level of effort is the right amount to move forward. Why is the ability to make a decision one of your best leadership qualities? There is a certain level of skill in being able to make a decision. If you do not make a decision, at some point that inability to make a decision becomes a decision. You have lost time and nothing gets built. My team knows that if they come to me, I will give them a path forward to execute. No one likes to be stuck in limbo, running in circles. A lot of people in a project want direction so that they can go forward and implement that decision. The systems team must be able to make decisions so that the team can end up with a finished, launchable project. One of my main jobs is to access risk. Is it risky to move on? Or do I need to investigate further? We have a day-by-day risk assessment decision making process which decides whether or not we will move on with the activities of that day. As an informal mentor, what is the most important advice you give? Do not give up. Everything will eventually all click together. What do you like most about your job? I love problem solving. I thrive in organized chaos. Every day we push forward, complete tasks. Every day is a reward because we are progressing towards our launch date. Who inspires you? The team inspires me. They make me want to come to work every day and do a little bit better. My job is very stressful. I work a lot of hours. What motivates me to continue is that there are other people doing the same thing, they are amazing. I respect each of them so much. What do you do for fun? I like to go to the gym and I love watching my son play sports. I enjoy travel and I love getting immersed in a city of a different country. By Elizabeth M. Jarrell NASA’s Goddard Space Flight Center, Greenbelt, Md. Conversations With Goddard is a collection of Q&A profiles highlighting the breadth and depth of NASA’s Goddard Space Flight Center’s talented and diverse workforce. The Conversations have been published twice a month on average since May 2011. Read past editions on Goddard’s “Our People” webpage. Share Details Last Updated Oct 08, 2024 EditorMadison OlsonContactRob Garnerrob.garner@nasa.govLocationGoddard Space Flight Center Related TermsPeople of GoddardEarthGoddard Space Flight CenterPACE (Plankton, Aerosol, Cloud, Ocean Ecosystem)People of NASA Explore More 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’ Article 7 days ago 8 min read Julie Rivera Pérez Bridges Business, STEM to ‘Make the Magic Happen’ Article 2 weeks ago 5 min read Rob Gutro: Clear Science in the Forecast Article 3 weeks ago View the full article
-
Illustration of logistics elements on the lunar surface. NASA NASA is asking U.S. industry to submit innovative architecture solutions that could help the agency land and move cargo on the lunar surfaced during future Artemis missions. Released in September, the agency’s request for proposal also supports NASA’s broader Moon to Mars Objectives. Previously, NASA published two white papers outlining lunar logistics and mobility gaps as part of its Moon to Mars architecture development effort that augmented an earlier white paper on logistics considerations. The current ask, Lunar Logistics and Mobility Studies, expects proposing companies to consider these publications, which describe NASA’s future needs for logistics and mobility. “NASA relies on collaborations from diverse partners to develop its exploration architecture,” said Nujoud Merancy, deputy associate administrator, strategy and architecture in the Exploration Systems Development Mission Directorate at NASA Headquarters in Washington. “Studies like this allow the agency to leverage the incredible expertise in the commercial aerospace community.” Lunar Logistics Drivers, Needs Logistics items, including food, water, air, and spare parts, comprise a relatively large portion of the cargo NASA expects to need to move around on the Moon, including at the lunar South Pole where the agency plans to send crew in the future. The Lunar Logistics Drivers and Needs white paper outlines the importance of accurately predicting logistics resupply needs, as they can heavily influence the overall architecture and design of exploration missions. As the agency progresses into more complex lunar missions, NASA will require more and more lunar logistics as the agency increases mission frequency and duration. This current proposal seeks industry studies that could help inform NASA’s approach to this growing need. Lunar Mobility Drivers, Needs The white paper discusses the transportation of landed cargo and exploration assets from where they are delivered to where they are used, such as to locations with ideal lighting, away from ascent vehicle landing sites, or near other assets. These distances can range from yards to miles away from landing locations, and the ability to move around landing sites easily and quickly are key to exploring the lunar surface efficiently. NASA’s current planned lunar mobility elements, such as the Lunar Terrain Vehicle and Pressurized Rover, have a capability limit of about 1,760 pounds (800 kilograms) and will primarily be used to transport astronauts around the lunar surface. However, future missions could include a need to move cargo totaling around 4,400 to 13,000 pounds (2,000 to 6,000 kg). To meet this demand, NASA must develop new mobility capabilities with its partners. Lunar Surface Cargo The Lunar Surface Cargo white paper characterizes lunar surface cargo delivery needs, compares those needs with current cargo lander capabilities, and outlines considerations for fulfilling this capability gap. While cargo delivery capabilities currently included in the Moon to Mars architecture — like CLPS (Commercial Lunar Payload Services) and human-class delivery landers — can meet near-term needs, there are substantial gaps for future needs. Access to a diverse fleet of cargo landers would empower a larger lunar exploration footprint. A combination of international partnerships and U.S. industry-provided landers could supply the concepts and capabilities to meet this need. The request for proposals doesn’t explicitly seek new lander concepts but does ask for integrated assessments of logistics that can include transportation elements. “We’re looking for industry to offer creative insights that can inform our logistics and mobility strategy,” said Brooke Thornton, industry engagement lead for NASA’s Strategy and Architecture Office. “Ultimately, we’re hoping to grow our awareness of the unique capabilities that are or could become a part of the commercial lunar marketplace.” This is the latest appendix to NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP-2). Solicitations under NextSTEP seek commercial development of capabilities that empower crewed exploration in deep space. NASA published the latest NextSTEP omnibus, NextSTEP-3, on Sept. 27. Request for Proposals https://sam.gov/opp/2291c465203240388302bb1f126c3db9/view View the full article
-
A preview image of the Minecraft world inspired by NASA’s James Webb Space Telescope. Credit: Minecraft NASA invites gamers, educators, and students to grab their pickaxe and check out its latest collaboration with Minecraft exploring a new world inspired by the agency’s James Webb Space Telescope. The partnership allows creators to experience NASA’s discoveries with interactive modules on star formation, planets, and galaxy types, modeled using real Webb images. The James Webb Space Telescope Challenges were developed to inspire the next generation of scientists, engineers, and technicians. Through the game, students can immerse themselves in the science and technology behind Webb, deepening their understanding of NASA’s mission and sparking an interest in the real-world applications of science, technology, engineering, and math (STEM). “We’re thrilled to bring the wonders and science of NASA’s James Webb Space Telescope into the hands of the Artemis Generation through this exciting Minecraft collaboration,” said NASA Deputy Administrator Pam Melroy. “This collaboration is yet another way anyone can join NASA as we explore the secrets of the universe and solve the world’s most complex problems, making space exploration engaging for learners of all ages.” NASA’s James Webb Space Telescope launched to space Dec. 25, 2021, and has gone on to make detailed observations of the planets within our own solar system, peer into the atmospheres of planets orbiting other stars outside our solar system, and capture images and spectra of the most distant galaxies ever detected. “NASA’s collaboration with Minecraft allows players to experience the excitement of one of the most ambitious space missions ever,” said Mike Davis, Webb project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “No matter where Webb looks, it sees something intriguing, setting the stage for amazing discoveries yet to come. As people explore the Minecraft world of Webb, we hope they will be inspired to carry that interest further and maybe someday help NASA build future space telescopes.” Webb is the world’s premier space science observatory. The space telescope is solving mysteries in our solar system, looking beyond to distant worlds around other stars, and probing the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and CSA (Canadian Space Agency). NASA’s Office of STEM Engagement provides unique opportunities for students to learn about STEM. In 2023, NASA partnered with Minecraft on an Artemis Challenge where users could build and launch a rocket, guide their Orion spacecraft, and even establish a lunar base alongside their team. Through collaboration with partners such as Microsoft, NASA can share the excitement of space exploration with even more students who are part of the Artemis Generation. Learn more about how NASA’s Office of STEM Engagement is inspiring the next generation of explorers at: https://www.nasa.gov/stem View the full article
-
NASA’s Solar Dynamics Observatory captured this image of an X9.0 solar flare – as seen in the bright flash in the center – on Oct. 3, 2024. This is the largest flare of Solar Cycle 25 to date.Credit: NASA NASA and the National Oceanic and Atmospheric Administration (NOAA) will discuss the Sun’s activity and the progression of Solar Cycle 25 during a media teleconference at 2 p.m. EDT, Tuesday, Oct. 15. Tracking the solar cycle is a key part of better understanding the Sun and mitigating its impacts on technology and infrastructure as humanity explores farther into space. During the teleconference, experts from NASA, NOAA, and the international Solar Cycle 25 Prediction Panel, which is co-sponsored by both agencies, will discuss recent solar cycle progress and the forecast for the rest of this cycle. Audio of the teleconference will stream live on the agency’s website at: https://www.nasa.gov/live Participants include: Jamie Favors, director, NASA’s Space Weather Program Kelly Korreck, program scientist, NASA’s Heliophysics Division Elsayed Talaat, director, Office of Space Weather Observations, NOAA Bill Murtagh, program coordinator, NOAA’s Space Weather Prediction Center Lisa Upton, co-chair, Solar Cycle 25 Prediction Panel To participate in the media teleconference, media must RSVP no later than 12 p.m. on Oct. 15, to Abbey Interrante at: abbey.a.interrante@nasa.gov. The Sun goes through regular cycles of activity lasting approximately 11 years. During the most active part of the cycle, known as solar maximum, the Sun can unleash immense explosions of light, energy, and solar radiation, all of which create conditions known as space weather. Space weather can affect satellites and astronauts in space, as well as communications systems such as radio and GPS — and power grids on Earth. When the Sun is most active, space weather events become more frequent. Solar activity, such as the storm in May 2024, has sparked displays of aurora and led to impacts on satellites and infrastructure in recent months. NASA works as a research arm of the nation’s space weather effort. NASA observes the Sun and our space environment constantly with a fleet of spacecraft that study everything from the Sun’s activity to the solar atmosphere, and to the particles and magnetic fields in the space surrounding Earth. The NOAA Space Weather Prediction Center is the U.S. government’s official source for space weather forecasts, watches, warnings, and alerts. For more information on how NASA studies the Sun and space weather, visit: https://www.nasa.gov/sun -end- Karen Fox Headquarters, Washington 202-358-1600 karen.fox@nasa.gov Sarah Frazier Goddard Space Flight Center, Greenbelt, Md. 202-853-7191 sarah.frazier@nasa.gov Erica Grow Cei NOAA’s National Weather Service, College Park, Md. 202-853-6088 erica.grow.cei@noaa.gov Share Details Last Updated Oct 08, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsThe SunHeliophysicsSpace Weather View the full article
-
3 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) This low-angle self-portrait of NASA’s Curiosity Mars rover shows the vehicle at the site from which it reached down to drill into a rock target called “Buckskin” on lower Mount Sharp. When NASA conducts research beyond our world, scientists on Earth prepare as much as possible before sending instruments on extraterrestrial journeys. One way to prepare for these exploration missions is by using machine learning techniques to develop algorithms with data from commercial instruments or from flight instruments on planetary missions. For example, NASA uses mass spectrometer instruments on Mars missions to analyze surface samples and identify organic molecules. Developing machine learning algorithms before missions can help make the process of analyzing planetary data faster and more efficient during time-limited space operations. In 2022, Victoria Da Poian, a data scientist supporting machine learning research at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, collaborated with NASA’s Center of Excellence for Collaborative Innovation to run two machine learning-based open science challenges, which sought ideas and solutions from the public. Solvers worldwide were invited to analyze chemical data sampled from commercial instruments located at NASA centers and data from the Sample Analysis at Mars (SAM) testbed, which is a replica of the instrument suite onboard the Curiosity rover. The challenges encouraged participants to be creative in their approaches and to provide detailed descriptions of their method and code. Da Poian said her team decided to use public competitions for this project to gain new perspectives: “We were really interested in hearing from people who aren’t in our field and weren’t biased by the data’s meaning or our scientific rules.” As a result, more than 1150 unique participants from all over the world participated in the competitions, and more than 600 solutions contributing models to analyze rock and soil samples relevant to planetary science were submitted. The challenges served as proof-of-concept projects to analyze the feasibility of combining data from multiple sources in a single machine learning application. In addition to benefitting from the variety of perspectives offered by challenge participants, Da Poian says the challenges were both time- and cost-efficient methods for discovering solutions. At the same time, the challenges invited the global community to participate in NASA research in support of future space exploration missions, and winners received $60,000 in total prizes across the two opportunities. Da Poian used lessons learned to develop a new challenge with Frontier Development Lab , an international research collaboration that brings together researchers and domain experts to tackle complex problems using machine learning technologies. The competition, titled “Stay Curious: Leveraging Machine Learning to Analyze & Interpret the Measurements of Mars Planetary Instruments,” ran from June to August 2024. Results included cleaning SAM data collected on Mars, processing data for a consistent, machine learning-ready dataset combining commercial and flight instrument data, investigating data augmentation techniques to increase the limited data volume available for the challenge, and exploring machine learning techniques to help predict the chemical composition of Martian terrain. “The machine learning challenges opened the door to how we can use laboratory data to train algorithms and then use that to train flight data,” said Da Poian. “Being able to use laboratory data that we’ve collected for many years is a huge opportunity for us, and the results so far are extremely encouraging.” Find more opportunities: https://www.nasa.gov/get-involved/ View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) A major component of NASA’s Nancy Grace Roman Space Telescope just took a spin on the centrifuge at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Called the Outer Barrel Assembly, this piece of the observatory is designed to keep the telescope at a stable temperature and shield it from stray light. This structure, called the Outer Barrel Assembly, will surround and protect NASA’s Nancy Grace Roman Space Telescope from stray light that could interfere with its observations. In this photo, engineers prepare the assembly for testing.NASA/Chris Gunn The two-part spin test took place in a large, round test chamber. Stretching across the room, a 600,000-pound (272,000-kilogram) steel arm extends from a giant rotating bearing in the center of the floor. The test itself is like a sophisticated version of a popular carnival attraction, designed to apply centrifugal force to the rider — in this case, the outer covering for Roman’s telescope. It spun up to 18.4 rotations per minute. That may not sound like much, but it generated force equivalent to just over seven times Earth’s gravity, or 7 g, and sent the assembly whipping around at 80 miles per hour. “We couldn’t test the entire Outer Barrel Assembly in the centrifuge in one piece because it’s too large to fit in the room,” said Jay Parker, product design lead for the assembly at Goddard. The structure stands about 17 feet (5 meters) tall and is about 13.5 feet (4 meters) wide. “It’s designed a bit like a house on stilts, so we tested the ‘house’ and ‘stilts’ separately.” The “stilts” went first. Technically referred to as the elephant stand because of its similarity to structures used in circuses, this part of the assembly is designed to surround Roman’s Wide Field Instrument and Coronagraph Instrument like scaffolding. It connects the upper portion of the Outer Barrel Assembly to the spacecraft bus, which will maneuver the observatory to its place in space and support it while there. The elephant stand was tested with weights attached to it to simulate the rest of the assembly’s mass. This photo shows a view from inside the Outer Barrel Assembly for NASA’s Nancy Grace Roman Space Telescope. The inner rings, called baffles, will help protect the observatory’s primary mirror from stray light.NASA/Chris Gunn Next, the team tested the “house” — the shell and a connecting ring that surround the telescope. These parts of the assembly will ultimately be fitted with heaters to help ensure the telescope’s mirrors won’t experience wide temperature swings, which make materials expand and contract. To further protect against temperature fluctuations, the Outer Barrel Assembly is mainly made of two types of carbon fibers mixed with reinforced plastic and connected with titanium end fittings. These materials are both stiff (so they won’t warp or flex during temperature swings) and lightweight (reducing launch demands). If you could peel back the side of the upper portion –– the house’s “siding” –– you’d see another weight-reducing measure. Between inner and outer panels, the material is structured like honeycomb. This pattern is very strong and lowers weight by hollowing out portions of the interior. Designed at Goddard and built by Applied Composites in Los Alamitos, California, Roman’s Outer Barrel Assembly was delivered in pieces and then put together in a series of crane lifts in Goddard’s largest clean room. It was partially disassembled for centrifuge testing, but will now be put back together and integrated with Roman’s solar panels and Deployable Aperture Cover at the end of the year. In 2025, these freshly integrated components will go through thermal vacuum testing together to ensure they will withstand the temperature and pressure environment of space. Then they’ll move to a shake test to make sure they will hold up against the vibrations they’ll experience during launch. Toward the end of next year, they will be integrated with rest of the observatory. To virtually tour an interactive version of the telescope, visit: https://roman.gsfc.nasa.gov/interactive The Nancy Grace Roman Space Telescope is managed at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, with participation by NASA’s Jet Propulsion Laboratory and Caltech/IPAC in Southern California, the Space Telescope Science Institute in Baltimore, and a science team comprising scientists from various research institutions. The primary industrial partners are BAE Systems, Inc in Boulder, Colorado; L3Harris Technologies in Rochester, New York; and Teledyne Scientific & Imaging in Thousand Oaks, California. By Ashley Balzer NASA’s Goddard Space Flight Center, Greenbelt, Md. Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center 301-286-1940 Share Details Last Updated Oct 08, 2024 EditorJamie AdkinsContactClaire Andreoli Related TermsNancy Grace Roman Space TelescopeGoddard Space Flight CenterScience-enabling TechnologyTechnology Explore More 2 min read Tech Today: Spraying for Food Safety Article 19 hours ago 5 min read NASA: New Insights into How Mars Became Uninhabitable NASA’s Curiosity rover, currently exploring Gale crater on Mars, is providing new details about how… Article 20 hours ago 2 min read Hubble Observes a Peculiar Galaxy Shape This NASA/ESA Hubble Space Telescope image reveals the galaxy, NGC 4694. Most galaxies fall into… Article 4 days ago View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA project manager Patricia Ortiz stands in front of the X-1E research aircraft at NASA’s Armstrong Flight Research Center in Edwards, California.NASA Lee esta historia en Español aquí. Patricia Ortiz is proud to be a first-generation Salvadoran American. Her mother, born and raised in El Salvador, came to the United States for a better opportunity despite not knowing anyone or the English language. As a project manager for Space Projects and Partnerships at NASA’s Armstrong Flight Research Center in Edwards, California, Ortiz manages various space and aeronautics projects for new technologies that begin from the early stages to the execution. This involves meeting with partners, working with leadership and managing the project for performance and mission success. While reflecting on her journey to NASA, Ortiz honors her mother for her resiliency and the impact she had on her. “My mom faced a lot of hardship in coming to this country, but she came to this country so that I could do this.” This brave decision to move to an unfamiliar place was what opened the door for Ortiz to eventually work for NASA. Ortiz enjoys staying connected to her Salvadoran roots and one way she does this is through food. Her favorite dish: the pupusa. “My mom makes the best pupusas with chicharrón [pork], cheese, and curtido [cabbage slaw]. It’s so delicious!” NASA is celebrating Hispanic Heritage Month by sharing the rich histories, cultures and passions of employees who contribute to advancing the agency’s mission and success for the benefit of all humanity. This month-long, annual celebration honors and recognizes the Hispanic and Latino Americans who have positively influenced and enriched our nation and society. Share Details Last Updated Oct 07, 2024 EditorDede DiniusContactElena Aguirreelena.aguirre@nasa.govLocationArmstrong Flight Research Center Related TermsArmstrong Flight Research CenterHispanic Heritage MonthPeople of ArmstrongPeople of NASAWomen at NASA Explore More 2 min read Una gerente de proyectos de la NASA rinde homenaje a la influencia de su madre Article 21 mins ago 5 min read 2 NASA Employees Awarded Space and Satellite Professionals 20 under 35 of 2024 Article 4 days ago 6 min read Astrophysicist Gioia Rau Explores Cosmic ‘Time Machines’ Article 6 days ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Armstrong People Hispanic Heritage Month Women at NASA View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) La gerente de proyectos de la NASA Patricia Ortiz se muestra delante del avión de investigación X-1E en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California.NASA Read this story in English here. Patricia Ortiz está orgullosa de ser una salvadoreña americana de primera generación. Su madre, nacida y criada en El Salvador, vino a Estados Unidos por una oportunidad mejor sin conocer a nadie ni el idioma inglés. En su función de gerente de proyectos y asociaciones espaciales en el Centro de Investigación de Vuelo Armstrong de la NASA en Edwards, California, Ortiz dirige diversos proyectos espaciales y aeronáuticos de nuevas tecnologías que van desde las primeras fases hasta su ejecución. Esto implica reunirse con los socios, trabajar con directivos y dirigir el proyecto para lograr el rendimiento y el éxito de la misión. Al reflexionar sobre su trayectoria hacia la NASA, Ortiz rinde honores a su madre por su tenacidad y por el impacto que tuvo en ella. “Mi madre se enfrentó a muchos obstáculos al venir a este país, pero vino a este país para que yo pudiera hacer esto”. Su valiente decisión de desplazarse a un lugar desconocido fue lo que le abrió las puertas a Ortiz para acabar trabajando en la NASA. A Ortiz le gusta mantenerse unida a sus raíces salvadoreñas y una forma de hacerlo es a través de la comida. Su plato favorito: la pupusa. “Mi madre hace las mejores pupusas con chicharrón, queso y curtido. ¡Están deliciosas!” La NASA celebra el Mes de la Herencia Hispana compartiendo las ricas historias, culturas y pasiones de los empleados que contribuyen al avance de la misión y el éxito de la agencia en beneficio de toda la humanidad. Esta celebración anual, que dura un mes, honra y reconoce a los hispanos y latinos estadounidenses que han influido positivamente y enriquecido nuestra nación y nuestra sociedad. Share Details Last Updated Oct 07, 2024 EditorDede DiniusContactElena Aguirreelena.aguirre@nasa.govLocationArmstrong Flight Research Center Related TermsNASA en españolArmstrong Flight Research CenterHispanic Heritage Month Explore More 2 min read NASA Project Manager Honors Mother’s Impact Article 20 mins ago 3 min read Meet Hector Chavez: Leading Johnson’s Giant Leap into Low Earth Orbit Article 2 weeks ago 5 min read La NASA invita a los medios al lanzamiento de Europa Clipper Article 1 month ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Armstrong People Hispanic Heritage Month Women at NASA View the full article
-
Credit: NASA The Dominican Republic is the latest nation to sign the Artemis Accords and joins 43 other countries in a commitment to advancing principles for the safe, transparent, and responsible exploration of the Moon, Mars and beyond with NASA. “NASA is proud to welcome the Dominican Republic signing of the Artemis Accords as we expand the peaceful exploration of space to all nations,” said NASA Administrator Bill Nelson. “The Dominican Republic has made important strides toward a shared future in space and is now helping guide space exploration for the Artemis Generation.” Sonia Guzmán, ambassador of the Dominican Republic to the United States, signed the Artemis Accords on behalf of the country on Oct. 4. The country also will confirm its participation in a high-level meeting of Artemis Accords signatories taking place Monday, Oct. 14, during the International Astronautical Congress in Milan, where furthering implementation of the principles will be discussed. “This marks a historic step in our commitment to international collaboration in space exploration,” said Guzmán. “This is not just a scientific or technological milestone – it represents a future where the Dominican Republic contributes to the shared goals of peace, sustainability, and innovation beyond our planet. By joining the global effort to explore the Moon, Mars, and beyond, we are also expanding the opportunities particularly for our young Dominicans in science, education, and economic development.” In 2020, the United States and seven other nations were the first to sign the Artemis Accords, which identified an early set of principles promoting the beneficial use of space for humanity. The accords are grounded in the Outer Space Treaty and other agreements including the Registration Convention, the Rescue and Return Agreement, as well as best practices and norms of responsible behavior that NASA and its partners have supported, including the public release of scientific data. The commitments of the Artemis Accords and efforts by the signatories to advance implementation of these principles support the safe and sustainable exploration of space. More countries are expected to sign in the coming weeks and months. For more information about NASA’s programs, visit: https://www.nasa.gov -end- Meira Bernstein / Elizabeth Shaw Headquarters, Washington 202-358-1600 meira.b.bernstein@nasa.gov / elizabeth.a.shaw@nasa.gov Share Details Last Updated Oct 07, 2024 EditorJessica TaveauLocationNASA Headquarters Related TermsArtemis AccordsOffice of International and Interagency Relations (OIIR) View the full article
-
Curiosity Navigation Curiosity Home Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Images Videos Audio More Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions The Solar System The Sun Mercury Venus Earth The Moon Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets Asteroids, Comets & Meteors The Kuiper Belt The Oort Cloud 3 min read Sols 4325-4326: (Not Quite) Dipping Our Toes in the Sand NASA’s Mars rover Curiosity captured this image using its Left Navigation Camera on Sol 4323 — Martian day 4,323 of the Mars Science Laboratory mission — on Oct. 4, 2024, at 00:29:40 UTC. NASA/JPL-Caltech Earth planning date: Friday, Oct. 4, 2024 If you read this blog very often, you know that nearly every time the rover stops for science, MAHLI and APXS focus on interesting (and accessible!) rocks as targets. The rover science team is, after all, built with a lot of geologists. But geology is not all rocks, all the time — sand is former rock that if buried and pressurized long enough will become rock again. Today was time for sand to shine, as the workspace was cut by troughs of sand of different colors and brightnesses, and it had been nearly 500 sols since we acquired our last dedicated sand measurement with APXS and MAHLI. The “Pumice Flat” target was one of the brighter sand patches while “Kidney Lake” was one of the darker sand patches. APXS uses a special placement mode over sand targets so the instrument gets close, but not too close, to the loose material which could foul up the instrument. Not-rock was also the purview of our environmental observations. Navcam is scheduled for imaging seeking out clouds and dust devils, and changes in the sand and dust on top of the rover deck. Both Navcam and Mastcam will make observations to measure the amount of dust in the atmosphere. REMS will keep track of our weather with regular measurements, RAD will monitor our radiation environment, and DAN will look through rock for signs of water beneath our drive path. Unsurprisingly, the rest of the rover could not ignore bedrock. We managed to squeeze in DRT cleaning of a nice bedrock slab, “Ribbon Fall,” for MAHLI-only imaging. In places, the bedrock slabs were cut by thin veins of darker gray material, similar to dark gray materials we saw in the bedrock on the other side of Gediz Vallis. ChemCam targeted one of these dark gray examples at “Black Divide,” and also rastered across some of the prominent layers visible in the vertical faces in the workspace at the aptly named “Profile View.” Our imaging efforts could be roughly divided between looking back at our path through Gediz Vallis from our new and higher perspective, and looking ahead to what awaits us. ChemCam planned RMI mosaics back toward a field of the white stones we spent time studying in Gediz Vallis and toward a part of the edge of Gediz Vallis that we did not explore previously. Mastcam looked back at the part of the edge of Gediz Vallis we just traversed, “Pilot Peak,” for clues as to why it sits higher than the bedrock farther from the channel edge. They also targeted “Clyde Spires,” which was a gravel ridge in Gediz Vallis of interest as we drove by it initially. Looking ahead, Mastcam imaged a puzzling gray rock sitting atop the bedrock slabs south of us at target “Buena Vista Grove,” and further south still, they planned a large mosaic covering a very big rock — the spectacular “Texoli” butte that has loomed and will continue to loom over our path for months to come. Written by Michelle Minitti, Planetary Geologist at Framework Share Details Last Updated Oct 07, 2024 Related Terms Blogs Explore More 2 min read Perseverance Matters It is an important and exciting juncture in Mars exploration and astrobiology. This year, the… Article 5 hours ago 2 min read Sols 4323-4324: Surfin’ Our Way out of the Channel Article 4 days ago 2 min read Sols 4321-4322: Sailing Out of Gediz Vallis Article 5 days ago Keep Exploring Discover More Topics From NASA Mars Mars is the fourth planet from the Sun, and the seventh largest. It’s the only planet we know of inhabited… All Mars Resources Explore this collection of Mars images, videos, resources, PDFs, and toolkits. Discover valuable content designed to inform, educate, and inspire,… Rover Basics Each robotic explorer sent to the Red Planet has its own unique capabilities driven by science. Many attributes of a… Mars Exploration: Science Goals The key to understanding the past, present or future potential for life on Mars can be found in NASA’s four… View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Astronaut Kayla Barron looks at chile peppers growing in the Advanced Plant Habitat aboard the International Space Station. Determining the best ways to water plants in space resulted in the development of a new electrostatic spray nozzle, now licensed to industry.Credit: NASA Whether protecting crops from diseases and pests or sanitizing contaminated surfaces, the ability to spray protective chemicals over important resources is key to several industries. Electrostatic Spraying Systems Inc. (ESS) of Watkinsville, Georgia, manufactures electrostatic sprayers and equipment that make this possible. By licensing NASA electrostatic technology, originally made to water plants in space, ESS’s improved spray nozzles efficiently use basic laws of electricity to achieve complete coverage on targeted surfaces. ESS traces its origins to research done at the University of Georgia in the 1970s and ’80s. An electrostatic sprayer works by inducing an electric charge onto atomized droplets. Much like an inflated balloon sticking to a wall when it’s gained a charge of static electricity, the droplets then stick to targeted surfaces. NASA’s interest in this technology originated with astronauts’ need for an easy way to support plant-growth experiments in space. On the International Space Station, watering plants without the help of gravity isn’t as easy as using a garden hose on Earth. In the future, using a system like an electrostatic sprayer on the space station or other orbiting destination could help the water droplets stick to the plants with uniform coverage. However, most spraying systems require large sources of water and air to properly aerosolize fluids. An ESS mister nozzle undergoes testing at Kennedy Space Center. The design was improved through collaboration between the company and NASA.Credit: NASA As both air and water are precious resources in space, NASA needed an easier way to make these incredibly small droplets. Charles Buhler and Jerry Wang of NASA’s Kennedy Space Center in Florida led the efforts to develop this capability, with Edward Law of the University of Georgia as a consulting expert. Eventually, the NASA team developed a new design by learning from existing technology called a mister nozzle. The benefit of a mister is that even though the interior volume of the nozzle is small, the pressure inside never builds up, which makes it perfect for enclosed small spaces like the space station. As the sprayer industry is a tight-knit group, technology transfer professionals at NASA reached out to the companies that could use a nozzle like this on Earth. Electrostatic Spraying Systems responded and later licensed the sprayer design from the agency and incorporated it into the company’s Maxcharge product lines. Read More Share Details Last Updated Oct 07, 2024 Related TermsTechnology Transfer & SpinoffsSpinoffsTechnology Transfer Explore More 2 min read The Science of the Perfect Cup for Coffee Material research is behind the design of a temperature-regulating mug Article 1 week ago 3 min read Measuring Moon Dust to Fight Air Pollution Article 3 weeks ago 2 min read Printed Engines Propel the Next Industrial Revolution Efforts to 3D print engines produce significant savings in rocketry and beyond Article 4 weeks ago Keep Exploring Discover Related Topics Technology Transfer & Spinoffs Advanced Plant Habitat Conducting plant bioscience research aboard the International Space Station The Advanced Plant Habitat (APH) is the largest, fully automated plant… Climate Change Space Technology Mission Directorate View the full article
-
The 13th flight of the space shuttle program and the sixth of Challenger, STS-41G holds many distinctions. As the first mission focused almost entirely on studying the Earth, it deployed a satellite, employed multiple instruments, cameras, and crew observations to accomplish those goals. The STS-41G crew set several firsts, most notably as the first seven-member space crew. Other milestones included the first astronaut to make a fourth shuttle flight, the first and only astronaut to fly on Challenger three times and on back-to-back missions on any orbiter, the first crew to include two women, the first American woman to make two spaceflights, the first American woman to conduct a spacewalk, and the first Canadian and the first Australian-born American to make spaceflights. Left: The STS-41G crew patch. Right: The STS-41G crew of Jon A. McBride, front row left, Sally K. Ride, Kathryn D. Sullivan, and David C. Leestma; Paul D. Scully-Power, back row left, Robert L. Crippen, and Marc Garneau of Canada. In November 1983, NASA named the five-person crew for STS-41G, formerly known as STS-17, then planned as a 10-day mission aboard Columbia in August 1984. When assigned to STS-41G, Commander Robert L. Crippen had already completed two missions, STS-1 and STS-7, and planned to command STS-41C in April 1984. On STS-41G, he made a record-setting fourth flight on a space shuttle, and as it turned out the first and only person to fly aboard Challenger three times, including back-to-back missions. Pilot Jon A. McBride, and mission specialists Kathryn D. Sullivan from the Class of 1978 and, David C. Leestma from the Class of 1980, made their first flights into space. Mission specialist Sally K. Ride made her second flight, and holds the distinction as the first American woman to return to space, having flown with Crippen on STS-7. The flight marked the first time that two women, Ride and Sullivan, flew in space at the same time. In addition, Sullivan holds the honor as the first American woman to conduct a spacewalk and made her second flight and holds the distinction as the first American woman to return to space, having flown with Crippen on STS-7. The flight marked the first time that two women, Ride and Sullivan, flew in space at the same time. In addition, Sullivan holds the honor as the first American woman to conduct a spacewalk, and Leestma as the first of the astronaut Class of 1980 to make a spaceflight. Columbia’s refurbishment following STS-9 ran behind schedule and could not meet the August launch date, so NASA switched STS-41G to the roomier and lighter weight Challenger. This enabled adding crew members to the flight. In February 1984, NASA and the Canadian government agreed to fly a Canadian on an upcoming mission in recognition for that country’s major contribution to the shuttle program, the Remote Manipulator System (RMS), or robotic arm. In March, Canada named Marc Garneau as the prime crewmember with Robert B. Thirsk as his backup. NASA first assigned Garneau to STS-51A, but with the switch to Challenger transferred him to the STS-41G crew. On June 1, NASA added Australian-born and naturalized U.S. citizen Paul D. Scully-Power, an oceanographer with the Naval Research Laboratory who had trained shuttle crews in recognizing ocean phenomena from space, to the mission rounding out the seven-person crew, the largest flown to that time. Scully-Power has the distinction as the first person to launch into space sporting a beard. Left: Space shuttle Challenger returns to NASA’s Kennedy Space Center (KSC) in Florida atop a Shuttle Carrier Aircraft following the STS-41C mission. Middle: The Earth Resources Budget Satellite during processing at KSC for STS-41G. Right: Technicians at KSC process the Shuttle Imaging Radar-B for the STS-41G mission. The STS 41G mission carried a suite of instruments to study the Earth. The Earth Radiation Budget Satellite (ERBS), managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland, contained three instruments, including the Stratospheric Aerosol and Gas Experiment-2 (SAGE-2), to measure solar and thermal radiation of the Earth to better understand global climate changes. NASA’s Office of Space and Terrestrial Applications sponsored a cargo bay-mounted payload (OSTA-3) consisting of four instruments. The Shuttle Imaging Radar-B (SIR-B), managed by NASA’s Jet Propulsion Laboratory in Pasadena, California, and an updated version of SIR-A flown on STS-2, used synthetic aperture radar to support investigations in diverse disciplines such as archaeology, geology, cartography, oceanography, and vegetation studies. Making its first flight into space, the 900-pound Large Format Camera (LFC) took images of selected Earth targets on 9-by-18-inch film with 70-foot resolution. The Measurement of Air Pollution from Satellites (MAPS) experiment provided information about industrial pollutants in the atmosphere. The Feature Identification and Location Experiment (FILE) contained two television cameras to improve the efficiency of future remote sensing equipment. In an orbit inclined 57 degrees to the Equator, the instruments aboard Challenger could observe more than 75% of the Earth’s surface. The Orbital Refueling System (ORS), managed by NASA’s Johnson Space Center in Houston, while not directly an Earth observation payload, assessed the feasibility of on-orbit refueling of the Landsat-4 remote sensing satellite, then under consideration as a mission in 1987, as well as Department of Defense satellites not designed for on-orbit refueling. In the demonstration, the astronauts remotely controlled the transfer of hydrazine, a highly toxic fuel, between two tanks mounted in the payload bay. During a spacewalk, two crew members simulated connecting the refueling system to a satellite and later tested the connection with another remotely controlled fuel transfer. Rounding out the payload activities, the large format IMAX camera made its third trip into space, with footage used to produce the film “The Dream is Alive.” Four views of the rollout of space shuttle Challenger for STS-41G. Left: From inside the Vehicle Assembly Building (VAB). Middle left: From Firing Room 2 of the Launch Control Center (LCC). Middle right: From the crawlerway, with the LCC and the VAB in the background. Right: From atop the VAB. Left: The STS-41G astronauts answer reporters’ questions at Launch Pad 39A during the Terminal Countdown Demonstration Test. Right: The STS-41G crew leaves crew quarters and prepares to board the Astrovan for the ride to Launch Pad 39A for liftoff. Following the STS-41C mission, Challenger returned to KSC from Edwards Air Force Base in California on April 18. Workers in KSC’s Orbiter Processing Facility refurbished the orbiter and changed out its payloads. Rollover to the Vehicle Assembly Building (VAB) took place on Sept. 8 and after workers stacked Challenger with its External Tank and Solid Rocket Boosters, they rolled it out of the VAB to Launch Pad 39A on Sept. 13. Just two days later, engineers completed the Terminal Countdown Demonstration Test, a final dress rehearsal before the actual countdown and launch, with the astronaut crew participating as on launch day. They returned to KSC on Oct. 2 to prepare for the launch three days later. Left: Liftoff of space shuttle Challenger on the STS-41G mission. Middle: Distant view of Challenger as it rises through the predawn skies. Right: The Earth Resources Budget Satellite just before the Remote Manipulator System released it. Space shuttle Challenger roared off Launch Pad 39A at 7:03 a.m. EDT, 15 minutes before sunrise, on Oct. 5, 1984, to begin the STS-41G mission. The launch took place just 30 days after the landing of the previous mission, STS-41D. That record-breaking turnaround time between shuttle flights did not last long, as the launch of Discovery on STS-51A just 26 days after Challenger’s landing set a new record on Nov. 8. Eight and a half minutes after liftoff, Challenger and its seven-member crew reached space and shortly thereafter settled into a 218-mile-high orbit, ideal for the deployment of the 5,087-pound ERBS. The crew noted that a 40-inch strip of Flexible Reusable Surface Insulation (FRSI) had come loose from Challenger’s right-hand Orbiter Maneuvering System (OMS) pod, presumably lost during launch. Mission Control determined that this would not have any impact during reentry. Ride grappled the ERBS with the shuttle’s RMS but when she commanded the satellite to deploy its solar arrays, nothing happened. Mission Control surmised that the hinges on the arrays had frozen, and after Ride oriented the satellite into direct sunlight and shook it slightly on the end of the arm, the panels deployed. She released ERBS about two and a half hours late and McBride fired Challenger’s steering jets to pull away from the satellite. Its onboard thrusters boosted ERBS into its operational 380-mile-high orbit. With an expected two-year lifetime, it actually operated until October 14, 2005, returning data about how the Earth’s atmosphere absorbs and re-radiates the Sun’s energy, contributing significant information about global climate change. Left: The SIR-B panel opens in Challenger’s payload bay. Right: Jon A. McBride with the IMAX large format camera in the middeck. Near the end of their first day in space, the astronauts opened the panels of the SIR-B antenna and activated it, also deploying the Ku-band antenna that Challenger used to communicate with the Tracking and Data Relay System (TDRS) satellite. The SIR-B required a working Ku-band antenna to downlink the large volume of data it collected, although it could store a limited amount on onboard tape recorders. But after about two minutes, the data stream to the ground stopped. One of the two motors that steered the Ku antenna failed and it could no longer point to the TDRS satellite. Mission Control devised a workaround to fix the Ku antenna in one position and steer the orbiter to point it to the TDRS satellite and downlink the stored data to the ground. Challenger carried sufficient fuel for all the maneuvering, but the extra time for the attitude changes resulted in achieving only about 40% of the planned data takes. The discovery of the 3,000-year-old lost city of Udar in the desert of Oman resulted from SIR-B data, one of many interesting findings from the mission. Left: The shuttle’s Canadian-built Remote Manipulator System or robotic arm closes the SIR-B panel. Middle: The patch for Canadian astronaut Marc Garneau’s mission. Right: Spiral eddies in the eastern Mediterranean Sea. During the second mission day, the astronauts lowered Challenger’s orbit to an intermediate altitude of 151 miles. Flight rules required that the SIR-B antenna be stowed for such maneuvers but the latches to clamp the antenna closed failed to activate. Ride used the RMS to nudge the antenna panel closed. From the orbiter’s flight deck, Leestma successfully completed the first ORS remote-controlled hydrazine fuel transfer. Garneau began working on his ten CANEX investigations related to medical, atmospheric, climatic, materials and robotic sciences while Scully-Power initiated his oceanographic observations. Despite greater than expected global cloud cover, he successfully photographed spiral eddies in the world’s oceans, particularly notable in the eastern Mediterranean Sea. Left: Mission Specialists Kathryn D. Sullivan, left, and Sally K. Ride on Challenger’s flight deck. Right: Payload Specialists Marc Garneau and Paul D. Scully-Power working on a Canadian experiment in Challenger’s middeck. The third day saw the crew lower Challenger’s orbit to 140 miles, the optimal altitude for SIR-B and the other Earth observing instruments. For the next few days, all the experiments continued recording their data, including Garneau’s CANEX and Scully-Power’s oceanography studies. Leestma completed several scheduled ORS fuel transfers prior to the spacewalk. Preparations for that activity began on flight day 6 with the crew lowering the cabin pressure inside Challenger from the normal sea level 14.7 pounds per square inch (psi) to 10.2 psi. The lower pressure prevented the buildup of nitrogen bubbles in the bloodstreams of the two spacewalkers, Leestma and Sullivan, that could result in the development of the bends. The two verified the readiness of their spacesuits. Left: David C. Leestma, left with red stripes on his suit, and Kathryn D. Sullivan during their spacewalk. Middle: Leestma, left, and Sullivan working on the Orbital Refueling System during the spacewalk. Right: Sullivan, left, and Leestma peer into Challenger’s flight deck during the spacewalk. On flight day 7, Leestma and Sullivan, assisted by McBride, donned their spacesuits and began their spacewalk. After gathering their tools, the two translated down to the rear of the cargo bay to the ORS station. With Sullivan documenting and assisting with the activity, Leestma installed the valve assembly into the simulated Landsat propulsion plumbing. After completing the ORS objectives, Leestma and Sullivan proceeded back toward the airlock, stopping first at the Ku antenna where Sullivan secured it in place. They returned inside after a spacewalk that lasted 3 hours and 29 minutes, and the crew brought Challenger’s cabin pressure back up to 14.7 psi. STS-41G crew Earth observation photographs. Left: Hurricane Josephine in the Atlantic Ocean. Middle: The Strait of Gibraltar. Right: Karachi, Pakistan, and the mouth of the Indus River. False color image of Montreal generated from SIR-B data. Left: Traditional inflight photo of the STS-41G crew on Challenger’s flight deck. Right: Robert L. Crippen with the orange glow generated outside Challenger during reentry. Left: Kathryn D. Sullivan photograph of NASA’s Kennedy Space Center (KSC) in Florida during Challenger’s approach, minutes before touchdown. Middle: Space shuttle Challenger moments before touchdown at N KSC at the end of the STS-41G mission. Right: The crew of STS-41G descends from Challenger after completing a highly successful mission. During their final full day in space, Challenger’s crew tidied the cabin for reentry and completed the final SIR-B and other Earth observations. On Oct. 13, the astronauts closed the payload bay doors and fired the OMS engines over Australia to begin the descent back to Earth. Because of the mission’s 57-degree inclination, the reentry path took Challenger and its crew over the eastern United States, another Shuttle first. Crippen guided the orbiter to a smooth landing at KSC, completing a flight of 8 days, 5 hours, and 24 minutes, the longest mission of Challenger’s short career. The crew had traveled nearly 3.3 million miles and completed 133 orbits around the Earth. Left: Missing insulation from Challenger’s right hand Orbiter Maneuvering System pod as seen after landing. Middle: Missing tile from the underside of Challenger’s left wing. Right: Damage to tiles on Challenger’s left wing. As noted above, on the mission’s first day in space the crew described a missing strip of FRSI from the right-hand OMS pod. Engineers noted additional damage to Challenger’s Thermal Protection System (TPS) after the landing, including several tiles on the underside the vehicle’s left wing damaged and one tile missing entirely, presumably lost during reentry. Engineers determined that the water proofing used throughout the TPS that allowed debonding of the tiles as the culprit for the missing tile. To correct the problem, workers removed and replaced over 4,000 tiles, adding a new water proofing agent to preclude the recurrence of the problem on future missions. Read recollections of the STS-41G mission by Crippen, McBride, Sullivan, Ride, and Leestma in their oral histories with the JSC History Office. Enjoy the crew’s narration of a video about the STS-41G mission. Explore More 12 min read 30 Years Ago: STS-68 The Second Space Radar Lab Mission Article 1 week ago 15 min read 55 Years Ago: Celebrations for Apollo 11 Continue as Apollo 12 Prepares to Revisit the Moon Article 3 weeks ago 8 min read 65 Years Ago: First Powered Flight of the X-15 Hypersonic Rocket Plane Article 3 weeks ago View the full article
-
5 min read NASA: New Insights into How Mars Became Uninhabitable NASA’s Curiosity rover, currently exploring Gale crater on Mars, is providing new details about how the ancient Martian climate went from potentially suitable for life – with evidence for widespread liquid water on the surface – to a surface that is inhospitable to terrestrial life as we know it. This is an artist’s concept of an early Mars with liquid water (blue areas) on its surface. Ancient regions on Mars bear signs of abundant water – such as features resembling valleys and deltas, and minerals that only form in the presence of liquid water. Scientists think that billions of years ago, the atmosphere of Mars was much denser and warm enough to form rivers, lakes, and perhaps even oceans of water. As the planet cooled and lost its global magnetic field, the solar wind and solar storms eroded away to space a significant amount of the planet’s atmosphere, turning Mars into the cold, arid desert we see today. NASA/MAVEN/The Lunar and Planetary Institute Although the surface of Mars is frigid and hostile to life today, NASA’s robotic explorers at Mars are searching for clues as to whether it could have supported life in the distant past. Researchers used instruments on board Curiosity to measure the isotopic composition of carbon-rich minerals (carbonates) found in Gale crater and discovered new insights into how the Red Planet’s ancient climate transformed. “The isotope values of these carbonates point toward extreme amounts of evaporation, suggesting that these carbonates likely formed in a climate that could only support transient liquid water,” said David Burtt of NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of a paper describing this research published October 7 in the Proceedings of the National Academy of Sciences. “Our samples are not consistent with an ancient environment with life (biosphere) on the surface of Mars, although this does not rule out the possibility of an underground biosphere or a surface biosphere that began and ended before these carbonates formed.” Isotopes are versions of an element with different masses. As water evaporated, light versions of carbon and oxygen were more likely to escape into the atmosphere, while the heavy versions were left behind more often, accumulating into higher abundances and, in this case, eventually being incorporated into the carbonate rocks. Scientists are interested in carbonates because of their proven ability to act as climate records. These minerals can retain signatures of the environments in which they formed, including the temperature and acidity of the water, and the composition of the water and the atmosphere. The paper proposes two formation mechanisms for carbonates found at Gale. In the first scenario, carbonates are formed through a series of wet-dry cycles within Gale crater. In the second, carbonates are formed in very salty water under cold, ice-forming (cryogenic) conditions in Gale crater. “These formation mechanisms represent two different climate regimes that may present different habitability scenarios,” said Jennifer Stern of NASA Goddard, a co-author of the paper. “Wet-dry cycling would indicate alternation between more-habitable and less-habitable environments, while cryogenic temperatures in the mid-latitudes of Mars would indicate a less-habitable environment where most water is locked up in ice and not available for chemistry or biology, and what is there is extremely salty and unpleasant for life.” These climate scenarios for ancient Mars have been proposed before, based on the presence of certain minerals, global-scale modeling, and the identification of rock formations. This result is the first to add isotopic evidence from rock samples in support of the scenarios. The heavy isotope values in the Martian carbonates are significantly higher than what’s seen on Earth for carbonate minerals and are the heaviest carbon and oxygen isotope values recorded for any Mars materials. In fact, according to the team, both the wet-dry and the cold-salty climates are required to form carbonates that are so enriched in heavy carbon and oxygen. “The fact that these carbon and oxygen isotope values are higher than anything else measured on Earth or Mars points towards a process (or processes) being taken to an extreme,” said Burtt. “While evaporation can cause significant oxygen isotope changes on Earth, the changes measured in this study were two to three times larger. This means two things: 1) there was an extreme degree of evaporation driving these isotope values to be so heavy, and 2) these heavier values were preserved so any processes that would create lighter isotope values must have been significantly smaller in magnitude.” This discovery was made using the Sample Analysis at Mars (SAM) and Tunable Laser Spectrometer (TLS) instruments aboard the Curiosity rover. SAM heats samples up to nearly 1,652 degrees Fahrenheit (almost 900°C) and then the TLS is used to analyze the gases that are produced during that heating phase. Funding for this work came from NASA’s Mars Exploration Program through the Mars Science Laboratory project. Curiosity was built by NASA’s Jet Propulsion Laboratory (JPL), which is managed by Caltech in Pasadena, California. JPL leads the mission on behalf of NASA’s Science Mission Directorate in Washington. NASA Goddard built the SAM instrument, which is a miniaturized scientific laboratory that includes three different instruments for analyzing chemistry, including the TLS, plus mechanisms for handling and processing samples. By William Steigerwald NASA’s Goddard Space Flight Center, Greenbelt, Maryland Media contacts: Nancy Neal-Jones/Andrew Good NASA’s Goddard Space Flight Center, Greenbelt, Md./Jet Propulsion Laboratory, Pasadena, Calif. 301-286-0039/818-393-2433 nancy.n.jones@nasa.gov / andrew.c.good@jpl.nasa.gov Karen Fox / Molly Wasser Headquarters, Washington 202-358-1600 karen.c.fox@nasa.gov / molly.l.wasser@nasa.gov Share Details Last Updated Oct 07, 2024 Editor wasteigerwald Contact wasteigerwald william.a.steigerwald@nasa.gov Location NASA Goddard Space Flight Center Related Terms Astrobiology Mars Uncategorized Explore More 3 min read 2024 ASGSR Art Competition! Article 5 days ago 6 min read Celebrating 10 Years at Mars with NASA’s MAVEN Mission A decade ago, on Sept. 21, 2014, NASA’s MAVEN (Mars Atmospheric and Volatile EvolutioN) spacecraft… Article 2 weeks ago 6 min read NASA’s Hubble, MAVEN Help Solve the Mystery of Mars’ Escaping Water Article 1 month ago View the full article
-
NASA/JPL-Caltech The golden records placed aboard Voyager 1 and 2 each have a cover with special etchings, seen here in this photo from Sept. 4, 1977. These drawings show how the record should be used to receive a message from Earth. For example, the drawing in the bottom right corner is of the phonograph record and the stylus carried with it; the stylus is in the correct position for the record to be played from the beginning. The lines around the record mark the time of one rotation of the record, 3.6 seconds, in binary arithmetic. The drawing also indicates that the record should be played from the outside in. The Golden Record itself contains 115 images and a variety of natural sounds, such as those made by surf, wind and thunder, birds, whales, and other animals, as well as musical selections from different cultures and eras, spoken greetings from Earth-people in fifty-five languages, and printed messages from President Carter and U.N. Secretary General Waldheim. The contents of the record were selected for NASA by a committee chaired by Carl Sagan. Discover what the other drawings on the Golden Record cover reveal. Image Credit: NASA/JPL-Caltech View the full article