Members Can Post Anonymously On This Site
-
Posts
4,764 -
Joined
-
Last visited
-
Days Won
1
Content Type
Profiles
Forums
Events
Videos
Everything posted by NASA
-
Northrop Grumman’s Cygnus spacecraft approaches the International Space Station. Cygnus will deliver science experiments, crew supplies, and station hardware (Credits: NASA). Media accreditation is open for the next launch to deliver NASA science investigations, supplies, and equipment to the International Space Station. This launch is the 21st Northrop Grumman commercial resupply services mission to the orbital laboratory for the agency and will launch on a SpaceX Falcon 9 rocket. NASA, Northrop Grumman, and SpaceX are targeting early August to launch the Cygnus spacecraft from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida. Following launch, the space station’s Canadarm2 will grapple Cygnus and the spacecraft will attach to the Unity module’s Earth-facing port for cargo unloading. Credentialing to cover prelaunch and launch activities is open to U.S. media. The application deadline for U.S. citizens is 11:59 p.m. EDT, Friday, July 19. All accreditation requests must be submitted online at: https://media.ksc.nasa.gov Credentialed media will receive a confirmation email upon approval. NASA’s media accreditation policy is available online. For questions about accreditation, or to request special logistical support, email: ksc-media-accreditat@mail.nasa.gov. For other questions, please contact NASA’s Kennedy Space Center newsroom at: 321-867-2468. Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitor entrevistas en español, comuníquese con Antonia Jaramillo o Messod Bendayan a: antonia.jaramillobotero@nasa.gov o messod.c.bendayan@nasa.gov. Each resupply mission to the station delivers scientific investigations in the areas of biology and biotechnology, Earth and space science, physical sciences, and technology development and demonstrations. Cargo resupply from U.S. companies ensures a national capability to deliver scientific research to the space station, significantly increasing NASA’s ability to conduct new investigations aboard humanity’s laboratory in space. In addition to food, supplies, and equipment for the crew, Cygnus will deliver research, including supplies for a new STEMonstration and several test articles to observe water flow in microgravity. Other investigations aboard include vascularized liver tissue and a bioreactor to demonstrate the production of blood and immune stem cells. Researchers will learn more about biomanufacturing in microgravity to create higher quality treatments for people on Earth. NASA’s CubeSat Launch Initiative also is sending two CubeSats to deploy from the orbiting laboratory, CySat-1 from Iowa State Universityand DORA from Arizona State University, making up ELaNa 52 (Educational Launch of Nanosatellites). Crews have occupied the space station continuously since November 2000. In that time, 280 people from 21 countries have visited the orbital outpost. The space station is a springboard to NASA’s next great leap in exploration, including future missions to the Moon under Artemis, and ultimately, human exploration of Mars. Learn more about NASA’s commercial resupply missions at: https://www.nasa.gov/station -end- Josh Finch / Claire O’Shea Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / claire.a.o’shea@nasa.gov Stephanie Plucinsky / Steven Siceloff / Danielle Sempsrott Kennedy Space Center, Fla. 321-876-2468 stephanie.n.plucinsky@nasa.gov / steven.p.siceloff@nasa.gov / danielle.c.sempsrott@nasa.gov Sandra Jones Johnson Space Center, Houston 281-483-5111 sandra.p.jones@nasa.gov Ellen Klicka Northrop Grumman, Cygnus 703-402-4404 ellen.klicka@ngc.com View the full article
-
3 Min Read July’s Night Sky Notes: A Hero, a Crown, and Possibly a Nova! Like shiny flakes sparkling in a snow globe, over 100,000 stars whirl within the globular cluster M13, one of the brightest star clusters visible from the Northern Hemisphere. Located 25,000 light-years from Earth with an apparent magnitude of 5.8, this glittering metropolis of stars in the constellation Hercules can be spotted with a pair of binoculars most easily in July. Credits: NASA by Vivan White of the Astronomical Society of the Pacific High in the summer sky, the constellation Hercules acts as a centerpiece for late-night stargazers. At the center of Hercules is the “Keystone,” a near-perfect square shape between the bright stars Vega and Arcturus that is easy to recognize and can serve as a guidepost for some amazing sights. While not the brightest stars, the shape of the hero’s torso, like a smaller Orion, is nearly directly overhead after sunset. Along the edge of this square, you can find a most magnificent jewel – the Great Globular Cluster of Hercules, also known as Messier 13. Look up after sunset during summer months to find Hercules! Scan between Vega and Arcturus, near the distinct pattern of Corona Borealis. Once you find its stars, use binoculars or a telescope to hunt down the globular clusters M13 (and a smaller globular cluster M92). If you enjoy your views of these globular clusters, you’re in luck – look for another great globular, M3, near the constellation Boötes. Credit: Stellarium Globular clusters are a tight ball of very old stars, closer together than stars near us. These clusters orbit the center of our Milky Way like tight swarms of bees. One of the most famous short stories, Nightfall by Isaac Asimov, imagines a civilization living on a planet within one of these star clusters. They are surrounded by so many stars so near that it is always daytime except for once every millennium, when a special alignment (including a solar eclipse) occurs, plunging their planet into darkness momentarily. The sudden night reveals so many stars that it drives the inhabitants mad. Back here on our home planet Earth, we are lucky enough to experience skies full of stars, a beautiful Moon, and regular eclipses. On a clear night this summer, take time to look up into the Keystone of Hercules and follow this sky chart to the Great Globular Cluster of Hercules. A pair of binoculars will show a faint, fuzzy patch, while a small telescope will resolve some of the stars in this globular cluster. A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. The red giant is a large sphere in shades of red, orange, and white, with the side facing the white dwarf the lightest shades. The white dwarf is hidden in a bright glow of white and yellows, which represent an accretion disk around the star. A stream of material, shown as a diffuse cloud of red, flows from the red giant to the white dwarf. When the red giant moves behind the white dwarf, a nova explosion on the white dwarf ignites, creating a ball of ejected nova material shown in pale orange. After the fog of material clears, a small white spot remains, indicating that the white dwarf has survived the explosion. NASA/Goddard Space Flight Center Bonus! Between Hercules and the ice-cream-cone-shaped Boötes constellation, you’ll find the small constellation Corona Borealis, shaped like the letter “C.” Astronomers around the world are watching T Coronae Borealis, also known as the “Blaze Star” in this constellation closely because it is predicted to go nova sometime this summer. There are only 5 known nova stars in the whole galaxy. It is a rare observable event and you can take part in the fun! The Astronomical League has issued a Special Observing Challenge that anyone can participate in. Just make a sketch of the constellation now (you won’t be able to see the nova) and then make another sketch once it goes nova. Tune into our mid-month article on the Night Sky Network page, as we prepare for the Perseids! Keep looking up! View the full article
-
Credits: NASA NASA has selected the University of Hawaii in Honolulu to maintain and operate the agency’s Infrared Telescope Facility (IRTF) on Mauna Kea in Hilo, Hawaii. The Management and Operations of NASA’s IRTF is a hybrid firm-fixed-price contract with an indefinite-delivery/indefinite-quantity provision. The contract has a maximum potential value of approximately $85.5 million, with a base period of performance from Monday, July 1 to June 30, 2025. Nine optional periods, if exercised, would extend the contract through Dec. 31, 2033. Under this contract, the University of Hawaii will provide maintenance and operation services for NASA at the telescope facility. The university will also develop and implement an operations strategy so that the facility can be used by the scientific community through peer-reviewed competition to assist NASA in achieving its goals in scientific discovery, mission support, and planetary defense. For information about NASA and agency programs, visit: https://www.nasa.gov -end- Tiernan Doyle Headquarters, Washington 202-358-1600 tiernan.doyle@nasa.gov Share Details Last Updated Jun 28, 2024 LocationNASA Headquarters Related TermsNASA Centers & FacilitiesScience & Research View the full article
-
4 Min Read NASA Announces Winners of Inaugural Human Lander Challenge NASA’s 2024 Human Lander Challenge (HuLC) Forum brought 12 university teams from across the United States to Huntsville, Alabama, near the agency’s Marshall Space Flight Center, to showcase their innovative concepts for addressing the complex issue of managing lunar dust. The 12 finalists, selected in March 2024, presented their final presentations to a panel of NASA and industry experts from NASA’s Human Landing Systems Program at the HuLC Forum in Huntsville June 25-27. NASA’s lunar exploration campaign Artemis is working to send the first woman, first person of color, and first international partner astronaut to the Moon and establish long-term lunar science and exploration capabilities. Dust mitigation during landing is one of the key challenges NASA and its Artemis partners will have to address in exploring the lunar South Pole region and establishing a long-term human presence on the Moon. Participants in the 2024 Human Lander Challenge developed proposed systems-level solutions that could be potentially implemented within the next 3-5 years to manage or prevent clouds of dust – called lunar plume surface interaction – that form as a spacecraft touches down on the Moon. NASA announced the University of Michigan team, with their project titled, “ARC-LIGHT: Algorithm for Robust Characterization of Lunar Surface Imaging for Ground Hazards and Trajectory” as the selected overall winner and recipient of a $10,000 award June 27. 12 university teams gathered in Huntsville, Alabama, near NASA’s Marshall Space Flight Center, June 25-27 to participate in the final round of NASA’s 2024 Human Lander Challenge (HuLC) Forum.NASA/Ken Hall The University of Illinois, Urbana-Champaign took second place and a $5,000 award with their project, “HINDER: Holistic Integration of Navigational Dynamics for Erosion Reduction,” followed by University of Colorado Boulder for their project, “Lunar Surface Assessment Tool (LSAT): A Simulation of Lunar Dust Dynamics for Risk Analysis,” and a $3,000 award. “Managing and reducing the threat of lunar dust is a formidable challenge to NASA and we are committed to real solutions for our long long-term presence on the Moon’s surface,” said Don Krupp, associate program manager for the HLS Program at Marshall. “A key part of NASA’s mission is to build the next generation of explorers and expand our partnerships across commercial industry and the academic community to advance HLS technologies, concepts, and approaches. The Human Lander Challenge is a great example of our unique partnership with the academic community as they help provide innovative and real solutions to the unique risks and challenges of returning to the Moon.” Two teams received the excellence in systems engineering award: Texas A&M University, “Synthetic Orbital Landing Area for Crater Elimination (SOLACE) Embry-Riddle Aeronautical University, Prescott, “Plume Additive for Reducing Surface Ejecta and Cratering (PARSEC) NASA selected the University of Michigan as the overall winner of NASA’s 2024 Human Lander Challenge (HuLC) Forum June 27. NASA/Ken Hall “The caliber of solutions presented by the finalist teams to address the challenges of lunar-plume surface interaction is truly commendable,” said Esther Lee, HuLC judging panel chair and aerospace engineer at NASA’s Langley Research Center in Hampton, Virginia. “Witnessing the development of these concepts is an exciting glimpse into the promising future of aerospace leadership. It’s inspiring to see so many brilliant minds coming together to solve the challenges of lunar landings and exploration. We may all come from different educational backgrounds, but our shared passion for space unites us.” Student and faculty advisor participants had the opportunity to network and interact with NASA and industry subject matter experts who are actively working on NASA’s Human Landing System capabilities giving participants a unique insight to careers and operations that further the Agency’s mission of human space exploration. NASA’s Human Lander Challenge is sponsored by Human Landing System Program and managed by the National Institute of Aerospace. For more information about NASA Exploration Systems Development Mission Directorate, please visit: https://www.nasa.gov/exploration-systems-development-mission-directorate/ News Media Contact Corinne Beckinger Marshall Space Flight Center, Huntsville, Ala. 256.544.0034 corinne.m.beckinger@nasa.gov View the full article
-
NASA/JPL-Caltech This labyrinth – with a silhouette of the fictional detective Sherlock Holmes at its center – is used as a calibration target for the cameras and laser that are part of SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals), one of the instruments aboard NASA’s Perseverance Mars rover. The image was captured by the Autofocus and Context Imager on SHERLOC on May 11, 2024, as the rover team sought to confirm it had successfully addressed an issue with a stuck lens cover. The Perseverance rover searches for signs of ancient microbial life, to advance NASA’s quest to explore the past habitability of Mars. The rover is collecting core samples of Martian rock and soil (broken rock and soil), for potential pickup by a future mission that would bring them to Earth for detailed study. Image Credit: NASA/JPL-Caltech View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) The Bronco Space team assembles its Bronco Ember technology, which uses a short-wave infrared camera with AI to improve early wildfire detection.Credit: Bronco Space NASA’s public competitions can catalyze big changes – not just for the agency but also for participants. Bronco Space, the CubeSat laboratory at California State Polytechnic University in Pomona, California, matured more than just space technology as a result of winning funds from NASA’s TechLeap Prize competition. It grew from its roots in a broom closet to a newly built lab on campus, expanding its capacity to mature space technologies long into the future. The TechLeap Prize seeks to rapidly identify and develop space technologies through a series of challenges that each address a specific technology need for NASA and the nation. In addition to a cash prize, winners receive access to a suborbital or orbital flight opportunity on a commercial flight platform. Bronco Space won $500,000 in the inaugural TechLeap Prize, Autonomous Observation Challenge, launched in 2021. The challenge sought small spacecraft technologies that could autonomously detect, locate, track, and collect data on transient events on Earth and beyond. The team, made up of both undergraduate and graduate students, developed and launched a wildfire detection system called Bronco Ember, which used a short-wave infrared camera with AI (artificial intelligence) to improve early wildfire detection. Zachary Gaines was an undergraduate student when he participated in the first challenge through TechLeap with Bronco Space. He has since graduated and now supervises the lab at Cal Poly Pomona. Gaines notes how the prize gave the team flexibility to invest in their lab and expand the university’s technology development and maturation capabilities. “Because TechLeap gave us prize money rather than a grant, we had the freedom to invest those funds,” said Gaines. “If we want to make a real-world impact, which we always want to do, we needed a real lab with equipment. Thanks to TechLeap, we now have space in an innovation village right outside of campus.” In 2022, Gaines was also involved in Bronco Space’s second time participating in TechLeap as part of the first Nighttime Precision Landing Challenge. The competition sought sensing systems to detect surface hazards from at least 250 meters high and process the data in real-time to generate a terrain map suitable for a spacecraft to land safely in the dark. As one of three winners eligible to receive up to $650,000 each, Bronco Space developed a system using a light projector to create an initial geometry map for landing. The system then uses LIDAR (light detection and ranging) along with advances in computer vision, machine learning, robotics, and computing to generate a map that reconstructs lunar terrain. A demo of the 3D digital “twin” app created by PRISM Intelligence for NASA’s Entrepreneurs Challenge.Credit: Bronco Space From the experience with TechLeap, Gaines and other team members formed the small business Pegasus Intelligence and Space, now PRISM Intelligence, and participated in another challenge – NASA’s Entrepreneurs Challenge. This competition seeks the development and commercialization of lunar payloads and climate science through an entrepreneurial and venture lens to advance the Agency’s science exploration goals. The company’s technology, also called PRISM, is a 3D digital map of the world that uses AI to make the “twin” world searchable. The challenge encouraged Gaines and the PRISM team to bridge the gap between available data and consumer end-users. PRISM was a Round 2 winner of the challenge, receiving a share of the $1 million prize as well as exposure to external funders and investors. Gaines traces the success of PRISM back to his first TechLeap experience: “The company wouldn’t have happened if we hadn’t done TechLeap. It helped me understand how to develop technologies for industry.” The company and the university continue to secure NASA support. In December 2023, Cal Poly Pomona was selected to receive a two-year funded cooperative agreement through NASA’s University SmallSat Technology Partnership. “When people invest in your ideas and continue to support them, they help you get smarter and increase your understanding of people’s needs,” said Gaines. “Building technologies with the goal of a real-world impact is really motivating.” Members of Bronco Space developed a sensing system that generates a map for precise spacecraft landing as part of NASA’s second TechLeap competition.Credit: Bronco SpaceView the full article
-
Technological innovations make headlines every day, and NASA’s In Space Production Applications (InSPA) Portfolio of awards are driving these innovations into the future. InSPA awards help U.S. companies demonstrate in-space manufacturing of their products and move them to market, propelling U.S. industry toward the development of a sustainable, scalable, and profitable non-NASA demand for services and products manufactured in the microgravity environment of low Earth orbit for use on Earth. Latest News: A Meta-Analysis of Semiconductor Materials Fabricated in Microgravity (June 26, 2024) ISSRDC Announces “Steps to Space” Session to Educate Future Researchers (June 27, 2024) Innovation in Focus: Technology Development (June 13, 2024) Optical Fiber Production – Science in Space: March 2024 (March 25, 2024) ISS National Lab Releases In Space Production Applications Funding Opportunity (March 6, 2024) NASA Aims to Boost In Space Production Applications (May 15, 2023) White Paper: The Benefits of Semiconductor Manufacturing in Low-Earth Orbit for Terrestrial Use (November 9, 2023) Station InSPA: The Next Industrial Revolution? (September 1, 2022) Keep Exploring Discover More Topics In Space Production Applications Low Earth Orbit Economy Opportunities and Information for Researchers Latest News from Space Station Research View the full article
-
2 min read NASA@ My Library and Partners Engage Millions in Eclipse Training and Preparation The Space Science Institute, with funding from the NASA Science Mission Directorate and Gordon and Betty Moore Foundation, provided unprecedented training, support, and supplies to 15,000 libraries in the U.S. and territories in support of public engagement during the 2023 and 2024 eclipses. From September 2022 to September 2024, these efforts included: Co-development efforts with 3 NASA@ My Library Partner Libraries in the “Square of Awesome” (where both the total and annular eclipse crossed) led to the distribution of 50 NASA@ My Library Solar Science Kits to libraries with a high percentage of Spanish speaking patrons. Over 6 million solar viewers distributed to approximately 15,000 public libraries (with some school libraries included), distributed to every US state and territory. Over 2,000 in-person workshop attendees at 78 in-person solar science workshops in almost every state and territory Final workshops scheduled for Hawaii (4 islands) and American Samoa A total of 217 Solar Eclipse Activities for Libraries (SEAL) Solar Science Kits distributed to State Libraries Over 49,062 programs held at public libraries reaching more than 2.8 million patrons One public library staff member had this to say: “People who haven’t been into the library for 20+ years came in to get glasses, and we had a lot of new library cards generated in late March. Our door counts were over pre-pandemic for the first time since 2019. Thank you for making this possible!” The NASA@ My Library project is supported by NASA under cooperative agreement award number NNX16AE30A and is part of NASA’s Science Activation Portfolio. Learn more about how Science Activation connects NASA science experts, real content, and experiences with community leaders to do science in ways that activate minds and promote deeper understanding of our world and beyond: https://science.nasa.gov/learn Students celebrate the partial solar eclipse in April in Los Angeles, with glasses and programs provided by the Los Angeles Public Library System. LA Unified School District Share Details Last Updated Jun 28, 2024 Editor NASA Science Editorial Team Related Terms 2023 Solar Eclipse 2024 Solar Eclipse Earth Science For Kids and Students Heliophysics Science Activation Science Mission Directorate Explore More 1 min read An Eclipse Megamovie Megastar Article 2 hours ago 2 min read Hubble Examines an Active Galaxy Near the Lion’s Heart Article 5 hours ago 2 min read NASA eClips Engages Families at 2024 STEM Community Day Article 1 day ago Keep Exploring Discover More Topics From NASA James Webb Space Telescope Webb is the premier observatory of the next decade, serving thousands of astronomers worldwide. It studies every phase in the… Perseverance Rover This rover and its aerial sidekick were assigned to study the geology of Mars and seek signs of ancient microbial… Parker Solar Probe On a mission to “touch the Sun,” NASA’s Parker Solar Probe became the first spacecraft to fly through the corona… Juno NASA’s Juno spacecraft entered orbit around Jupiter in 2016, the first explorer to peer below the planet’s dense clouds to… View the full article
-
1 Min Read An Eclipse Megamovie Megastar Nasmus Nazir’s High Dynamic Range image, created with processed photographs of the Sun’s corona taken during the total solare eclipse on April 8th, 2024. Nazmus “Naz” Nasir is a software engineer by day, and an astrophotographer by night….and sometimes by day as well! This April, Naz participated in NASA’s Eclipse Megamovie 2024 project, photographing the total solar eclipse. He posted online a spectacular video composed of stabilized and aligned photographs of the sun taken during totality. The video includes links to tutorials Naz created to teach viewers the techniques he used. “I have had an interest in astronomy since childhood,” Naz says on his website, Naztronomy. “Until recently, I was unable to pursue my dreams of being an astronomer. But now, I have my own telescope which allows me to view the heavens like never before.” We hope you’ll share your eclipse photographs and videos like Naz has done. Eclipse Megamovie will be accepting photographs from the April 8th solar eclipse again in June, so if you have a photograph of the eclipse, please send it in! Your photographs will help us investigate the secret lives of solar jets and plasma plumes. Facebook logo @DoNASAScience @DoNASAScience Share Details Last Updated Jun 28, 2024 Related Terms Citizen Science Heliophysics Explore More 2 min read NASA eClips Engages Families at 2024 STEM Community Day Article 23 hours ago 5 min read Alphabet Soup: NASA’s GOLD Finds Surprising C, X Shapes in Atmosphere Article 23 hours ago 2 min read Happy Birthday, Redshift Wrangler! Article 1 week ago View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) View of the Nova-C landing area near Malapert A in the South Pole region of the Moon. North is to the right. Taken by LROC (Lunar Reconnaissance Orbiter Camera) NAC (Narrow Angle Camera).NASA/GSFC/Arizona State University NASA has released two white papers associated with the agency’s Moon to Mars architecture efforts. The papers, one on lunar mobility drivers and needs, and one on lunar surface cargo, detail NASA’s latest thinking on specific areas of its lunar exploration strategy. While NASA has established a yearly cadence of releasing new documents associated with its Moon to Mars architecture, the agency occasionally releases mid-cycle findings to share essential information in areas of interest for its stakeholders. “Lunar Mobility Drivers and Needs” discusses the need to move cargo and assets on the lunar surface, from landing sites to points of use, and some of the factors that will significantly impact mobility systems. “Lunar Surface Cargo” analyses some of the current projected needs — and identifies current capability gaps — for the transportation of cargo to the lunar surface. The Moon to Mars architecture approach incorporates feedback from U.S. industry, academia, international partners, and the NASA workforce. The agency typically releases a series of technical documents at the end of its annual analysis cycle, including an update of the Architecture Definition Document and white papers that elaborate on frequently raised topics. Under NASA’s Artemis campaign, the agency will establish the foundation for long-term scientific exploration at the Moon, land the first woman, first person of color, and its first international partner astronaut on the lunar surface, and prepare for human expeditions to Mars for the benefit of all. You can find all of NASA’s Moon to Mars architecture documents at: https://www.nasa.gov/moontomarsarchitecture Share Details Last Updated Jun 28, 2024 Related TermsHumans in Space Explore More 2 min read Unity in Orbit: Astronauts Soar with Pride Aboard Station Article 3 days ago 5 min read Six Adapters for Crewed Artemis Flights Tested, Built at NASA Marshall Article 3 days ago 5 min read Lakita Lowe: Leading Space Commercialization Innovations and Fostering STEM Engagement Article 2 weeks ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article
-
2 min read Hubble Examines an Active Galaxy Near the Lion’s Heart This NASA/ESA Hubble Space Telescope features the elliptical galaxy Messier 105. ESA/Hubble & NASA, C. Sarazin et al. It might appear featureless and unexciting at first glance, but NASA/ESA Hubble Space Telescope observations of this elliptical galaxy — known as Messier 105 — show that the stars near the galaxy’s center are moving very rapidly. Astronomers have concluded that these stars are zooming around a supermassive black hole with an estimated mass of 200 million Suns! This black hole releases huge amounts of energy as it consumes matter falling into it, making the system an active galactic nucleus that causes the galaxy’s center to shine far brighter than its surroundings. Hubble also surprised astronomers by revealing a few young stars and clusters in Messier 105, a galaxy thought to be “dead” and incapable of star formation. Astronomers now think that Messier 105 forms roughly one Sun-like star every 10,000 years. Astronomers also spotted star-forming activity in a vast ring of hydrogen gas encircling both Messier 105 and its closest neighbor, the lenticular galaxy NGC 3384. Discovered in 1781, Messier 105 lies about 30 million light-years away in the constellation of Leo (The Lion) and is the brightest elliptical galaxy within the Leo I galaxy group. Text Credit: European Space Agency (ESA) Download the image Explore More Hubble Space Telescope Hubble’s Galaxies Hubble’s Messier Catalog: Messier 105 Facebook logo @NASAHubble @NASAHubble Instagram logo @NASAHubble Media Contact: Claire Andreoli NASA’s Goddard Space Flight Center, Greenbelt, MD claire.andreoli@nasa.gov Share Details Last Updated Jun 27, 2024 Editor Andrea Gianopoulos Location NASA Goddard Space Flight Center Related Terms Astrophysics Astrophysics Division Elliptical Galaxies Galaxies Galaxies, Stars, & Black Holes Goddard Space Flight Center Hubble Space Telescope Missions The Universe Keep Exploring Explore More With Hubble Hubble Space Telescope Since its 1990 launch, the Hubble Space Telescope has changed our fundamental understanding of the universe. What Did Hubble See on Your Birthday? Name That Nebula Hubble E-books View the full article
-
Curiosity Navigation Curiosity Mission Overview Where is Curiosity? Mission Updates Science Overview Instruments Highlights Exploration Goals News and Features Multimedia Curiosity Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read Sols 4226-4228: A Powerful Balancing Act NASA’s Mars rover Curiosity acquired this image about 10 inches (25 centimeters) from the “Loch Leven” target using its Mars Hand Lens Imager (MAHLI) close-up camera, located on the turret at the end of the rover’s robotic arm, in daylight on June 16, 2024, sol 4216 (or Martian day 4,216) of the Mars Science Laboratory Mission, at 05:12:12 UTC. Earth planning date: Tuesday, June 25, 2024 As documented in a previous blog last week, we continue to juggle power constraints as we focus on analyzing our newest drilled sample on Mars: “Mammoth Lakes 2.” Today, the star of the show is a planned dropoff to SAM (Sample Analysis at Mars instrument suite) and evolved gas analysis of the drill sample. This activity requires significant power so the team had to be judicious in planning other science observations and balancing the power needs of the different activities. While the team eagerly awaits the outcome of the SAM and CheMin (Chemistry and Mineralogy X-Ray Diffraction instrument) analyses of Mammoth Lakes 2, we continue to acquire other observations in this fascinating area that will assist in our interpretations of the mineralogical data. ChemCam (the Chemistry and Camera instrument) will fire its laser at the “Loch Leven” target to get more chemical data on a target that was previously analyzed by APXS (the Alpha Particle X-Ray Spectrometer). “Loch Leven” is an example of gray material that rims the Mammoth Lakes drill block. The remote imaging capabilities of the ChemCam instrument will also be utilized to acquire a mosaic of a nearby area with interesting lighter- and darker-toned patches within the exposed rocks. Mastcam (Mast camera, for color stills and video) will document the ChemCam “Loch Leven” target and image the Mammoth Lakes 2 drill hole and surrounding fines to monitor any changes resulting from wind. We will also acquire extensions to two previous Mastcam mosaics: “Camp Four” and “Falls Ridge.” To continue monitoring atmospheric conditions, the team also planned a Navcam (grayscale, stereoscopic Navigation cameras) large dust devil survey and Mastcam tau observation, an overhead image to measure dust in the atmosphere above Curiosity. Standard DAN (Dynamic Albedo of Neutrons instrument), REMS (Rover Environmental Monitoring Station), and RAD (Radiation Assessment Detector) activities round out the plan. Written by Lucy Thompson, Planetary Geologist at University of New Brunswick Share Details Last Updated Jun 27, 2024 Related Terms Blogs Explore More 2 min read Interesting Rock Textures Galore at Bright Angel Article 48 mins ago 2 min read Sol 4225: Sliding Down Horsetail Falls Article 2 days ago 3 min read Sols 4222-4224: A Particularly Prickly Power Puzzle Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars… All Mars Resources Rover Basics Mars Exploration Science Goals View the full article
-
Perseverance Perseverance Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Science Overview Objectives Instruments Highlights Exploration Goals News and Features Multimedia Perseverance Raw Images Mars Resources Mars Missions Mars Sample Return Mars Perseverance Rover Mars Curiosity Rover MAVEN Mars Reconnaissance Orbiter Mars Odyssey More Mars Missions All Planets Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune Pluto & Dwarf Planets 2 min read Interesting Rock Textures Galore at Bright Angel NASA’s Mars Perseverance rover acquired this image using its Right Mastcam-Z camera. Mastcam-Z is a pair of cameras located high on the rover’s mast. This image was acquired on June 10, 2024 (Sol 1175, or Martian day 1,175 of the Mars 2020 mission) at the local mean solar time of 14:04:57. Upon the rover’s arrival at Bright Angel, it was so exciting to see all the interesting features in the rocks of this interval! In particular, these rocks contain an abundance of veins and nodules. Veins are linear features containing mineral crystals that often form thin plates or sheets that cut through the rocks and across other veins. Veins are often more resistant to erosion than the rocks they are found in so they stand out in raised relief. Nodules are small, rounded protrusions in the rocks. Nodules are often sites of mineral formation distinct from the surrounding rock. Veins and nodules form when water flows through a rock, and minerals crystallize from this water in cracks and empty spaces within the rock. Features like this were previously observed by Perseverance during its exploration of the sedimentary rocks of the western fan, particularly during the “Fan Front Campaign” at Hogwallow Flats. However, these features have been sparse in the margin unit. The omnipresence of veins and nodules in the rocks of Bright Angel is truly striking. We hope to get more data on these interesting features over the next few weeks because they may signify intense water-rock interaction at this site! Written by Hemani Kalucha, Ph.D. student at Caltech Share Details Last Updated Jun 27, 2024 Related Terms Blogs Explore More 2 min read Sols 4226-4228: A Powerful Balancing Act Article 27 mins ago 2 min read Sol 4225: Sliding Down Horsetail Falls Article 2 days ago 3 min read Sols 4222-4224: A Particularly Prickly Power Puzzle Article 6 days ago Keep Exploring Discover More Topics From NASA Mars Mars is no place for the faint-hearted. It’s dry, rocky, and bitter cold. The fourth planet from the Sun, Mars… All Mars Resources Rover Basics Mars Exploration Science Goals View the full article
-
NASA logo Leadership from NASA’s International Space Station and Commercial Crew Programs, as well as Boeing, will participate in a media teleconference at 2 p.m. EDT Friday, June 28. NASA and Boeing continue to evaluate Starliner’s propulsion system performance before returning from the International Space Station as part of the agency’s Crew Flight Test. The agency also will discuss recent station operations. Audio of the call will stream live on the agency’s website: https://www.nasa.gov/nasatv Participants include: Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate Steve Stich, manager, NASA’s Commercial Crew Program Bill Spetch, operations integration manager, NASA’s International Space Station Program Emily Nelson, chief flight director, NASA’s Johnson Space Center Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing Media interested in participating must contact the newsroom at NASA’s Johnson Space Center in Houston no later than one hour prior to the start of the call at 281-483-5111 or jsccommu@mail.nasa.gov. A copy of NASA’s media accreditation policy is online. As part of NASA’s Commercial Crew Program, NASA astronauts Butch Wilmore and Suni Williams lifted off at 10:52 a.m., June 5, on a United Launch Alliance Atlas V rocket from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida on an end-to-end test of the Starliner system. The crew docked to the forward-facing port of the station’s Harmony module at 1:34 p.m., June 6. In its 24th year of continuously crewed operations, the space station is a unique scientific platform where crew members conduct experiments across multiple disciplines of research, including Earth and space science, biology, human physiology, physical sciences, and technology demonstrations not possible on Earth. Crews living aboard station are the hands of thousands of researchers on the ground, having conducted more than 3,300 experiments in microgravity. Station is the cornerstone of space commerce, from commercial crew and cargo partnerships to commercial research and national lab research, and lessons learned aboard the International Space Station are helping to pass the torch to future commercial stations. For more information about the International Space Station, visit: https://www.nasa.gov/station -end- Josh Finch / Jimi Russell Headquarters, Washington 202-358-1100 joshua.a.finch@nasa.gov / james.j.russell@nasa.gov Danielle Sempsrott / Stephanie Plucinsky Kennedy Space Center, Florida 321-867-2468 danielle.c.sempsrott@nasa.gov / stephanie.n.plucinsky@nasa.gov Leah Cheshier / Sandra Jones Johnson Space Center, Houston 281-483-5111 leah.d.cheshier@nasa.gov / sandra.p.jones@nasa.gov View the full article
-
Credit: NASA NASA has awarded a contract to Leidos, Inc. of Reston, Virginia, to provide mission support for the agency’s International Space Station Program, Artemis campaign, and more. The Cargo Mission Contract 4 has a total potential value of $476.5 million, with a base period from Oct. 1, 2024, to Sept. 30, 2026, followed by three option periods. The contract includes a cost-plus-fixed-fee core with an indefinite-delivery/indefinite-quality component and the capability to issue cost-plus-fixed-fee or firm-fixed-price task orders. The place of performance will be at a Leidos facility in Webster, Texas. Under the contract, Leidos will provide analytical and physical processing for NASA missions, as well as perform engineering, maintenance, and operations support. The contractor also develops, fabricates, and certifies hardware as required to support mission objectives. Lastly, Leidos will be responsible for implementing the space station and Artemis manifest requirements for launch, return, and disposal, as well as support logistical and integration functions to maintain adequate crew provisions and supplies to sustain human presence in space. Learn more about NASA and agency programs at: https://www.nasa.gov -end- Abbey Donaldson Headquarters, Washington 200-358-1600 Abbey.a.donaldson@nasa.gov Share Details Last Updated Jun 27, 2024 LocationNASA Headquarters Related TermsInternational Space Station (ISS)ArtemisISS ResearchSpace Operations Mission Directorate View the full article
-
Katie Burlingame is an ETHOS (Environmental and Thermal Operating Systems) flight controller and instructor in the Flight Operations Directorate supporting the International Space Station. Burlingame trains astronauts and flight controllers on the International Space Station’s environmental control systems, internal thermal control systems, and emergency response. Burlingame shares about their path to NASA, what Pride Month means to them, and more. Read on to learn more! Where are you from? My dad was in the Coast Guard, so I lived in a few different places growing up, mostly along the East Coast and Southeast. I lived near Orlando, Florida in high school, so that’s usually what I’ll go with for a short answer. Tell us about your role at NASA. I execute and plan operations in the Mission Control Center. I train flight controllers and astronauts, specifically for the International Space Station’s environmental control systems, internal thermal control systems, and emergency response. Katie Burlingame demonstrates how to use new emergency response hardware during Starliner-1 crew training. How would you describe your job to family or friends who may not be familiar with NASA? For anyone who has seen Apollo 13, I usually say I’m one of the people who figures out what to do in response to “Houston, we have a problem.” Environmental control systems are basically what makes sure there is clean air to breathe and water to drink. Internal thermal control systems are the water lines running throughout the space station that keeps all the computers and other hardware cool. As far as training goes, the biggest part is training on emergency response, so what to do if there is a fire on the space station or if you start losing air overboard due to a hole in the structure. We have life-size replicas of the space station and simulators that can replicate all its data. This allows us to create opportunities for crew and new flight controllers to practice responding in the situations they could experience aboard the station – sometimes I even get to use a smoke machine! How long have you been working for NASA? I have been with the agency for 11 years. What advice would you give to young individuals aspiring to work in the space industry or at NASA? Follow the things that you find most interesting. We need people with all kinds of skills in the space industry, so don’t feel like you have to stick to the most traditional path. What was your path to NASA? In college, I worked in a lab that built small satellites, which led me to opportunities to participate in the reduced gravity aircraft program and internships at NASA’s Johnson Space Center in Houston. I got a master’s degree in biomedical engineering and was originally planning to work on medical devices after college. While at my first job, the industry I was in was experiencing a wave of layoffs, so when I heard about an opportunity back at Johnson, I decided to apply and have been here ever since. Katie Burlingame discusses ammonia measurement hardware with Roscosmos cosmonaut Anna Kikina during NASA’s SpaceX Crew-5 emergency training in the SVMF (Space Vehicle Mockup Facility). Is there someone in the space, aerospace, or science industry that has motivated or inspired you to work for the space program? Or someone you discovered while working for NASA who inspires you? I’m inspired by the teammates I get to work with every day. Seeing the different skills that people bring to the table, how they handle difficult situations, and come up with creative solutions impresses me and motivates me to keep growing and learning. What does diversity, equity, and inclusion mean to you? How does it guide you in your work at NASA? To me, diversity has a lot of aspects because it encompasses all of the things that contribute to someone’s unique experience and perspective. Spaceflight is hard, and solving tough problems requires creative and integrated solutions, which requires teams with a diversity of thought, skills, perspectives, and experiences. It means ensuring that NASA is comprised of a workforce that reflects the full spectrum of the country we represent, and then making sure that everyone has the resources they need to thrive and are part of a community that welcomes and respects their full selves. I try to keep this as a guiding priority throughout my work, in day-to-day things like the language and assumptions I make when talking with people and in looking for and advocating for larger systemic ways to make improvements. Having a diverse, equitable, and inclusive workplace is the just and fair thing to do, but it also helps us do the best work to accomplish NASA’s missions. Katie Burlingame with other ETHOS (Environmental and Thermal Operating Systems) instructors outside the International Space Station mockups in the SVMF. What is your favorite NASA memory? I had the opportunity to work on several aspects of the first U.S. crewed vehicle missions. Working with NASA, commercial partners, and the international partner teams to figure out how to best execute training and emergency response was an interesting technical problem and it is great to see all of the things we worked on being used regularly now. What do you love sharing about station? What’s important to get across to general audiences to help them understand the benefits to life on Earth? There have been people continuously on the International Space Station for more than 23 years! That’s amazing as a technical achievement, but also an example of successful and sustained international partnership. What does Pride Month mean to you? Pride Month is a celebration of the LGBTQIA+ community and the progress that has been made. It’s also a call to action for allies and community members to protect and support LGBTQIA+ community members and their rights, especially the most marginalized. What does it mean to embrace LGBTQIA+ pride? To me, embracing pride is embracing the understanding that we are each worthy of honor and respect as we are and creating an environment where others can do the same. Katie Burlingame out for a bike ride west of Houston. Who are some of your LGBTQIA+ role models? My role models are all of the advocates for LGBTQIA+ rights, past and present, and everyone who shows up in small and big ways as themselves. What are your hobbies/things you enjoy outside of work? I like going to see plays and musicals and exploring Houston’s restaurants, coffee shops, and bookstores. When the Houston heat isn’t too bad, I like exploring parks, riding my bike, and doing triathlons (very slowly). Day launch or night launch? Night launch! Favorite space movie? I don’t have a strong favorite space movie, but my current favorite space books are “Project Hail Mary” by Andy Weir and “The Long Way to a Small, Angry Planet” by Becky Chambers. NASA “worm” or “meatball” logo? Meatball. Every day, we’re conducting exciting research aboard our orbiting laboratory that will help us explore further into space and bring benefits back to people on Earth. You can keep up with the latest news, videos, and pictures about space station science on the Station Research & Technology news page. It’s a curated hub of space station research digital media from Johnson and other centers and space agencies. Sign up for our weekly email newsletter to get the updates delivered directly to you. Follow updates on social media at @ISS_Research on Twitter, and on the space station accounts on Facebook and Instagram. View the full article
-
2 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA test pilot Wayne Ringelberg sits in the air taxi virtual reality flight simulator during a test at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2024.NASA/Steve Freeman A new custom virtual reality flight simulator built by NASA researchers will allow them to explore how passengers experience air taxi rides and collect data that will help designers create new aircraft with passenger comfort in mind. Wayne Ringelberg, a test pilot at NASA’s Armstrong Flight Research Center in Edwards, California, recently completed a series of test rides in the new simulator to help the team make adjustments before other users are involved for the first research study later this year. “This project is leveraging our research and test pilot aircrew with vertical lift experience to validate the safety and accuracy of the lab in preparation for test subject evaluations,” said Ringelberg. “The experiments in the ride quality lab will inform the advanced air mobility community about the acceptability of the motions these aircraft could make, so the general public is more likely to adopt the new technology.” Ringelberg was secured into the seat on top of the simulator’s platform, wearing a virtual reality headset and headphones. His simulated air taxi ride started with a takeoff from a conceptual vertiport on top of a parking garage in downtown San Francisco, California, constructed by NASA engineers in the virtual world. As the programed ride took him through downtown San Francisco and landed at another vertiport on top of a skyscraper, Ringelberg evaluated the realism and consistency of the simulation’s visual, motion, and audio cues. He then provided feedback to the research team. NASA researchers Curt Hanson (background) and Saravanakumaar Ramia (foreground) control the air taxi virtual reality flight simulator from computers during a test at NASA’s Armstrong Flight Research Center in Edwards, California, in March 2024.NASA/Steve Freeman With pilot checkouts complete, NASA researchers will conduct a series of human subject research studies over the next four years. The goal is to gather information that will help the industry better understand what makes flying in an air taxi comfortable and enjoyable for customers. This simulator is the centerpiece of NASA Armstrong’s virtual reality passenger ride quality laboratory. The laboratory combines virtual reality visuals, physical motion cues, and spatialized rotor sounds to create an immersive air taxi passenger experience. The work is managed by the Revolutionary Vertical Lift Technology project under NASA’s Advanced Air Vehicles Program in support of NASA’s Advanced Air Mobility mission, which seeks to deliver data to guide the industry’s development of electric air taxis and drones. Share Details Last Updated Jun 27, 2024 EditorDede DiniusContactTeresa Whitingteresa.whiting@nasa.govLocationArmstrong Flight Research Center Related TermsArmstrong Flight Research CenterAdvanced Air MobilityAdvanced Air Vehicles ProgramAeronauticsAeronautics Research Mission DirectorateAmes Research CenterDrones & YouFlight InnovationGlenn Research CenterLangley Research CenterRevolutionary Vertical Lift Technology Explore More 5 min read Langley Celebrates Pride Month: Derek Bramble Article 2 hours ago 4 min read NASA Parachute Sensor Testing Could Make EPIC Mars Landings Article 3 hours ago 1 min read Liftoff! Redesigned NASA Ames Visitor Center Engages Kids, Families Article 3 hours ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Aeronautics Advanced Air Mobility Mission NASA’s Advanced Air Mobility (AAM) research will transform our communities by bringing the movement of people and goods off the ground, on… Armstrong Programs & Projects View the full article
-
Six of the seven members of the NASA Kennedy Space Center team recognized by the White House on Tuesday, June 25, 2024, during the Presidential Federal Sustainability Awards stand next to an electric vehicle (EV) charging station in front of Kennedy’s Central Campus Headquarters Building. Those members are, from left to right, center services division chief Gustavo Diaz, partnership development office chief Matthew Jimenez, then branch chief Gerald “Jay” Green, sustainability lead Lashanda Battle, transportation officer Melissa Coleman, and then transportation specialist Spencer Davis. This EV station is one of 28 installed on center through a partnership with local utility provider Florida Power & Light, allowing up to 56 electric vehicles to be charged at the same time. An additional 31 EV stations are planned at Kennedy by fall 2024, increasing the center’s vehicle charging capacity by up to 118 vehicles simultaneously once they’re operational.Photo credit: NASA/Kim Shiflett A team of seven NASA Kennedy employees was recognized by the White House for charging ahead with the expansion of the agency’s sustainable electric vehicle (EV) fleet at Kennedy Space Center. They did so at minimal cost to taxpayers while also offering zero emission EV charging for any workers and visitors willing to pay out of their pocket for the service. The employees received an honorable mention in the “Electrifying the Federal Fleet” category at the Presidential Federal Sustainability Awards for working with Florida Power & Light Company (FPL), the local utility provider, to deploy FPL EVolution EV chargers throughout the center. Three of them attended the June 25 award ceremony inside the Indian Treaty Room at the Dwight D. Eisenhower Executive Office Building in Washington, DC. NASA Kennedy’s first EV chargers were installed in August 2021, but the team’s efforts to add more increased after President Joe Biden issued Executive Order (EO) 14057 in December 2021, which mandates that federal agencies lead the way in creating an American electricity sector with no carbon pollution by the year 2035 and net-zero emissions throughout the economy by 2050. “The team found a way to help NASA take one step closer toward a future of net-zero carbon emissions,” said Janet Petro, director of the Florida spaceport. “We’re proud of how they created a model for other NASA centers and federal government agencies to follow, leaving a cleaner environment for all of us to enjoy.” The following employees were recognized, all of whom are part of NASA Kennedy’s Spaceport Integration and Services directorate or the Center Planning & Development Office: Gustavo Diaz, Center Services Division Chief Matthew Jimenez, Partnership Development Office Chief Gerald “Jay” Green, then Branch Chief Lisa Williams, then Deputy Chief of Logistics Lashanda Battle, Kennedy Sustainability Lead Melissa Coleman, Transportation Officer Spencer Davis, then Transportation Specialist The NASA Kennedy team worked closely with FPL to create a customized electrification plan for the center, including design coordination, installation, and operations management for the EV charging infrastructure. FPL installed 28 dual head charging stations, each of which can charge two vehicles at once, meaning that the center currently has the capacity to charge up to 56 electric vehicles at the same time. An additional 31 stations are scheduled to be operational at Kennedy by September 2024, increasing the center’s charging capacity by up to 118 vehicles simultaneously once they go online. The FPL EVolution chargers are in the parking lots of various facilities within Kennedy, including the Central Campus Headquarters Building, the Neil A. Armstrong Operations and Checkout Building, the Space Station Processing Facility, Operations Support Buildings I and II, and the Logistics Facility. Those locations were chosen by the NASA Kennedy team following consultations with Kennedy employees. “This partnership gives NASA Kennedy access to FPL’s charging infrastructure, saving the government about $1 million in construction costs,” said Maria Collura, director of NASA Kennedy’s Spaceport Integration and Services. “It also allowed Kennedy to replace 19 gas-powered vehicles in its fleet with electric models, making this a win-win for the American taxpayer and the environment.” Three of the seven NASA Kennedy Space Center team members recognized by the White House during the Presidential Federal Sustainability Awards ceremony on Tuesday, June 25, 2024, stand in front of the Dwight D. Eisenhower Executive Office Building in Washington, D.C. Those members are then transportation specialist Spencer Davis (top left), sustainability lead Lashanda Battle (center, holding honorable mention certificate), and partnership office chief Matthew Jimenez (top right). The Kennedy team crafted a partnership with local utility provider Florida Power & Light to create 59 electric vehicle charging stations on NASA’s Kennedy Space Center in Florida. Also in the photo are Denise Thaller (bottom left), deputy assistant administrator, NASA’s Office of Strategic Infrastructure, and Andrew Mayock (bottom right), Federal Chief Sustainability OfficerPhoto credit: Department of Interior/Tami Heilemann NASA Kennedy’s FPL EVolution workplace charging stations have been used over 16,000 times since May 2022, leading to a reduction in greenhouse gas emissions of nearly 230,000 kilograms and a gasoline savings of nearly 40,000 gallons. Personal vehicles make up most of those charging sessions, which users pay for before each charge, so the service comes at no additional cost to taxpayers. NASA Kennedy is the first of the agency’s centers to offer workplace EV charging for employees and visitors. The team which spearheaded that project is now working with other NASA centers interested in offering the same to their employees and visitors. To ensure proper use of the chargers and plan future agency-wide transportation efforts, the team collects data from all charging stations and reports it to NASA’s Agency Transportation Officer for inclusion in the yearly Fixing America’s Surface Transportation report submitted to the Department of Energy. EV chargers are just one way NASA Kennedy is implementing EO 14057’s mandate of zero emissions by 2035. The center also uses hybrid vehicles and alternative fuels such as E85 and biodiesel as part of its comprehensive approach to a cleaner environment. View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Derek Bramble is a HR Business Partner with NASA’s Langley Research Center. Over his 14-year career at NASA Langley, Bramble has served in a variety of mission and program support roles.NASA/Ryan Torrisi Derek Bramble has served in a variety of mission and program support roles over his 14-year career at NASA Langley. He currently serves as an HR Business Partner in LaRC’s Human Capital Office, where he works closely with a number of organizations across the Center providing them with strategic and operational HR support. Derek previously served as program support for NASA’s Small Business Innovation Research (SBIR) program where he supported the Center’s efforts to leverage SBIR funding for critical technology development. Prior to that, he served in LaRC’s Office of Procurement as a supporting Contract Specialist. He holds an MBA from the College of William & Mary and a Bachelors Degree in Communications/Journalism from the University of Miami. For the last 7 years, he’s served as co-Chair of the LEAG (LGBTQ+ Employee Alliance Group) ERG, where he’s worked with Center and Agency leadership to improve awareness of the issues facing the LGBTQ+ community at LaRC. Hailing from the great state of Maryland, he currently lives in Williamsburg, VA with his husband Mike, Siberian Husky Jaxon, and tabby cat CiCi. Who or what inspired you to choose your career and why? I sort of stumbled into my career at NASA. What started out as a contractor job 14 years ago has evolved and blossomed into a full blown CS career supporting the NASA workforce as an HR professional. My story goes to show that regardless of one’s background and skillsets, there’s a place for anyone and everyone at NASA and there’s considerable room to learn and grow here if you have the interest. What do you find most rewarding about working with NASA? The people and relationships. Most folks I encounter and work with here are super bright, accomplished, passionate individuals. Getting to know the people behind the Agency’s mission is a real treat and something I never take for granted. As impressive as NASA’s workforce is, I still am reminded that they’re humans with personal lives and hobbies and interests outside of work. It’s finding those little connection points and getting to know people on a somewhat personal level that makes my work and time here so rewarding. What do you enjoy doing outside of work? What don’t I enjoy doing outside of work is the more appropriate question! I’m pretty active in my downtime, and so I enjoy a variety of activities when not at work – my husband and I are avid boaters and enjoy exploring the local waterways of the Tidewater area. I’m also into wine, fitness, travel, craft cocktails, interior design, and helping craft my neighborhood’s electronic newsletters. What advice would you give to someone who might be interested in pursuing a career at NASA? To never limit yourself or think that you aren’t good enough for NASA. We work for an esteemed Agency, and its reputation precedes itself. While that’s got its advantages, I think it too often leads some folks out there to think they aren’t cut out for a career here when that couldn’t be further from the truth. It can be intimidating I realize, but we as the Agency’s workforce need to do better at bridging that gap for these folks. Use my career as an example. I started out 14 years ago as a support contractor and never thought I’d still fit in here all this time later. NASA is a special place, it’s a privilege to work here – but don’t for one second think it’s unattainable if you aren’t an aerospace engineer with perfect credentials from some top tier university. The Agency is more diverse and welcoming than that – and we need to do better at telling that story. How does your background contribute to your perspective and approach in your role at NASA? Experience and a sense of purpose drive my judgment and thought processes – I’m always applying that to how I do my job and accomplish my work. We are all unique creatures with super specific skillsets, experiences, judgments, interests, passions, thought processes, etc. I understand and appreciate diversity of thought and life experience, and truly believe that when working together and using those differently colored lenses we all have and applying them to a work challenge that really creative solutions can be designed and implemented. What does Pride month mean to you? While I do believe Pride is 365 days a year, the month of June is really a time to celebrate the LGBTQ+ community’s achievements toward equality while also spotlighting its ongoing challenges. Trans folks are facing record levels of legislation across the country that target their ability to live full and authentic lives. This legislation is also driving more public hatred and misunderstanding of the community than ever before. NASA has centers in some of these states that are openly hostile towards the trans community – what does that mean for some trans members of our very own workforce who are trying to live their lives and do their jobs? It’s critical that allies, both within and outside of the LGBTQ+ community, educate and advocate on behalf of all community members more than ever before – because today it might be trans folks who are targeted, but tomorrow it could be someone else. Progress is never a guarantee for any marginalized community – when they come for one of us, they can come for all of us. Facebook logo @NASALaRC @NASA_Langley Instagram logo @NASA_Langley Linkedin logo @NASA-Langley-Research-Center Explore More 4 min read NASA Parachute Sensor Testing Could Make EPIC Mars Landings Article 1 hour ago 4 min read Jake Cupani: Increasing Visibility in Data Science Article 2 days ago 3 min read Johnson Celebrates LGBTQI+ Pride Month: Eva Granger Article 3 days ago View the full article
-
4 min read Mapping the Red Planet with the Power of Open Science This image of Perseverance’s backshell sitting upright on the surface of Jezero Crater was collected from an altitude of 26 feet (8 meters) by NASA’s Ingenuity Mars Helicopter during its 26th flight at Mars on April 19, 2022. NASA/JPL-Caltech Mars rovers can only make exciting new discoveries thanks to human scientists making careful decisions about their next stop. The Mars 2020 mission is aimed at exploring the geology of Jezero Crater and seeking signs of ancient microbial life on Mars using the Perseverance rover. Scientists at NASA’s Jet Propulsion Laboratory (JPL) in Southern California used novel mapping techniques to direct both the rover and the flights of the Ingenuity helicopter, which rode to Mars on Perseverance — and they did it all with open-source tools. JPL mapping specialists Dr. Fred Calef III and Dr. Nathan Williams used geospatial analysis to help the scientific community and NASA science leadership select Jezero Crater as the landing site for Perseverance and Ingenuity. Before the vehicles arrived on Mars, they helped create maps of the terrain using data from orbiting satellites. “Maps and images are a common language between different people — scientists, engineers, and management,” Williams said. “They help make sure everyone’s on the same page moving forward, in a united front to achieve the best science that we can.” Maps and images are a common language between different people. Nathan Williams NASA JPL Geologist and Systems Engineer After the mission touched down on Mars in February 2021, the Ingenuity helicopter opportunistically scouted ahead to take photos. The team then generated more detailed maps from both rover and helicopter image data to help plan the Perseverance rover’s path and science investigations. To enable this full-scale mapping of Mars, Calef created the Multi-Mission Geographic Information System (MMGIS), an open-source web-based mapping interface. Online demos of the software, pre-loaded with Mars imagery taken from orbit, allow visitors to explore the paths of Perseverance, Ingenuity, and the Curiosity rover, a sister Mars mission that landed in 2012. This image of NASA’s Perseverance Mars rover at the rim of Belva Crater was taken by the agency’s Ingenuity Mars Helicopter during the rotorcraft’s 51st flight on April 22, 2023. The rover is in the upper left of the image, parked at a light-toned rocky outcrop. NASA/JPL-Caltech The open nature of the software was key to the mission’s success. “We have people literally all over the world who are working on the mission, and we need to be able to give them fast and quick access to software and data,” Calef said. MMGIS aimed to help people understand the full scope of Martian geography. By combining images from orbit and augmenting with images from Perseverance and Ingenuity, the JPL team allows researchers to zoom in to see individual boulders and zoom out to see all of Mars. This variety of viewpoints gives the team a sense of scale and context to properly understand the landscape around the Perseverance rover, and how to optimally achieve their science goals within the available terrain. This image of an area the Mars Perseverance rover team calls “Faillefeu” was captured by NASA’s Ingenuity Mars Helicopter during its 13th flight at Mars on Sept. 4, 2021. Images of the geologic feature were taken at the request of the Mars Perseverance rover science team, which was considering visiting the geologic feature during the first science campaign. NASA/JPL-Caltech The impact of the tools developed by the JPL team went beyond the Mars 2020 mission. The team wanted their software to help other researchers easily visualize their data without needing to be data visualization experts themselves. Thanks to this open-source approach, other teams have now used MMGIS to map Earth and other planetary bodies. In keeping with this open philosophy, the images taken by Perseverance and Ingenuity over the course of the Mars 2020 mission are freely available to the public. By sharing these data with the rest of the world, the results from the mission can be used to educate, inspire, and enable further research. It’s being able to share data between people … getting a higher order of science. Fred Calef NASA JPL Geologist and Data Scientist As Mars scientists look to the future, with the Perseverance rover team deploying even more advanced tools powered by AI, open science will pave the way for further exploration. JPL is now working on designs for potential future Mars helicopters that are far more capable and complex than Ingenuity. Payload mass, flight range, and affordability are at the forefront of their minds. Existing open-source tools will help address those concerns. Not only are open-source applications free to use, but the large amount of collaboration in creating and testing them means that they’re often highly reliable. Ultimately, the JPL team views its work as part of the cycle of open science, using open tools to make its job easier while also developing new features in the tools for others to use in the future. “Every mission is contributing back to the other missions and future missions in terms of new tools and techniques to develop,” Calef said. “It’s not just you working on something. It’s being able to share data between people … getting a higher order of science.” By Lauren Leese Web Content Strategist for the Office of the Chief Science Data Officer Share Details Last Updated Jun 27, 2024 Related Terms Open Science Explore More 4 min read NASA-IBM Collaboration Develops INDUS Large Language Models for Advanced Science Research Article 2 days ago 4 min read Marshall Research Scientist Enables Large-Scale Open Science Article 7 days ago 2 min read NASA’s Repository Supports Research of Commercial Astronaut Health Article 2 weeks ago Keep Exploring Discover More Topics From NASA Missions Humans in Space Climate Change Solar System View the full article
-
4 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Coby Asselin, from left, Adam Curry, and L. J. Hantsche set up the data acquisition systems used during testing of a senor to determine parachute canopy material strength at NASA’s Armstrong Flight Research Center in Edwards, California. The sensor tests seek to quantify the limits of the material to improve computer models and make more reliable supersonic parachutes.NASA/Genaro Vavuris Landing rovers and helicopters on Mars is a challenge. It’s an even bigger challenge when you don’t have enough information about how the parachutes are enduring strain during the descent to the surface. Researchers at NASA’s Armstrong Flight Research Center in Edwards, California, are experimenting with readily available, highly elastic sensors that can be fixed to a parachute during testing to provide the missing data. Knowing how the canopy material stretches during deployment can enhance safety and performance by quantifying the limits of the fabric and improving existing computer models for more reliable parachutes for tasks such as landing astronauts on Earth or delivering scientific instruments and payloads to Mars. This is the work Enhancing Parachutes by Instrumenting the Canopy, or EPIC, seeks to advance the ability to measure the strain on a parachute. “We are aiming to prove which sensors will work for determining the strain on parachute canopy material without compromising it,” said L.J. Hantsche, project manager. NASA’s Space Technology Mission Directorate funds the team’s work through the Early Career Initiative project. Starting with 50 potential sensor candidates, the team narrowed down and tested 10 kinds of different sensors, including commercially available and developmental sensors. The team selected the three most promising sensors for continued testing. Those include a silicone-based sensor that works by measuring a change in storage of electrical charge as the sensor is stretched. It is also easy to attach to data recording systems, Hantsche explained. The second sensor is a small, stretchable braided sensor that measures the change in electrical storage. The third sensor is made by printing with a metallic ink onto a thin and pliable plastic. The test team prepares a test fixture with a nylon fabric sample at NASA’s Armstrong Flight Research Center in Edwards, California. The fabric in the test fixture forms a bubble when pressure is applied to the silicone bladder underneath. A similar test can be performed with a sensor on the fabric to verify the sensor will work when stretched in three dimensions.NASA/Genaro Vavuris Pressure is applied to a test fixture with a nylon fabric sample until it fails at NASA’s Armstrong Flight Research Center in Edwards, California. The fabric in the test fixture forms a bubble when pressure is applied to the silicone bladder underneath. In this frame, the silicone bladder is visible underneath the torn fabric after it was inflated to failure. A similar test can be performed with a sensor on the fabric to verify the sensor will work when stretched in three dimensions.NASA/Genaro Vavuris Determining methods to bond each of the sensors to super thin and slippery canopy material was hard, Hantsche said. Once the team figured out how to attach the sensors to the fabric, they were ready to begin testing. “We started with uniaxial testing, where each end of the parachute material is secured and then pulled to failure,” she said. “The test is important because the stretching of the sensor causes its electrical response. Determining the correlation of strain and the sensor response when it is on the fabric is one of our main measurement goals.” This stage of testing was accomplished in partnership with NASA’s Jet Propulsion Laboratory in Pasadena, California. A high-speed version of this test, which simulates the speed of the parachute deployment, was performed at NASA’s Glenn Research Center in Cleveland. The team used a bubble test for the sensors, which simulates testing of a 3D parachute. It consists of the fabric sample and a silicone membrane sandwiched between a four-inch-diameter ring and the test structure. When it is pressurized from the inside, the silicone membrane expands the fabric and sensor into a bubble shape. The test is used to validate the sensor’s performance as it bends and is compared to the other test results. Erick Rossi De La Fuente, from left, John Rudy, L. J. Hantsche, Adam Curry, Jeff Howell, Coby Asselin, Benjamin Mayeux, and Paul Bean pose with a test fixture, material, sensor, and data acquisition systems at NASA’s Armstrong Flight Research Center in Edwards, California. The sensor tests seek to quantify the limits of the material to improve computer models and make more reliable supersonic parachutes.NASA/Genaro Vavuris With the EPIC project nearing completion, follow-on work could include temperature tests, developing the data acquisition system for flight, determining if the sensor can be packed with a parachute without adverse effects, and operating the system in flight. The EPIC team is also working with researchers at NASA’s Langley Research Center in Hampton, Virginia, to flight test their sensors later this year using the center’s drone test, which drops a capsule with a parachute. In addition, the EPIC team is partnering with the Entry Systems Modeling Group at NASA’s Ames Research Center in California’s Silicon Valley to propose an all-encompassing parachute project aimed at better understanding parachutes through modeling and test flights. The collaborative NASA project may result in better parachutes that are safer and more dependable for the approaching era of exploration. Share Details Last Updated Jun 27, 2024 Related TermsArmstrong Flight Research CenterAmes Research CenterGlenn Research CenterJet Propulsion LaboratoryLangley Research CenterSpace Technology Mission Directorate Explore More 1 min read Liftoff! Redesigned NASA Ames Visitor Center Engages Kids, Families Article 43 mins ago 5 min read NASA’s Mars Odyssey Captures Huge Volcano, Nears 100,000 Orbits Article 1 hour ago 5 min read Detective Work Enables Perseverance Team to Revive SHERLOC Instrument Article 22 hours ago Keep Exploring Discover More Topics From NASA Armstrong Flight Research Center Armstrong Programs & Projects Armstrong Technologies Armstrong Flight Research Center History View the full article
-
ESA/Hubble & NASA, J. Tan (Chal This NASA/ESA Hubble Space Telescope image presents a visually striking collection of interstellar gas and dust. Named RCW 7, the nebula is located just over 5,300 light-years from Earth in the constellation Puppis. Nebulae are areas rich in the raw material needed to form new stars. Under the influence of gravity, parts of these molecular clouds collapse until they coalesce into very young, developing stars, called protostars, which are still surrounded by spinning discs of leftover gas and dust. The protostars forming in RCW 7 are particularly massive, giving off strongly ionizing radiation and fierce stellar winds that transformed the nebula into a H II region. H II regions are filled with hydrogen ions — H I refers to a normal hydrogen atom, while H II is hydrogen that lost its electron making it an ion. Ultraviolet radiation from the massive protostars excites the hydrogen in the nebula, causing it to emit light that gives this nebula its soft pinkish glow. The Hubble data in this image came from the study of a particularly massive protostellar binary named IRAS 07299-1651, still in its glowing cocoon of gas in the curling clouds toward the top of the image. To expose this star and its siblings, astronomers used Hubble’s Wide Field Camera 3 in near-infrared light. The massive protostars in this image are brightest in ultraviolet light, but they emit plenty of infrared light too. Infrared light’s longer wavelength lets it pass through much of the gas and dust in the cloud allowing Hubble to capture it. Many of the larger-looking stars in this image are foreground stars that are not part of the nebula. Instead, they sit between the nebula and our solar system. The creation of an H II region marks the beginning of the end for a molecular cloud like RCW 7. Within only a few million years, radiation and winds from the massive stars will gradually disperse the nebula’s gas — even more so as the most massive stars come to the end of their lives in supernova explosions. New stars in this nebula will incorporate only a fraction of the nebula’s gas, the rest will spread throughout the galaxy to eventually form new molecular clouds. View the full article
-
Experienced spacewalkers, university students, flight controllers, and NASA team members at all stages of their career recently came together at Johnson Space Center’s Neutral Buoyancy Laboratory (NBL) for an anniversary celebration that looked to the future as much as the past. The Office of STEM Engagement’s Micro-g Neutral Buoyancy Experiment Design Teams (Micro-g NExT) marked a decade of inspiring the next generation of space explorers with four days of exciting hands-on experiences and events commemorating those who have shaped the annual challenge. Students pose at NASA Johnson’s Neutral Buoyancy Laboratory (NBL) before beginning test week with their projects that will benefit future Artemis missions. Credit: NASA/Bill Stafford From June 2-5, NASA welcomed 17 student teams from 13 U.S. colleges and universities to the NBL for a once-in-a-lifetime opportunity. The 87 students spent months designing and building devices or tools that could support lunar surface spacewalks and future Artemis missions, earning a chance to test their unique prototypes at the NBL. Teams chose from four design challenge options – create an anchoring device for a lunar flagpole, design a lunar mapbook, develop a lunar tool carrier, or create a target recognition system camera for post-landing search and rescue operations – and submitted technical proposals for Micro-g NExT staff to review in October 2023. The selected student teams were announced in November and introduced to their mentors in December. Those mentors provided continuous support and expertise as teams manufactured their prototypes, submitted their preliminary design review, and completed initial tests prior to traveling to Houston. Mentors represented Johnson organizations including the Flight Operations Directorate, Extravehicular Activity and Human Surface Mobility Program, Engineering, and the Safety and Mission Assurance Directorate. Another familiar face at Johnson was involved in the challenge, as well: former NASA astronaut Steve Swanson, who was the Boise State University team’s faculty advisor. Swanson is a three-time spaceflight veteran who completed four spacewalks and logged and a total of 195 days in space, which enabled him to provide the students with valuable design insights. Former NASA astronaut Steve Swanson with members of the Boise State University Micro-g NExT team at the NBL. NASA/David DeHoyos Once they arrived at the NBL, students received a pre-test briefing from Flight Director Rebecca Wingfield about best practices for communication from a mission control perspective. She also debriefed with teams to provide students with feedback that enhanced their learning experience and gave them a deeper understanding of their projects’ impact on the Artemis campaign. NASA Flight Director Rebecca Wingfield conducts a pre-test briefing for Micro-g NExT teams. Credit: NASA/James Blair NASA astronaut Nicole Mann supported students in the test control room as they underwent testing and were in direct communication with the diver using their prototype in the pool. Mann also conducted a series of post-test debriefs with several teams to give them insight on how their designs were helpful and how they can improve. NASA astronaut Nicole Mann in the NBL control room with Micro-g NExT participants.NASA/James Blair Students also had the opportunity to participate in a poster session at Johnson’s Teague Auditorium to showcase their products and the process from proposal to completion of testing. Artemis Student Challenge Awards were presented to top teams in three categories – Innovation, Pay it Forward (for community engagement and outreach), and Artemis Educator (for a team’s faculty advisor). Micro-g NExT poster session in the lobby of Johnson Space Center’s Teague Auditorium. NASA/David DeHoyos The whirlwind week kicked off with a reception for Micro-g NExT alumni who were recognized for their past efforts and dedication to space exploration. Certificates of appreciation were given to the program’s ‘pioneers’ – the NASA employees, contractors, and interns who helped to create Micro-g NExT 10 years ago. Several tools made by student teams during prior challenges were on display, including a zip-tie cutter designed by the Lone Star College-Cy Fair team in spring 2019 that was used aboard the International Space Station by European Space Agency astronaut Luca Parmitano. Members of that team shared their Micro-g NExT experience with reception attendees. “It gives students the best real-world experience and learning opportunity I have seen,” said James Philippi. Students and staff also heard from several Micro-g NExT alumni during a Q&A panel. Panelists included Harriet Hunt, CRONUS flight controller trainee; Aaron Simpson, xEMU Portable Life Support System engineer intern; Alexis Vance, environmental systems flight controller; Kim Wright, electrical, mechanical, and external thermal systems engineer; and Sam Whitlock, spaceflight systems engineering intern at Axiom Space. Each shared how Micro-g NExT impacted them personally and professionally, underscoring the long-term value of participating in the challenge and the program’s ability to attract next-generation talent to the agency. Micro-g NExT alumni during a Q&A session with this year’s challenge participants and NASA team members. NASA/James Blair Adding to this legacy, two of the 2024 Micro-g NExT participants ended their challenge experience by starting work with NASA. Alana Falter from the University of Illinois-Urbana Champaign returned to NASA as a Pathways Intern, and Adrian Garcia from the University of Houston-Clear Lake returned as a contractor with Barrios Technology. Another nod to the challenge’s impact was a special 10-year patch and logo designed by Justin Robert from the Michoud Assembly Facility through the NASA Spark challenge to commemorate the Micro-g NExT milestone. 10-year anniversary of Micro-g NExT logos.Credit: NASA “Student design challenges have been a critical pipeline for both NASA internship participants and preparing students to be successful in STEM careers,” said Jamie Semple, NASA activity manager for Micro-g NExT. “By participating in these activities, students have the opportunity to create a product that could be part of spaceflight history, all while building essential skills for the next step in their career.” Semple added, “We also see the challenge’s impact with former participants now becoming our Micro-g NExT challenge owners. These people are now leading the program into the future and continuing the legacy of creating leaders in the STEM workforce and for the NASA community.” Reflecting on their experience, Smith Juback from Clemson University said working cooperatively with teammates was their favorite part of this design challenge. “We all had different ideas and ways to solve different problems and being able to incorporate everyone’s ideas together made us all smarter in the end,” he said. “I think we all learned so much individually about how to make and design a product, and we grew as people, students, and designers.” Students from the University of Nebraska-Lincoln team said, “Working with astronauts in a professional environment like the Neutral Buoyancy Laboratory is about precision since time is so valuable and you have to make the most of it. Back at home, we have several hours to test our project and if it breaks it breaks. But in the NBL, we have 12 minutes to run through seven tests. This experience is something you can only get here at Micro-g NExT.” A Micro-g NExT participant directs testing from the NBL control room. Credit: NASA After four days of learning, testing, and networking, Micro-g NExT has reached a decade of providing greater knowledge and inspiration to youth across the country. As one of NASA’s Artemis student challenges, Micro-g NExT will continue to offer undergraduate students the opportunity to design and create mission-ready hardware to benefit the future of deep space exploration. Learn more about Micro-g NExT and other Artemis student challenges at https://stem.nasa.gov/artemis/. Students in the control room at NASA’s Neutral Buoyancy Laboratory test their projects underwater with a diver in the pool. Credit: NASA/James Blair A student team works on their project before testing at the Neutral Buoyancy Laboratory.Credit: NASA/James Blair NASA astronaut Nicole Mann and a diver from NASA’s Neutral Buoyancy Laboratory brief with two students about their lunar flagpole before testing underwater. Credit: NASA/James Blair A student team being awarded a ‘Pay It Forward’ award at Micro-g NExT at Johnson Space Center. Credit: NASA/David DeHoyos A student team from Boise State University poses with an ‘Innovation Award’ they received at Micro-g NExT at Johnson Space center. Credit: NASA/David DeHoyos Students, mentors, and NASA personnel pose with two awards, the ‘Artemis Educator Award’ and the ‘Pay It Forward Award’, at Johnson Space Center in Houston.Credit: NASA/David DeHoyos View the full article
-
1 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) Chabot Space & Science Center director Adam Tobin, right, welcomes NASA Ames center director Eugene Tu, left, and deputy center director David Korsmeyer, center, to the updated NASA Ames Visitor Center. NASA/Donald Richey The San Francisco Bay Area has a new and interactive way to learn more about the innovative work of NASA’s Ames Research Center. A newly redesigned NASA Ames Visitor Center at Chabot Space & Science Center in Oakland, California, reopened to the public June 22 at the NASA Fest at Chabot celebration. The two-day festival included hands-on activities, workshops, and conversations with NASA Ames experts, as well as presentations from local STEM organizations. “Curiosity and inspiration are the core of what we do at NASA,” said Eugene Tu, center director at Ames. “This new exhibit is a chance for us to share a bit of what happens behind the scenes that makes our work possible and inspire the next generation.” The NASA Ames Visitor Center includes exhibits and activities, sharing the work of NASA in Silicon Valley with the public. NASA/Donald Richey The updated visitor center includes a fully reimagined 360-degree experience, featuring new exhibits, models, and more. An interactive exhibit puts visitors in the shoes of a NASA Ames scientist, designing and testing rovers, planes, and robots for space exploration. The NASA Ames Visitor Center first opened at Chabot in November 2021. The newly reimagined space is one way NASA seeks to engage and excite kids and families in science and technology. Share Details Last Updated Jun 27, 2024 Related TermsAmes Research Center Explore More 5 min read NASA’s ELaNa 43 Prepares for Firefly Aerospace Launch Article 6 days ago 4 min read NASA Announces New System to Aid Disaster Response In early May, widespread flooding and landslides occurred in the Brazilian state of Rio Grande… Article 2 weeks ago 2 min read NASA’s Repository Supports Research of Commercial Astronaut Health NASA’s Open Science Data Repository provides valuable information to researchers studying the impact of space… Article 2 weeks ago Keep Exploring Discover Related Topics Ames Research Center About Ames Ames Research Center History Visit Ames Research Center View the full article
-
5 min read Preparations for Next Moonwalk Simulations Underway (and Underwater) NASA’s 2001 Mars Odyssey orbiter captured this single image of Olympus Mons, the tallest volcano in the solar system, on March 11, 2024. Besides providing an unprecedented view of the volcano, the image helps scientists study different layers of material in the atmosphere, including clouds and dust.NASA/JPL-Caltech/ASU The 23-year-old orbiter is taking images that offer horizon-wide views of the Red Planet similar to what astronauts aboard the International Space Station see over Earth. NASA’s longest-lived Mars robot is about to mark a new milestone on June 30: 100,000 trips around the Red Planet since launching 23 years ago. During that time, the 2001 Mars Odyssey orbiter has been mapping minerals and ice across the Martian surface, identifying landing sites for future missions, and relaying data to Earth from NASA’s rovers and landers. Scientists recently used the orbiter’s camera to take a stunning new image of Olympus Mons, the tallest volcano in the solar system. The image is part of a continuing effort by the Odyssey team to provide high-altitude views of the planet’s horizon. (The first of these views was published in late 2023.) Similar to the perspective of Earth astronauts get aboard the International Space Station, the view enables scientists to learn more about clouds and airborne dust at Mars. Taken on March 11, the most recent horizon image captures Olympus Mons in all its glory. With a base that sprawls across 373 miles (600 kilometers), the shield volcano rises to a height of 17 miles (27 kilometers). “Normally we see Olympus Mons in narrow strips from above, but by turning the spacecraft toward the horizon we can see in a single image how large it looms over the landscape,” said Odyssey’s project scientist, Jeffrey Plaut of NASA’s Jet Propulsion Laboratory in Southern California, which manages the mission. “Not only is the image spectacular, it also provides us with unique science data.” In addition to offering a freeze frame of clouds and dust, such images, when taken across many seasons, can give scientists a more detailed understanding of the Martian atmosphere. This infographic highlights just how much data and how many images NASA’s 2001 Mars Odyssey orbiter has collected in its 23 years of operation around the Red Planet.NASA/JPL-Caltech A bluish-white band at the bottom of the atmosphere hints at how much dust was present at this location during early fall, a period when dust storms typically start kicking up. The purplish layer above that was likely due to a mixture of the planet’s red dust with some bluish water-ice clouds. Finally, toward the top of the image, a blue-green layer can be seen where water-ice clouds reach up about 31 miles (50 kilometers) into the sky. How They Took the Picture Named after Arthur C. Clarke’s classic science-fiction novel “2001: A Space Odyssey,” the orbiter captured the scene with a heat-sensitive camera called the Thermal Emission Imaging System, or THEMIS, which Arizona State University in Tempe built and operates. But because the camera is meant to look down at the surface, getting a horizon shot takes extra planning. By firing thrusters located around the spacecraft, Odyssey can point THEMIS at different parts of the surface or even slowly roll over to view Mars’ tiny moons, Phobos and Deimos. The recent horizon imaging was conceived as an experiment many years ago during the landings of NASA’s Phoenix mission in 2008 and Curiosity rover in 2012. As with other Mars landings before and after those missions touched down, Odyssey played an important role relaying data as the spacecraft barreled toward the surface. Laura Kerber, deputy project scientist for NASA’s Mars Odyssey orbiter, explains how and why the spacecraft in May 2023 captured a view of the Red Planet similar to the International Space Station’s view of Earth. Credit: NASA/JPL-Caltech To relay their vital engineering data to Earth, Odyssey’s antenna had to be aimed toward the newly arriving spacecraft and their landing ellipses. Scientists were intrigued when they noticed that positioning Odyssey’s antenna for the task meant that THEMIS would be pointed at the planet’s horizon. “We just decided to turn the camera on and see how it looked,” said Odyssey’s mission operations spacecraft engineer, Steve Sanders of Lockheed Martin Space in Denver. Lockheed Martin built Odyssey and helps conduct day-to-day operations alongside the mission leads at JPL. “Based on those experiments, we designed a sequence that keeps THEMIS’ field-of-view centered on the horizon as we go around the planet.” The Secret to a Long Space Odyssey What’s Odyssey secret to being the longest continually active mission in orbit around a planet other than Earth? “Physics does a lot of the hard work for us,” Sanders said. “But it’s the subtleties we have to manage again and again.” These variables include fuel, solar power, and temperature. To ensure Odyssey uses its fuel (hydrazine gas) sparingly, engineers have to calculate how much is left since the spacecraft doesn’t have a fuel gauge. Odyssey relies on solar power to operate its instruments and electronics. This power varies when the spacecraft disappears behind Mars for about 15 minutes per orbit. And temperatures need to stay balanced for all of Odyssey’s instruments to work properly. “It takes careful monitoring to keep a mission going this long while maintaining a historical timeline of scientific planning and execution — and innovative engineering practices,” said Odyssey’s project manager, Joseph Hunt of JPL. “We’re looking forward to collecting more great science in the years ahead.” More about Odyssey: https://science.nasa.gov/mission/odyssey/ News Media Contacts Andrew Good Jet Propulsion Laboratory, Pasadena, Calif. 818-393-2433 andrew.c.good@jpl.nasa.gov Karen Fox / Charles Blue NASA Headquarters, Washington 202-358-1600 / 202-802-5345 karen.c.fox@nasa.gov / charles.e.blue@nasa.gov 2024-092 Share Details Last Updated Jun 27, 2024 Related TermsMars OdysseyDeimosJet Propulsion LaboratoryMarsMars MoonsPhobos Explore More 5 min read Detective Work Enables Perseverance Team to Revive SHERLOC Instrument Article 21 hours ago 6 min read NASA’s Juno Gets a Close-Up Look at Lava Lakes on Jupiter’s Moon Io Article 23 hours ago 5 min read Why Scientists Are Intrigued by Air in NASA’s Mars Sample Tubes Article 7 days ago Keep Exploring Discover Related Topics Missions Humans in Space Climate Change Solar System View the full article